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Abstract		

Recent	genetic	and	genomics	approaches	have	yielded	novel	insights	in	the	pathogenesis	of	Systemic	
Lupus	 Erythematosus	 (SLE)	 but	 the	 diagnosis,	 monitoring	 and	 treatment	 still	 remain	 largely	
empirical1,2.	We	reasoned	that	molecular	characterization	of	SLE	by	whole	blood	transcriptomics	may	
facilitate	early	diagnosis	and	personalized	therapy.	To	this	end,	we	analyzed	genotypes	and	RNA-seq	
in	142	patients	and	58	matched	healthy	individuals	to	define	the	global	transcriptional	signature	of	
SLE.	By	controlling	for	the	estimated	proportions	of	circulating	immune	cell	types,	we	show	that	the	
Interferon	 (IFN)	 and	 p53	 pathways	 are	 robustly	 expressed.	We	 also	 report	 cell-specific,	 disease-
dependent	regulation	of	gene	expression	and	define	a	core/susceptibility	and	a	flare/activity	disease	
expression	signature,	with	oxidative	phosphorylation,	ribosome	regulation	and	cell	cycle	pathways	
being	enriched	in	lupus	flares.	Using	these	data,	we	define	a	novel	index	of	disease	activity/severity	
by	combining	the	validated	Systemic	Lupus	Erythematosus	Disease	Activity	 Index	(SLEDAI)1	with	a	
new	variable	derived	from	principal	component	analysis	(PCA)	of	RNA-seq	data.	We	also	delineate	
unique	 signatures	 across	 disease	 endo-phenotypes	 whereby	 active	 nephritis	 exhibits	 the	 most	
extensive	changes	 in	 transcriptome,	 including	prominent	drugable	signatures	such	as	granulocyte	
and	plasmablast/plasma	cell	activation.	The	substantial	differences	in	gene	expression	between	SLE	
and	 healthy	 individuals	 enables	 the	 classification	 of	 disease	 versus	 healthy	 status	 with	 median	
sensitivity	and	specificity	of	83%	and	100%,	respectively.	We	explored	the	genetic	regulation	of	blood	
transcriptome	in	SLE	and	found	3142	cis-expression	quantitative	trait	loci	(eQTLs).	By	integration	of	
SLE	genome-wide	association	study	(GWAS)	signals	and	eQTLs	from	44	tissues	from	the	Genotype-
Tissue	Expression	(GTEx)	consortium,	we	demonstrate	that	the	genetic	causality	of	SLE	arises	from	
multiple	tissues	with	the	top	causal	tissue	being	the	liver,	followed	by	brain	basal	ganglia,	adrenal	
gland	 and	whole	blood.	 Collectively,	 our	 study	defines	distinct	 susceptibility	 and	 activity/severity	
signatures	in	SLE	that	may	facilitate	diagnosis,	monitoring,	and	personalized	therapy.		
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Systemic	Lupus	Erythematosus	(SLE)	is	the	prototypic	systemic	autoimmune	disease	that	manifests	
a	wide	range	of	clinical	and	molecular	abnormalities2,3.	Despite	advances	 in	the	pathogenesis	and	
treatment,	several	unmet	needs	exist.	To	cite	a	few,	the	molecular	events	explaining	the	variability	
of	SLE	and	the	interspersing	periods	of	inactivity	and	activity	remain	unspecified.	The	disease	is	often	
challenging	 to	diagnose,	especially	at	early	stages,	and	there	 is	 lack	of	 robust	diagnostic	criteria4.	
Existing	 instruments	 to	 monitor	 SLE	 suffer	 from	 inherent	 limitations	 and	 there	 are	 no	 accurate	
biomarkers	 of	 disease	 activity	 and	 severity.	 Moreover,	 the	 extent	 to	 which	 clinically-defined	
therapeutic	 targets	 correlate	 with	 changes	 in	 transcriptome	 is	 not	 known.	 Notwithstanding	 the	
successful	 introduction	of	 the	 first	 targeted	biological	agent	 in	SLE5,	a	considerable	proportion	of	
patients	 will	 be	 unresponsive	 to	 existing	 treatments,	 highlighting	 the	 need	 for	 novel,	 targeted	
therapies	 based	 on	 the	 underlying	 immune	 aberrancies.	 To	 examine	 these,	 we	 performed	
transcriptome	profiling	by	RNA-seq	(Supplementary	Figure	1)	 in	142	SLE	patients	(Supplementary	
Table	1)	with	varying	levels	of	disease	activity,	and	compared	it	to	matched	healthy	individuals.	

Our	data	 show	widespread	 transcriptome	perturbations	 in	SLE	with	6730	differentially	expressed	
genes	(DEGs)	(false	discovery	rate	[FDR]	5%)	(Supplementary	Figure	2A	and	Supplementary	Table	
2);	3977	genes	were	upregulated	(59.1%)	and	2753	genes	were	downregulated	(40.9%)	in	SLE	versus	
healthy	individuals.	The	enriched	KEGG	pathways6	(5%	FDR)	for	DEGs	are	shown	in	Supplementary	
Figures	2B-D	with	novel	and	previously	identified	pathways	implicated	in	SLE	being	confirmed,	such	
as	 the	 IFN	 signature	 represented	 in	 the	 Herpes	 simplex	 virus	 (HSV)	 and	 the	 NOD-like	 receptor	
signaling	 pathways7.	 A	 broad	 view	 of	 the	 biological	 regulation	 of	 SLE	 is	 provided	 by	 a	 network	
enrichment	map	of	significantly	enriched	GO	terms	derived	from	DEGs	(Supplementary	Figure	2E).	
These	results	reveal	marked	aberrancies	and	specific	signatures	in	SLE	whole	blood	transcriptome.	

Whole	blood	assays,	while	relevant	to	define	complex	inflammatory	signatures8,9,	do	not	inform	on	
cell-specific	mechanisms.	To	address	 this,	we	estimated	 the	proportions	of	different	 immune	cell	
types	for	each	individual	by	using	blood	transcriptome	deconvolution	implemented	in	CIBERSORT10.	
We	report	significant	differences	in	blood	cell	composition	including	reduction	of	naïve	B-cells11	and	
natural	killer	cells12,13,	and	increase	of	memory	activated	CD4+	T-cells14	and	myeloid-linage	cells15-18	
in	SLE	versus	healthy	individuals	(Figure	1A).	Next,	we	defined	a	global	gene	expression	signature	
independent	of	the	differences	in	cell	composition	by	controlling	for	the	estimated	proportions	of	
cell	types,	and	found	1613	DEGs	(5%	FDR)	between	SLE	and	healthy	individuals,	which	represents	a	
76%	 decrease	 in	 DEGs	 from	 the	 previous	 analysis.	 Pathway	 and	 GO	 term	 enrichment	 analysis	
revealed	 that	 the	 IFN	 signature	 (Figure	 1B-C)	 is	 independent	 of	 cell	 type	 composition.	 By	
interrogating	the	interferome	database19,	we	found	that	the	DEGs	are	indicative	of	both	type	I	and	
type	II	IFN	response,	while	they	also	showed	enrichment	in	the	p53	signaling	pathway	(Figure	1B),	
which	is	implicated	in	apoptotic	cell	clearance	and	maintenance	of	immune	tolerance20,21.	These	data	
demonstrate	a	robust	transcriptional	signal	–	independent	of	blood	cell	type	composition	–	that	could	
facilitate	the	discovery	of	novel	biomarkers.	

