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Abstract

Researchers and educators have long wrestled with the question of how best to
teach their clients be they human, animal or machine. Here we focus on the role
of a single variable, the difficulty of training, and examine its effect on the rate of
learning. In many situations we find that there is a sweet spot in which training is
neither too easy nor too hard, and where learning progresses most quickly. We derive
conditions for this sweet spot for a broad class of learning algorithms in the context
of binary classification tasks, in which ambiguous stimuli must be sorted into one of
two classes. For all of these gradient-descent based learning algorithms we find that
the optimal error rate for training is around 15.87% or, conversely, that the optimal
training accuracy is about 85%. We demonstrate the efficacy of this ‘Eighty Five
Percent Rule’ for artificial neural networks used in AI and biologically plausible neural
networks thought to describe human and animal learning.
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Introduction

When we learn something new, like a language or musical instrument, we often seek chal-
lenges at the edge of our competence – not so hard that we are discouraged, but not so easy
that we get bored. This simple intuition, that there is a sweet spot of difficulty, a ‘Goldilocks
zone’ [1], for motivation and learning is at the heart of modern teaching methods [2] and is
thought to account for differences in infant attention between more and less learnable stim-
uli [1]. In the animal learning literature it is the intuition behind shaping [3] and fading [4],
whereby complex tasks are taught by steadily increasing the difficulty of a training task. It
is also observable in the nearly universal ‘levels’ feature in video games, in which the player
is encouraged, or even forced, to a higher level of difficulty once a performance criterion has
been achieved. Similarly in machine learning, steadily increasing the difficulty of training
has proven useful for teaching large scale neural networks in a variety of tasks [5, 6], where
it is known as ‘Curriculum Learning’ [7] and ‘Self-Paced Learning’ [8].

Despite this long history of empirical results, it is unclear why a particular difficulty level
may be beneficial for learning nor what that optimal level might be. In this paper we address
this issue of optimal training difficulty for a broad class of learning algorithms in the context
of binary classification tasks, where ambiguous stimuli must be classified into one of two
classes (e.g. cat or dog).

In particular, we focus on the class of gradient-descent based learning algorithms. In these
algorithms, parameters of the model (e.g. the weights in a neural network) are adjusted
based on feedback in such a way as to reduce the average error rate over time [9]. That
is, these algorithms descend the gradient of error rate as a function of model parameters.
Such gradient-descent learning forms the basis of many algorithms in AI, from single-layer
perceptrons to deep neural networks [10], and provides a quantitative description of human
and animal learning in a variety of situations, from perception [11], to motor control [12]
to reinforcement learning [13]. For these algorithms, we provide a general result for the
optimal difficulty in terms of a target error rate for training. Under fairly mild assumptions
this optimal error rate is around 15.87%, a number that varies slightly depending on the
noise in the learning process. We show theoretically that training at this optimal difficulty
can lead to exponential improvements in the rate of learning. Finally, we demonstrate the
applicability of the Eighty Five Percent Rule in two cases: a simple artificial neural network,
the single-layer perceptron [14], and a more complex biologically plausible network thought
to describe human and animal perceptual learning [11].

Results

Optimal training difficulty for binary classification tasks

In a standard binary classification task, a human, animal or machine ‘agent’ make binary
decisions about simple stimuli. For example, in the classic Random Dot Motion paradigm
from Psychology and Neuroscience [15,16], stimuli consist of a patch of moving dots – most
moving randomly but a small fraction moving coherently either to the left or the right – and
participants must decide in which direction the coherent dots are moving. A major factor

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2018. ; https://doi.org/10.1101/255182doi: bioRxiv preprint 

https://doi.org/10.1101/255182
http://creativecommons.org/licenses/by-nc/4.0/


in determining the difficulty of this perceptual decision is the fraction of coherently moving
dots, which can be manipulated by the experimenter to achieve a fixed error rate during
training using a procedure known as ‘staircasing’ [17].

We assume that agents make their decision on the basis of a scalar, subjective decision
variable, h, which is computed from a stimulus that can be represented as a vector x (e.g.
the direction of motion of all dots)

h = Φ(x, φ) (1)

where Φ(·) is a function of the stimulus and (tunable) parameters φ. We assume that
this transformation of stimulus, x into the subjective decision variable h yields a noisy
representation of the true decision variable, ∆ (e.g. the fraction of dots moving left). That
is, we write

h = ∆ + n (2)

where the noise, n, arises due to the imperfect representation of the decision variable. We
further assume that this noise, n, is random and sampled from a zero-mean Gaussian distri-
bution with standard deviation σ (Figure 1A).