To	 unravel	 cell-specific	 gene	 perturbations,	 we	 examined	 whether	 cell	 type	 composition	 has	 a	
different	 effect	 on	 gene	 expression	 between	 the	 SLE	 and	 healthy	 state.	 We	 controlled	 for	 the	
estimated	proportions	of	all	other	immune	cell	types	and	tested	for	the	significance	of	the	disease	Í	
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estimated	cell	proportion	interaction	term.	We	quantified	the	proportion	of	true	positives	estimated	
from	the	enrichment	of	significant	p-values	(π1)22	(Figure	1D).	For	naive	and	memory	B-cells,	CD4+	
memory	resting	T-cells,	CD8+	T	cells,	and	neutrophils,	the	corresponding	π1	values	were	above	zero,	
suggesting	that	varying	proportion	of	these	cells	interacts	with	the	effects	that	cell	type	proportions	
have	on	 gene	expression	 in	 SLE	 versus	 healthy	 individuals.	 Illustratively,	 increasing	proportion	of	
neutrophils	 correlated	 positively	 with	GTPBP2	 (GTP	 Binding	 Protein	 2)	 in	 SLE	 but	 not	 in	 healthy	
individuals	 (Figure	1E).	The	same	 trend	was	observed	 for	 the	correlation	between	CD4+	memory	
resting	T-cells	and	CD1c	(cluster	differentiation	1c)	(Figure	1F).	GTPBP2	interacts	with	IRF5	to	regulate	
type	I	IFN	production23,	while	CD1c	is	a	cell	membrane	glycoprotein24	that	mediates	the	presentation	
of	modified	peptides	to	CD1c-restricted	T	cells25	and	has	been	linked	to	autoimmunity26,27.	Together,	
differences	in	whole	blood	transcriptome	in	SLE	are	driven	by	both	altered	abundances	of	circulating	
immune	cell	types	and	cell-specific	regulation	of	gene	expression	depending	on	disease	status.	

Remission	of	disease	activity	has	been	introduced	as	therapeutic	target	in	SLE28	but	whether	this	is	
mirrored	by	transcriptome	changes	remains	unknown.	This	has	implications	for	predicting	the	risk	
for	subsequent	flare	and	assessing	the	need	for	continuing	long-term	immunosuppression.	To	this	
end,	we	determined	a	‘core’	gene	expression	signature	that	persists	in	the	absence	of	disease	activity	
following	 treatment.	 First,	 we	 applied	 PCA	 on	 the	 transcriptome	 in	 clinically	 active	 and	 inactive	
patients	and	healthy	individuals	(Supplementary	Table	1	and	Figures	2A-C).	Inactive	SLE	were	clearly	
differentiated	 from	healthy	 (Figure	2B)	 but	not	 from	active	SLE	 individuals	 (Figure	2C),	 signifying	
persistently	 deregulated	 gene	 expression	 despite	 disease	 remission.	We	 took	 the	 intersection	 of	
DEGs	in	healthy	versus	active	SLE	(4938	DEGs	5%	FDR;	Supplementary	Table	3)	and	healthy	versus	
inactive	SLE	(4658	DEGs;	Supplementary	Table	4)	that	are	not	DEGs	in	active	versus	inactive	SLE	(377	
DEGs;	 Supplementary	 Table	 5),	 to	 reach	 2726	 DEGs	 which	 comprise	 the	 ‘core’	 disease	 gene	
signature.	These	genes	were	enriched	in	biological	processes	and	GO	terms	related	to	the	regulation	
and	response	of	 the	 immune	system	 (Supplementary	Figure	3)	 suggesting	persistence	of	 immune	
system	activation	and	inflammation	despite	remission	of	clinical	signs	and	symptoms.	By	comparing	
patients	with	clinically	 inactive	SLE	but	evidence	for	serologic	activity	 (high	anti-dsDNA	titers,	 low	
serum	complement)29	against	those	who	are	both	clinically	and	serologically	inactive,	we	found	no	
DEGs	at	5%	FDR,	corroborating	studies	showing	similar	favorable	prognosis	for	these	two	groups30.		

Flares	of	disease	activity	are	frequent	in	SLE	and	contribute	to	accrual	of	irreversible	organ	damage31.	
Defining	the	signature	of	increased	SLE	activity	has	pathogenic	and	clinical	ramifications.	To	this	end,	
we	selected	the	DEGs	from	the	comparison	of	inactive	versus	active	SLE	that	are	not	included	in	the	
‘core’	disease	signature.	A	total	365	DEGs	were	identified,	which	were	enriched	for	KEGG	pathways	
such	as	oxidative	phosphorylation,	consistent	with	the	described	alterations	in	mitochondrial	mass	
and	membrane	potential	in	lupus	T	cells32-34	and	the	enhanced	oxidative	stress35-37.	Other	enriched	
pathways	included	ribosomes	and	cell	cycle.	Thus,	increases	in	SLE	activity	may	be	linked	to	perturbed	
expression	of	genes	that	regulate	metabolism,	protein	synthesis	and	proliferation	of	peripheral	blood	
immune	cells.	The	flare	gene	signature	could	enable	the	earlier	identification	of	an	impending	clinical	
flare	 and	 more	 effective	 use	 of	 pre-emptive	 treatment,	 an	 unmet	 need	 in	 SLE	 in	 view	 of	 the			
limitations	of	traditional	serologic	tests38,39.		
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Biomarkers	 that	 accurately	 reflect	 disease	 severity	 and	 the	 underlying	 molecular	 pathogenesis,	
represent	 an	 additional	 unmet	 need	 in	 SLE.	We	 assessed	 transcriptome	differences	 according	 to	
varying	degrees	of	disease	activity/severity	by	using	the	validated	SLEDAI-2K	index	as	a	quantitative	
measure	(0=inactive;	1–5=mild;	6–10=moderate;	>10=severe	disease)40,	among	patients	and	healthy	
individuals	(fixed	score	of	-1).	We	performed	PCA	(Figure	3A)	on	the	identified	3690	DEGs	(5%	FDR)	
(Supplementary	 Table	 6)	 and	 defined	 PC1	 (explaining	 23%	 of	 the	 variance)	 as	 a	 new	 variable	
summarizing	the	expression	properties	of	genes	that	recapitulate	SLE	severity	(Figure	3B).	Notably,	
PC1	clusters	closely	patients	with	inactive	and	low	disease	activity,	which	is	consistent	with	evidence	
that	both	these	states	have	a	favorable	outcome41,42.	Pathway	analysis	showed	enrichment	in	the	
oxidative	phosphorylation	and	cell	cycle	KEGG	pathways,	similar	to	the	‘flare’	signature,	suggesting	
that	these	two	biological	processes	may	be	implicated	not	only	in	disease	activity	but	also	in	severity.	
Functionally	 grouped	 networks	 of	 GO	 terms	 revealed	 gene	 signatures	 related	 to	 protein	
ubiquitination,	electron	transport	chain,	protein	phosphorylation,	cell	cycle,	defense	response	and	
regulation	of	response	to	stress	(Figure	3C),	all	of	which	have	been	linked	to	SLE37,43,44.	These	results	
point	out	the	involvement	of	multiple	molecular	pathways	and	biological	processes	in	determining	
SLE	 progression/severity	 and	 suggest	 that	 whole	 blood	 transcriptome	 may	 serve	 as	 a	 robust	
biomarker	of	SLE	activity	and	severity.	

SLE	 can	 affect	 multiple	 organs	 but	 the	 molecular	 basis	 of	 this	 heterogeneity	 remains	 elusive.	
Accordingly,	 SLE	 patients	 were	 grouped	 according	 to	 predominant	 organ	 activity	 (Table	 1)	 and	
multiple	comparisons	were	carried	out.	By	comparing	patients	with	active	renal	disease	(nephritis)	
(group	1)	versus	those	with	activity	from	other	organs	(combined	groups	2,3,4),	we	found	136	DEGs	
(5%	FDR).	These	genes	were	enriched	in	functionally	grouped	networks	of	granulocyte	activation	and	
antimicrobial	 humoral	 response	 (Supplementary	 Figure	4),	 consistent	with	 the	 role	of	neutrophil	
activation45,46	 and	 their	 death	 by	 formation	 of	 chromatin	 extracellular	 traps,47-49	 and	 of	
plasmablasts/plasma-cells11,50-52	 in	 lupus	 nephritis.	 To	 further	 discern	 the	 transcriptome	basis	 for	
kidney	 involvement	 in	 SLE,	we	 took	 the	 intersection	of	DEGs	 in	 active	 nephritis	 (group	1)	 versus	
inactive	SLE	(combined	groups	5	and	6)	(1375	DEGs,	5%	FDR)	with	those	in	active	versus	inactive	SLE	
(377	 DEGs).	 A	 total	 305	 genes	 were	 common	 in	 the	 two	 comparisons,	 suggesting	 a	 step-wise	
progression	of	transcriptome	alterations	from	inactive	to	active	non-renal	and	active	renal	SLE	status.	
By	 comparing	 patients	 with	 active	 versus	 inactive	 nephritis,	 we	 found	 global	 gene	 expression	
differences	captured	by	PCA	(Supplementary	Figure	5),	while	differential	gene	expression	analysis	
between	 these	 two	 groups	 revealed	 1496	 DEGs.	 Together,	 lupus	 nephritis	 displays	 marked	 and	
gradually	enriched	changes	in	whole	blood	gene	expression	compared	to	other	SLE	subsets,	some	of	
which	may	be	drugable.	

SLE	exhibits	a	striking	gender	bias	with	females	being	affected	7	to	12	times	more	frequently	than	
men,	yet	the	latter	suffering	from	more	severe	disease53.	To	gain	insights	into	the	molecular	basis	of	
this	 sexual	 dimorphism,	 we	 took	 the	 non-overlapping	 sets	 of	 DEGs	 in	 male	 versus	 female	 SLE	
(Bonferroni	 significant)	 and	male	 versus	 female	healthy	 (90%	FDR)	 individuals.	 Six	 genes	 showed	
gender-biased	expression	in	SLE	(Supplementary	Figure	6A),	two	of	which	(SMC1A,	ARSD)	are	located	
on	 X	 chromosome	 and	 escape	 X-inactivation.	 SMC1A,	 encoding	 for	 the	 cohesin	 complex	 protein	
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Structural	 Maintenance	 Of	 Chromosomes	 1A54-56,	 demonstrated	 the	 strongest	 gender	 bias	
(Supplementary	Figure	6A-B),	and	this	was	confirmed	in	purified	CD4+	T-cells	(Supplementary	Figure	
6C).	Although	preliminary,	these	results	provide	candidate	genes	for	further	studies	on	the	sexual	
dimorphism	in	the	disease.	

SLE	diagnosis	can	be	challenging	especially	at	early	stages	before	an	adequate	number	of	features	
accumulate4.	 We	 asked	 whether	 we	 could	 accurately	 classify	 individuals	 based	 on	 their	
transcriptional	profile	by	building	multiple	classifiers	based	on	Linear	Discriminant	Analysis	(LDA)	by	
the	use	of	DEGs	as	features	(see	Methods).	We	measured	a	median	diagnostic	accuracy	of	90%	in	the	
validation	set	with	86%	sensitivity	and	100%	specificity	(Supplementary	Figure	7).	Patients	who	were	
most	 frequently	 misclassified	 as	 healthy	 individuals	 had	 lower	 frequency	 of	 renal	 involvement,	
ANA/anti-dsDNA	autoantibodies,	and	were	less	frequently	treated	with	immunosuppressive	agents,	
suggesting	an	overrepresentation	of	milder	disease.	Thus,	whole	blood	transcriptome	might	be	used	
to	 assist	 the	diagnosis	 of	 SLE,	 a	 finding	 that	needs	 to	be	 confirmed	and	 validated	 in	 longitudinal	
studies	of	patients	with	both	early	and	established	disease.		

Definition	 of	 regulatory	 genetic	 effects	 is	 crucial	 to	 our	 understanding	 of	 the	molecular	 basis	 of	
complex	diseases57.	We	explored	the	genetic	regulation	of	blood	transcriptome	in	SLE	by	assessing	
expression-Quantitative	Trait	Loci	(eQTLs)	 in	our	cohort.	We	found	3142	cis-eQTLs	(5%	FDR),	with	
highly	 significant	 cis-eQTLs	 clustering	 close	 to	 the	 transcription	 start	 site	 of	 the	 genes	
(Supplementary	Figure	8A-B).	These	eQTLs	replicated	well	(pi=0.89,	Supplementary	Figure	8C)	with	
a	blood	RNA-seq	study	in	healthy	donors58,	suggesting	the	lack	of	disease	specificity.	This	could	be	
due	to	lack	of	adequate	power	to	detect	such	effects	and/or	the	need	to	study	specific	immune	cell	
types.	Assessing	eQTLs	from	multiple	tissues	could	enhance	our	interpretation	of	GWAS	signals,	as	
most	of	them	reside	in	non-coding	genome	areas59	and	enable	the	identification	of	the	causal	genes	
and	tissues.	To	estimate	the	tissue(s)	that	determine	the	genetic	causality	of	SLE,	we	employed	the	
Regulatory	Trait	Concordance	(RTC)	method57,60	that	estimates	the	causal	tissues	by	using	eQTLs	in	
44	tissues	from	the	GTEx	consortium61	(Figure	4).	We	found	that	the	top	causal	tissue	is	liver	followed	
by	brain	basal	ganglia,	adrenal	gland	and	whole	blood,	suggesting	that	the	genetic	causality	of	SLE	
arises	from	multiple	tissues.	The	finding	of	liver	being	linked	as	the	top	causal	tissue	is	in	agreement	
with	our	result	that	SLE	exacerbation	is	associated	with	changes	in	expression	of	genes	that	regulate	
metabolism62.		

In	summary,	SLE	is	an	autoimmune	disease	with	marked	clinical	and	immunological	heterogeneity,	
waxing	and	waning	course,	and	variable	response	to	immunosuppressive	and	biological	treatments.	
In	 a	 previous	 study,	 Banchereau	 et	 al	 63	 profiled	 the	 blood	 transcriptome	 by	 microarrays	 in	 a	
longitudinal	cohort	of	pediatric	patients.	However,	their	analysis	focused	on	detection	of	 immune	
correlates	of	disease	activity	and	treatment	effects	based	on	a	priori	defined	modules	of	transcripts	
co-expressed	 in	 blood	 across	 various	 immunological	 conditions.	 Our	 RNA-seq	 analysis	 in	 a	 well-
characterized	cohort	of	adult	SLE	patients	provides	an	unbiased	characterization	of	whole-blood	gene	
signatures	associated	not	only	with	susceptibility	but	also,	with	clinically	relevant	disease	progression	
such	as	increased	activity	and	major	organ	involvement.	We	also	defined	cell-specific	effects	of	the	
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disease	on	gene	expression,	which	may	provide	insights	into	the	pathogenic	role	of	specific	immune	
cell	 types	 by	 the	 further	 studies	 in	 purified	 cells.	 DEGs	 are	 involved	 in	 biological	 networks	 and	
pathways	that	are	pertinent	to	SLE	pathogenesis	and	may	represent	putative	therapeutic	targets.	
Importantly,	we	show	that	whole	blood	transcriptome	can	classify	SLE	versus	healthy	individuals	with	
excellent	specificity	putting	forward	the	possibility	of	using	blood	gene	profiling	as	a	diagnostic	tool.	
Finally,	our	studies	on	the	genetic	variation	on	gene	expression	suggest	that	 in	addition	to	whole	
blood,	other	tissues	such	as	the	liver	may	determine	genetic	causality	in	SLE.	
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Methods	

Patients,	samples	collection	and	clinical	assessment	
SLE	 patients,	 diagnosed	 according	 to	 board-certified	 rheumatologist’s	 judgment	 and/or	 the	 1997	
revised	ACR	classification	criteria64,	were	enrolled	from	the	rheumatology	clinics	at	the	University	
Hospital	 of	Heraklion,	University	Hospital	 C.F.R	 Cluj	Napoca,	General	 Hospital	 of	 Athens	 'Laikon',	
'Attikon'	University	Hospital	in	Athens	and	'Hippokration'	Hospital	of	Thessaloniki.	Demographic	and	
clinical	characteristics	including	history	of	biopsy-proven	nephritis,	ACR	classification	criteria,	serum	
autoantibodies,	assessment	of	disease	activity	 (physician’s	global	assessment	[PGA],	SLEDAI-2K40),	
definitions	 of	 Lupus	 Low	Disease	 Activity	 State	 and	 remission41,42,	 and	 use	 of	medications,	were	
evaluated	by	a	standardized	protocol.	Informed	consent	was	obtained	from	adults	and	the	parents	
those	younger	than	18	years	of	age	and	all	procedures	were	followed	in	accordance	with	protocols	
approved	 by	 the	 local	 institutional	 review	 boards.	 Patients	 were	 asked	 to	 withdraw	 all	 lupus	
medications	for	12	hours	prior	to	blood	collection.	Venipuncture	was	performed	to	collect	blood	in	
PaxGene	RNA	tubes	(Qiagen)	for	mRNA	extraction	and	in	EDTA	tubes	for	DNA	extraction.		
	
Study	design	
We	performed	RNA-seq	to	measure	gene	expression	in	whole	blood	from	SLE	patients	and	matched	
for	age	and	sex	healthy	individuals.	After	quality	control	(Supplementary	Figure	1),	we	obtained	gene	
quantifications	for	142	SLE	patients	and	58	healthy	volunteers,	measuring	the	expression	of	~21.000	
genes.	All	individuals	were	genotyped	and	imputed	towards	the	1000	genomes	phase	III	reference	
panel65,66,	yielding	a	set	of	~6.9	millions	of	variants.	For	all	SLE	individuals	we	collected	a	variety	of	
clinical	 phenotypes	 such	 as	 the	 1997	 American	 College	 of	 Rheumatology	 revised	 criteria	 for	
classification	of	SLE,	presence	of	 serum	autoantibodies,	physician-rated	disease	activity	 (PGA),	an	
index	measuring	the	activity	of	the	disease	(SLEDAI-2K)1,67,	and	the	medical	treatment	at	the	time	of	
sample	collection.	
	
Genotyping	
All	 the	 individuals	were	 genotyped	with	 the	 Illumina	HumanCoreExome-24	array.	 The	 individuals	
were	phased	with	SHAPEIT68	and	imputed	to	the	1000	Genomes	Project	Phase	III66	using	IMPUTE269.	
After	imputation,	we	filtered	out	SNPs	with	MAF	<=0.05,	IMPUTE	score	<	0.4	and	Hardy-Weinberg	
equilibrium	p-value	<5e-7.	After	filtering	we	ended	up	with	~7M	variants	for	association	testing.		
	

RNA	sequencing,	mapping	and	quantifications	
RNA	libraries	were	prepared	with	the	Illumina	TruSeq	sample	preparation	kit	and	were	sequenced	
on	 Illumina	 HiSeq2000	 according	 the	 manufacturer’s	 instructions.	 49	 bp	 paired-end	 reads	 were	
mapped	 to	 the	GRCh37	 reference	human	genome	using	 the	GEM	mapper70.	We	kept	 reads	with	
mapping	quality	>150	to	quantify	exons	and	genes	corresponding	to	reads	that	are	uniquely	mapped	
to	the	genome,	with	the	correct	orientation	between	pairs,	allowing	for	5	mismatches	for	both	reads	
of	a	pair.	Exon	quantification	was	performed	using	the	GENCODE	annotation	v1571.	The	overlapping	
exons	of	a	gene	were	merged	into	a	meta-exon	unit	with	starting	coordinates	the	start	position	of	
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the	first	exon	that	is	merged	and	end	position	the	end	position	of	the	last	exon	that	is	merged.	We	
counted	reads	as	mapped	to	this	meta-exon	unit	if	there	was	an	overlap	between	either	the	start	or	
end	 position	 of	 the	 read	with	 the	meta-exon.	 Gene	 level	 quantifications	were	 then	 obtained	 by	
summing	the	meta-exons	counts	for	each	gene.		
	
Quality	control	of	RNA	sequencing	data	
Several	metrics	were	used	to	assess	the	quality	of	the	RNA-seq	data	(Supplementary	Figure	1A).	We	
measured	the	proportion	of	exonic/total	reads	in	quantified	exons	per	sample.	Samples	with	a	ratio	
less	than	0.2	were	excluded	from	further	analysis	as	technical	outliers.	We	further	excluded	samples	
being	outliers	in	the	PCA	plot	(Supplementary	Figure	1B).	These	samples	were	also	outliers	based	on	
the	proportion	of	total	reads	mapped	to	hemoglobin	genes	(Supplementary	Figure	1C).	Two	samples	
were	also	excluded	from	further	analysis	based	on	discrepancy	of	the	sex	identified	by	the	RNA-seq	
data	and	our	clinical	records	(Supplementary	Figure	1D).	Finally,	MBV72	was	used	to	correct	for	any	
sample	 label	 swaps	 or	 cross	 contamination	 for	 the	 RNA-seq	 and	 the	 genotyped	 data	 without	
identifying	any	swaps	in	our	dataset.	
	
Differential	gene	expression	analysis	
We	included	21851	genes	in	the	analysis	and	used	this	set	of	genes	in	all	downstream	analyses	for	
consistency.	A	gene	was	included	if	 it	had	at	least	5	reads	in	10%	of	either	the	SLE	or	the	healthy	
individuals.	DESeq273	was	used	to	call	differentially	expressed	genes	by	including	GC	content,	RNA	
integrity	(RIN),	center	of	collection,	insert	size	mode,	age,	gender,	amount	of	RNA	to	construct	the	
library	 and	plate	number	 as	 technical	 covariates.	 These	 covariates	were	 found	 to	 influence	 gene	
expression	 by	 performing	 step	 wise	 regression	 between	 gene	 expression	 and	 all	 the	 technical	
covariates	that	were	obtained	from	the	experimental	procedure.	Benjamini-Hochberg	was	used	to	
assess	significance	at	5%	or	1%	false	discovery	rate	(FDR).	To	identify	genes	that	were	differentially	
expressed	despite	the	immune	cell	composition	we	used	the	same	covariates	as	before	by	including	
the	 estimated	 cell	 proportions	 as	 covariates	 in	 the	 model.	 To	 assess	 cell	 specific	 differentially	
expression	we	used	the	latter	model	by	including	a	disease	Î	estimated	proportion	status	interaction	
term	and	obtained	p-values	for	every	gene	for	the	interaction	term.	For	this	analysis,	we	estimated	
the	proportion	of	true	positives	from	the	enrichment	of	significant	p-values	by	using	the	π1	statistics.	
To	specify	the	DEGs	based	on	disease	severity/activity	the	SLEDAI-2K	index	was	used	as	a	quantitative	
measurement	by	fixing	the	score	to	-1	for	healthy	individuals.	To	call	up	and	down	regulated	DEGs	
we	used	Spearman	rank	correlation	between	gene	expression	and	the	SLEDAI	index.		
	
Pathway	and	GO	term	enrichment	analysis	
To	 functionally	characterize	 the	 identified	DEGs	a	comprehensive	 functional	enrichment	gene	set	
analysis	 for	 KEGG	 pathways	 and	 GO	 terms	 was	 performed	 by	 using	 the	 ClueGO74	 plugin	 of	
Cytoscape75.	Briefly,	ClueGO	visualize	the	functionally	grouped	networks	of	enriched	pathways	and	
GO	terms.	The	enrichment	is	based	on	a	two-sided	hypergeometric	test	and	corrected	for	multiple	
testing	with	either	Benjamini-Hochberg	for	KEGG	pathways	or	Bonferroni	for	GO	terms	by	setting	the	
threshold	of	the	adjusted	p-values	in	each	case	at	0.05.		
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We	used	 a	more	 stringent	 approach	with	GO	 terms	 by	 Bonferroni	 correction	 and	 fusion	 criteria	
implemented	in	the	ClueGO	plugin	to	reduce	the	plethora	of	the	terms	that	have	the	same	enriched	
genes	allowing	only	for	the	most	representative	“parent”	or	“child”	terms	in	the	networks.	Each	node	
represents	a	pathway	or	a	GO	term	and	the	size	of	each	node	represents	the	enrichment	significance.	
The	connection	between	nodes	is	based	on	Cohen's	kappa	statistic	score	(≥	0.4)	which	depends	on	
the	gene	sharing	between	nodes.	For	each	network,	only	the	most	significant	node	is	labeled.	
	 	
Cell	type	estimation		
We	used	CIBERSORT10	to	estimate	the	proportion	of	different	immune	cell	types	in	whole	blood	in	
our	dataset.	CIBERSORT	uses	a	well-defined	gene	expression	signature	(LM22)	that	consists	of	547	
genes	that	precisely	differentiate	mature	human	hematopoietic	cells.	To	perform	the	analysis,	we	
used	the	LM22	gene	matrix	as	reference	and	normalized	values	for	the	library	size	per	sample	in	our	
dataset	obtained	from	the	estimateSizeFactors	function	in	DESeq2.		
	
CD4+	T-cell	purification	and	RT-PCR	
Peripheral	 blood	 mononuclear	 cells	 (PBMCs)	 from	 SLE	 patients	 and	 age-matched	 healthy	 blood	
volunteers	 were	 isolated	 by	 Ficoll-Histopaque	 (Sigma-Aldrich)	 density-gradient	 centrifugation	 of	
heparinized	 venous	 blood.	 CD4+	 T	 lymphocytes	 (98%	 purity)	 were	 isolated	 by	 negative	
immunomagnetic	selection	(Miltenyi	Biotec,	Bergisch	Gladbach,	Germany).	Total	RNA	was	extracted	
using	 the	 TRIzol™	 extraction	method	 and	 the	 Turbo	 DNAse	 kit	 (Ambion)	 was	 used	 to	 eliminate	
genomic	DNA	contamination.	cDNA	was	prepared	using	Perfect	Real	time	cDNA	Synthesis	Kit	(Takara)	
according	 to	manufacturer’s	protocol.	200ng	of	RNA	were	used	as	a	 template	 for	every	 reaction.	
RNAse	H	(2U/reaction)	was	added	to	clean	the	resulting	cDNA	from	any	RNA	and	incomplete	cDNA	
products.	PCR	amplification	of	the	resulting	cDNA	samples	was	performed	using	appropriate	volumes	
of	 KAPA	 SYBR®	 FAST	Universal	 2x	 qPCR	Master	Mix	 and	 specific	 for	 each	 gene	 primers	 at	 a	 CFX	
Connect™,	 Real-Time	 System.	 Total	 volume	 of	 each	 PCR	 reaction	 was	 20μl.	 Expression	 was	
normalized	to	GAPDH	and	calculated	by	the	change-in-threshold	method	[2^(-ΔΔCT)].	The	following	
primer	sets	were	used:	(5’à3’):	SMC1A	forward	human:	CAT	CAA	AGC	TCG	TAA	CTT	CCT	CG;	SMC1A	
reverse	human:	CCC	CAG	AAC	GAC	TAA	TCT	CTT	CA;	GAPDH	forward	human:	CAT	GTT	CCA	ATA	TGA	
TTC	CAC	C;	GAPDH	reverse	human:	GAT	GGG	ATT	TCC	ATT	GAT	GAC.	
	
Classification		
we	performed	Linear	Discriminant	Analysis	(LDA)	by	using	DEGs	as	features.	We	divided	our	dataset	
to	training	(90%,	corresponding	to	128	SLE	patients	and	52	healthy	 individuals)	and	validation	set	
(10%,	corresponding	to	14	SLE	patients	and	6	healthy	individuals)	and	run	1000	iterations.	For	each	
iteration,	we	performed	differential	 gene	expression	analysis	between	SLE	and	healthy	using	 the	
training	set	and	built	the	LDA	classifier	based	on	the	identified	DEGs	in	order	to	measure	the	accuracy,	
sensitivity	(the	probability	of	calling	an	SLE	individual	as	patient)	and	specificity	(the	probability	of	
calling	a	healthy	 individual	as	healthy)	of	the	classifier.	We	found	a	median	of	6126	DEGs	ranging	
from	4671	to	7222	DEGs.	We	chose	the	strategy	of	building	multiple	classifiers	to	account	for	the	SLE	
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heterogeneity	 by	 inserting	 perturbations	 in	 the	 models	 by	 sampling	 in	 each	 iteration	 different	
individuals.	In	doing	so,	we	achieved	high	levels	of	accurate	classification.		
	
eQTL	mapping		
eQTL	analysis	was	performed	in	a	1MB	window	upstream	or	downstream	the	transcription	start	site	
of	the	gene	using	QTLtools76.	We	scaled	the	total	number	of	raw	reads	per	sample	to	the	median	
number	of	all	samples.	We	removed	genes	that	were	not	expressed	in	90%	of	the	individuals	and	
then	we	applied	PCA	to	account	for	hidden	technical	variation.	Significance	was	assessed	by	using	
the	 qvalue	 R	 package22	 on	 beta	 approximated	 empirical	 p-values	 from	 1000	 permutations.	
Replication	 was	 assessed	 by	 using	 the	 π1	 statistic	 on	 the	 p-value	 distribution	 obtained	 from	
significant	cis-eQTLs.		
	
Regulatory	Trait	Concordance	(RTC)		
We	have	previously	described	RTC	score	to	assess	whether	a	GWAS	variant	and	an	eQTL	are	tagging	
the	same	causal	variant57.	Briefly,	we	expect	that	if	a	GWAS	variant	and	an	eQTL	do	tag	the	same	
causal	 variant,	 by	 removing	 the	 genetic	 effect	 of	 the	 GWAS	 variant	 will	 have	 a	 significant	
consequence	on	 the	eQTL	 association.	 Following	up,	we	 can	now	estimate	 the	 causal	 tissues	 for	
complex	traits	and	diseases	by	measuring	the	tissue	sharing	probabilities	of	eQTLs	and	calculating	
probabilities	that	a	GWAS	variant	and	the	eQTL	do	tag	the	same	functional	effect.	By	normalizing	the	
GWAS-eQTL	probabilities	with	the	tissue	sharing	estimates	of	the	eQTLs,	we	can	estimate	the	tissues	
from	which	GWAS	genetic	causality	arises60.		
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Table	1:	Groups	of	individuals	based	on	the	tissue/organ	that	the	disease	activity	originates.	

	

	 	 	 Clinical	SLEDAI-2K	 SLE	status	(Physician)	

Disease	status	&	organ	 Group	 N	 Mean	 SD	 Inactive	 LDA	 Active	

Active	–	renal	 1	 34	 11	 4,5	 0%	 3%	 97%	

Active	–	CNS/cardiorespiratory/vasculitis	 2	 17	 8,8	 4,3	 0%	 6%	 94.%	

Active	–	hematological	 3	 16	 4,6	 2,8	 0%	 19%	 81%	

Active	–	skin-joints	 4	 29	 4,8	 2,0	 0%	 41%	 59%	

Inactive	–	serologically	active	 5	 14	 0,0	 0,0	 100%	 0%	 0%	

Inactive	–	serologically	inactive	 6	 32	 0,0	 0,0	 100%	 0%	 0%	

healthy		 7	 58	 -	 -	 -	 -	 -	
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Supplementary	Table	1.	Demographic	and	clinical	characteristics	of	SLE	patients	and	healthy	
individuals	

	

	 SLE	patients	
(n	=	142)	

	 healthy	controls	
(n	=	58)	

Gender		 	 	 	
	Female	 120	(84.5%)	 	 48	(82.8%)	
	Male	 22	(15.5%)	 	 10	(17.2%)	
Race	 	 	 	
	Caucasian	 138	(97.2%)	 	 58	(100%)	
	Other	 4	(2.8%)	 	 0	(0%)	
Age	(years)	 	 	 	
	Mean	±	SD	 40	±	14	 	 41	±	13	
	Minimum-maximum	 9	–	75		 	 9	–	64		

ACR	1997	classification	criteria	 	 	 	
	Malar	rash	 89	(62.7%)	 	 	
	Discoid	rash	 2	(1.4%)	 	 	
	Photosensitivity	 64	(45.1%)	 	 	
	Mucosal	ulcers	 42	(29.6%)	 	 	
	Arthritis	 119	(83.8%)	 	 	
	Serositis	 37	(26.1%)	 	 	
	Renal	disease	 66	(46.5%)	 	 	
	CNS	disease	 17	(12.0%)	 	 	
	Hematological	 82	(57.7%)	 	 	
	Immunological	 111	(78.2%)	 	 	
	Antinuclear	antibodies	(ANA)	 128	(90.1%)	 	 	
	No.	ACR	1997	criteria	 5.3	±	1.5	 	 	

Other	disease	characteristics	 	 	 	
	Anti-DNA	antibodies	(ever)	 89	(62.7%)	 	 	
	Anti-phospholipid	antibodies	 45	(31.7%)	 	 	
	Antiphospholipid	syndrome	 18	(12.7%)	 	 	
	Neuropsychiatric	SLE	 25	(17.6%)	 	 	
	Biopsy-proven	nephritis	 64	(45.1%)	 	 	

SLE	therapy	(at	the	time	of	blood	sampling)	 	 	
	Glucocorticoids	 101	(71.6%)	 	 	
	Hydroxychloroquine	 95	(67.4%)	 	 	
	DMARDs	(methotrexate,	azathioprine)	 44	(31.2%)	 	 	
	Mycophenolate	mofetil	 25	(17.7%)	 	 	
	Cyclophosphamide	 15	(10.6%)	 	 	
	Biological	treatment	(rituximab)	 2	(1.4%)	 	 	

SLE	activity	(at	the	time	of	blood	sampling)	 	 	 	
	Physician	judgment	 	 	 	
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	Inactive/remission	 46	(32.4%)	 	 	
	Low	disease	activity	 17	(12.0%)	 	 	
	Active	disease	 79	(55.6%)	 	 	
	SLE	disease	activity	index	(cSLEDAI-2K)	1	 5.2	±	5.2	 	 	
	cSLEDAI-2K	=	0	(remission)	 46	(32.4%)	 	 	
	cSLEDAI-2K	=	1–5	(mild	activity)	 32	(22.5%)	 	 	
	cSLEDAI-2K	=	6–10	(moderate	activity)	 44	(31.0%)	 	 	
	cSLEDAI-2K	≥11	(severe	activity)	 20	(14.1%)	 	 	
	Actively	involved	organs/domains	2	 	 	 	
	General/constitutional	 25	(17.6%)	 	 	
	Mucocutaneous	 68	(47.9%)	 	 	
	Neurological	 15	(10.6%)	 	 	
	Musculoskeletal	 52	(36.6%)	 	 	
	Cardiorespiratory	 9	(6.3%)	 	 	
	Vasculitis	(skin/GI)	 2	(1.4%)	 	 	
	Renal	 34	(23.9%)	 	 	
	Hematology	 25	(17.6%)	 	 	
	Immunological	activity	3	 	 	 	
	All	patients	 60	(42.3%)	 	 	
	Within	patients	with	remission	(n=46)	 14	(30.4%)	 	 	

	Within	patients	with	active	SLE	(n=96)	 46	(47.9%)	 	 	
	
1	SLEDAI-2K	is	based	on	the	presence	of	24	descriptors	in	nine	organ	systems	over	the	preceding	30	
days.	Descriptors	of	SLEDAI-2K	are	documented	as	present	or	absent.	Each	of	the	descriptors	has	a	
weighted	score	and	the	total	score	of	SLEDAI-2K	is	the	sum	of	all	24	descriptor	scores.	The	total	
SLEDAI-2K	score	falls	between	0	and	105,	with	higher	scores	representing	higher	disease	activity.	
Clinical	SLEDAI-2K	(cSLEDAI-2K)	excludes	the	immunological	activity	descriptors	which	contribute	a	
score	of	4.	
2	According	to	the	BILAG	classification	(Ann	Rheum	Dis.	1996;	55:756–60)	
3	Defined	as	low	serum	C3/C4	and/or	increased	anti-dsDNA	concentration	
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Figure	1:	(A)	Estimated	proportions	of	different	immune	cell	counts	in	healthy	and	SLE	individuals.	For	
every	 cell	 type	 the	 Mann-Whitney	 Wilcoxon	 test	 p-value	 comparing	 healthy	 and	 SLE	 patients	 is	
displayed	 on	 top.	 (B)	 Pathway	 enrichment	 analysis	with	 all	 the	DEGs	 after	 correcting	 for	 cell	 type	
proportion	estimates.	(C)	Mechanistic	map	of	the	biological	regulation	in	SLE	after	correcting	for	cell	
type	proportion	estimates.	There	is	a	prevalent	type	I	IFN	regulation	independent	of	immune	cell	type	
composition.	(D)	Histogram’s	of	p-values	for	the	interaction	term	(disease	X	estimated	proportions)	
revealing	cell	type	specific	effects	for	SLE.	For	every	cell	type	the	proportion	of	estimated	true	positives	
(π1)	and	the	number	of	significant	genes	at	5%	FDR	is	presented.	(E)	Disease	by	estimated	Neutrophils	
proportion	interaction	for	the	gene	GTPBP2.	X-axis	indicate	the	estimated	proportion	of	Neutrophils	
while	y-axis	indicate	the	normalized	expression.	Red	dots	indicate	SLE	patients	while	blue	dots	indicate	
healthy	individuals.	(F)	Disease	by	estimated	T-cell	CD4	memory	resting	proportion	interaction	for	the	
gene	 CD1C.	 X-axis	 indicate	 the	 estimated	 proportion	 of	 Neutrophils	 while	 y-axis	 indicate	 the	
normalized	expression.	Red	dots	indicate	SLE	patients	while	blue	dots	indicate	healthy	individuals.		
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Figure	2:	(A)	Principal	Component	Analysis	(PCA)	of	whole	transcriptome	between	healthy	and	Active	
SLE	 individuals.	 The	 two	 first	Principal	Components	are	plotted.	PC2	 is	 clearly	differentiating	 the	2	
groups	 implying	differences	 in	gene	expression.	 (B)	PCA	analysis	between	healthy	and	 Inactive	SLE	
individuals.	 PC2	 is	 clearly	 differentiating	 the	 2	 groups	 indicating	 that	 even	 in	 remission	 the	
transcriptome	of	SLE	patients	is	different	compared	to	healthy	individuals.	(C)	PCA	analysis	between	
Active	and	Inactive	SLE	patients.	The	first	2	PCs	do	not	differentiate	the	2	groups	suggesting	that	there	
are	not	large	differences	in	gene	expression	between	them.		
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Figure	 3:	 (A)	Principal	 Component	 Analysis	 (PCA)	 of	 3690	 DEGs	 found	 by	 using	 SLEDAI	 score	 as	 a	
quantitative	measurement	 of	 SLE	 severity.	 The	 first	 two	 Principal	 Components	 are	 plotted.	 PC1	 is	
capturing	the	progression	of	activity/severity	of	SLE	since	is	separating	the	different	groups	of	activity.	
(B)	Jitter	plot	of	PC1	weights.	For	each	group,	the	median	is	plotted.	The	regression	line	is	plotted	with	
red	 (p-value5.86e-17).	 PC1	 defines	 a	 new	 phenotype	 that	 captures	 SLE	 activity.	 (C)	 Pathway	
enrichment	analysis	of	3690	DEGs	on	the	left	side	of	the	plot.	Oxidative	phosphorylation	and	cell	cycle		
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KEGG	pathways,	that	were	regulated	by	genes	belonging	to	the	“flare”	gene	signature	is	also	enriched	
suggesting	that	these	genes	not	only	capture	the	inactive	to	active	progression	but	also	the	different	
levels	 of	 severity.	 Functionally	 grouped	 networks	 of	 GO	 terms	 on	 the	 right.	 Multiple	 biological	
aberrations	are	captured	by	differences	in	gene	expression	based	on	different	levels	of	SLE	activity.	

 
 

 
 

Figure	4:	(A)	Estimation	of	the	genetic	causality	of	SLE	in	44	tissues	from	GTEx.	On	the	primary	y-axis,	
the	enrichments	over	the	null	per	tissue	are	plotted	as	bars	and	on	the	secondary	y-axis	number	of	
GWAS	variants	that	co-localized	with	eQTLs	per	tissue	are	plotted	as	a	line.	The	horizontal	black	line	
indicates	the	null.	On	top	of	each	of	the	bars	are	the	-log10	Benjamini-Hochberg	corrected	p-values	for	
the	enrichments.	
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Supplementary	 Figure	1:	 (A)	 Fraction	of	 reads	mapping	 to	exons	per	 sample.	 The	 vertical	 red	 line	
indicates	 the	median	 and	 the	 blue	 the	mean.	 Samples	with	 less	 than	 0.2	 exonic/total	 reads	were	
considered	as	 technical	outliers.	 (B)	PCA	analysis	of	gene	expression	of	all	 the	samples.	Samples	 in	
circles	were	considered	as	technical	outliers.	(C)	Proportion	of	reads	mapped	to	hemoglobin	genes.	
Samples	 above	 0.5	 were	 considered	 as	 technical	 outliers	 (same	 samples	 as	 B).	 (D)	 Sex	 specific	
expression,	in	x-axis	RPKMs	(log2)	of	the	female	specific	XIST	gene	versus	the	sum	of	RPKMS	(log2)	of	
the	genes	in	Y	chromosome	excluding	genes	mapped	in	the	pseudo-autosomal	region.		
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Supplementary	Figure	2:	(A)	Volcano	plot	of	DEGs	between	SLE	patients	and	healthy	individuals.	X-
axis	indicate	the	log2	fold	change	(SLE/healthy)	while	the	y-axis	indicates	the	–log10	of	the	Benjamini-
Hochberg	 adjusted	 p-value.	 Black	 dots	 indicate	 genes	 that	 do	 not	 pass	 the	 5%	 FDR	 threshold	 of	
significance,	red	dots	indicate	genes	that	do	pass	the	5%	FDR	threshold	of	significance	while	blue	dots	
indicate	genes	 that	pass	 the	 significance	 threshold	and	have	 log2fold	change	>1.	The	up-regulated	
genes	in	SLE	are	more	(3977)	compared	to	the	down	regulated	(2753)	and	show	higher	significance.	
(B)	Pathway	 enrichment	 analysis	with	 all	 the	 DEGs.	 Each	 circle	 represents	 a	 significantly	 enriched	
pathway.	The	size	of	the	circle	represents	higher	enrichment	of	the	specific	pathway.	The	enrichment	
p-values	were	calculated	by	a	two-sided	hypergeometric	test	and	corrected	for	multiple	testing	with	
Bonferroni.	The	threshold	for	Bonferroni	corrected	p-values	was	set	to	0.05.	(C)	Pathway	enrichment	
analysis	for	the	up-regulated	in	SLE	genes.	(D)	Pathway	enrichment	analysis	for	the	down-regulated	in	
SLE	genes.	(E)	Mechanistic	map	of	the	biological	regulation	in	SLE.	For	all	the	DEGs	functionally	grouped	
networks	of	enriched	GO	term	categories	were	generated.	Each	node	represents	a	GO	term	and	the	
size	of	each	node	represents	the	enrichment	significance.	The	connection	between	nodes	is	based	on	
Cohen's	kappa	statistic	 score	 (≥	0.4)	which	depends	on	 the	gene	sharing	between	nodes.	For	each	
network,	only	the	most	significant	node	is	labeled.		
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Supplementary	Figure	3:	 (A)	Pathway	enrichment	analysis	of	the	2726	DEGs	(5%	FDR)	defining	the	
core	disease	signature.	Each	circle	represents	a	significantly	enriched	pathway.	The	size	of	the	circle	
represents	higher	enrichment	of	the	specific	pathway.	The	enrichment	p-values	were	calculated	by	a	
two-sided	 hypergeometric	 test	 and	 corrected	 for	 multiple	 testing	 with	 Benjamini-Hochberg.	 The	
threshold	for	the	corrected	p-values	was	set	to	0.05	(5%	FDR).	(B)	Mechanistic	map	of	the	biological	
regulation	of	the	core	SLE	signature.	Functionally	grouped	networks	of	enriched	GO	term	categories	
were	generated.	Each	node	represents	a	GO	term	and	the	size	of	each	node	represents	the	enrichment	
significance.	 The	 connection	between	nodes	 is	 based	on	Cohen's	 kappa	 statistic	 score	 (≥	 0.4)	 that	
depends	on	 the	gene	 sharing	between	nodes.	 For	each	network,	only	 the	most	 significant	node	 is	
labeled.	 (C)	Pie	 chart	 representation	 of	 the	mechanistic	map.	More	 than	 half	 of	 the	 networks	 are	
related	to	immunity	response,	system	and	regulation.	
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Supplementary	 Figure	 4:	 Functionally	 grouped	 networks	 of	 enriched	 GO	 term	 categories	 were	
generated	for	the	136	DEGs	(5%	FDR)	between	group	1	(renal	activity)	and	groups	2,3,4	(activity	from	
other	organs).	The	main	enriched	terms	are	granulocyte	activation	and	antimicrobial	humoral	response	
supporting	the	findings	that	Neutrophils	plays	crucial	role	in	Lupus	Nephritis	pathogenesis.		
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Supplementary	Figure	5:	PCA	analysis	of	gene	expression	between	active	Nephritis	and	Nephritis	in	
remission.	(A)	PC1	and	PC2	are	plotted	in	x	and	y-axis	respectively.	PC2	is	differentiating	the	2	groups.	
(B)PC2	 and	 PC3	 are	 plotted	 in	 x	 and	 y-axis	 respectively.	 In	 the	 differentiation	 PC3	 is	 participating	
implying	different	biological	aberrations	captured	by	PC2	and	PC3.		
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Supplementary	Figure	6:	(Α)	Genes	with	differential	expression	(Bonferroni	significant)	between	male	
and	 female	 SLE	 patients	 that	 are	 not	 differentially	 expressed	 (90%	 FDR)	 between	male	 and	 female	
healthy	individuals.	The	blue	line	indicates	the	Bonferroni	p-value	threshold	while	the	red	line	is	set	at	
p-value	0.05.	(B)	SMC1A	expression	(normalized	RNA-seq)	levels	in	male	and	female	SLE	and	healthy	
individuals.	 (C)	 Scatter	 plot	with	 bar	 of	 SMC1A	mRNA	 expression	 in	 purified	 CD4+	 T-cells	 from	 the	
peripheral	blood	of	male	and	female	SLE	and	healthy	individuals.	Bars	represent	median	values	(two-
way	ANOVA	[F	(1,	20)	=	11.48,	p-value	=	0.0029]	followed	by	Tukey's	multiple	comparisons	test;	*	p-
value	<0.05	for	the	comparison	between	healthy	and	SLE	males).	
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Supplementary	Figure	7:	(Α)	Distribution	of	accuracy	after	performing	1000	iterations	for	the	training	
and	validation	set.	Median	accuracy	of	 the	validation	set	 is	0.9	while	 for	 the	training	set	0.88.	 (B)	
Distribution	of	sensitivity	and	specificity	of	the	1000	LDA	classifiers.	Median	sensitivity	is	0.86	while	
median	specificity	is	1.	
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Supplementary	Figure	8:	(Α)	Number	of	detected	cis-eQTLs	using	142	SLE	individuals	at	5%	FDR	(red	
dotted	line)	and	at	1%	FDR	(blue	continues	line)	without	correction	and	by	using	different	number	of	
PCs.	We	detect	 the	 higher	 number	 of	 eQTLs	 (3142	 5%	 FDR)	 by	 correcting	 for	 the	 first	 20	 PCs.	 (B)	
Distance	of	cis-eQTLs	 from	the	Transcriptional	Start	Site	 (TTS)	of	 the	genes.	The	significance	of	 the	
associations	is	plotted	in	the	y-axis	(-log10	p-value).	Highly	significant	eQTLs	are	clustered	close	to	TSS.	
(C)	Replication	of	significant	eQTLs	identified	in	SLE	in	another	whole	blood	healthy	cohort.	
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