If the decision boundary is set to 0, such that the model chooses option A when h > 0,
option B when h < 0 and randomly when h = 0, then the noise in the representation of the
decision variable leads to errors with probability

ER =

∫ 0

−∞
p(h|∆, σ)dh = F (−∆/σ) = F (−β∆) (3)

where F (x) is the cumulative density function of the standardized noise distribution, p(x) =
p(x|0, 1), and β = 1/σ quantifies the precision of the representation of ∆ and the agent’s
skill at the task. As shown in Figure 1B, this error rate decreases as the decision gets easier
(∆ increases) and as the agent becomes more accomplished at the task (β increases).

The goal of learning is to tune the parameters φ such that the subjective decision variable,
h, is a better reflection of the true decision variable, ∆. That is, the model should aim to
adjust the parameters φ so as to decrease the magnitude of the noise σ or, equivalently,
increase the precision β. One way to achieve this tuning is to adjust the parameters using
gradient descent on the error rate, i.e. changing the parameters over time t according to

dφ

dt
= −η∇φER (4)

where η is the learning rate and ∇φER is the derivative of the error rate with respect to
parameters φ. This gradient can be written in terms of the precision, β, as

∇φER =
∂ER

∂β
∇φβ (5)

Note here that only the first term on the right hand side of equation 5 depends on the
difficulty ∆, while the second describes how the precision changes with φ. This means that
the optimal difficulty for training is the value of the decision variable ∆∗ that maximizes
∂ER/∂β.

In terms of the decision variable, the optimal difficulty changes as a function of precision
(Figure 1C) meaning that the difficulty of training must be adjusted online according to
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Figure 1: Illustration of the model. (A) Distributions over decision variable h given a
particular difficulty, ∆ = 16, with lower precision before learning and higher precision after
learning. The shaded regions corresponds to the error rate – the probability of making an
incorrect response at each difficulty. (B) The error rate as a function of difficulty before
and after learning. (C) The derivative that determines the rate of learning as a function of
difficulty before and after learning showing that the optimal difficulty for learning is lower
after learning than before. (D) The same derivative as in (C) re-plotted as a function of
error rate showing that the optimal error rate (at 15.87%) is the same both before and after
learning.
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the skill of the agent. However, by using the monotonic relationship between ∆ and ER
(Figure 1B) it is possible to express the optimal difficulty in terms of the error rate, ER∗

(Figure 1D). Expressed this way, the optimal difficulty is constant as a function of precision,
meaning that optimal learning can be achieved by clamping the error rate during training
at a fixed value, which, for Gaussian noise is

ER∗ =
1

2

(
1− erf

(
1√
2

))
≈ 0.1587 (6)

Dynamics of learning

While the previous analysis allows us to calculate the error rate that maximizes the rate of
learning, it does not tell us how much faster learning occurs at this optimal error rate. In
this section we address this question by comparing learning at the optimal error rate with
learning at a fixed, but potentially suboptimal error rate, ERf , and a fixed difficulty, ∆f .
In both cases, gradient-descent based updating of the parameters, φ, (Equation 4) implies
that the precision β evolves in a similar manner, i.e.

dβ

dt
= −η∂ER

∂β
(7)

Fixed error rate

As shown in the Methods, integrating Equation 7 for fixed error rate gives

β(t) =
√
β2

0 + 2ηKf (t− t0) (8)

where t0 is the initial time point, β0 is the initial value of β and Kf is the following function
of the training error rate

Kf = −F−1(ERf )p(F
−1(ERf )) (9)

Thus, for fixed training error rate the precision grows as the square root of time with the
exact rate determined by Kf which depends on both the training error rate and the noise
distribution.

Fixed decision variable

When the decision variable is fixed, ∆f , integrating equation 7 is more difficult and the
solution depends more strongly on the distribution of the noise. In the case of Gaussian noise,
there is no closed form solution for β. However, as shown in the Methods, an approximate
form can be derived at long times where we find that β grows as

β(t) ∝
√

log t (10)

i.e. exponentially slower than equation 34.
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Simulations

To demonstrate the applicability of the Eighty Five Percent Rule we simulated the effect of
training accuracy on learning in two cases. From AI we consider the classic Perceptron [14], a
simple artificial neural network that has been used in a variety of applications from handwrit-
ing recognition [18] to natural language processing [19]. From computational neuroscience
we consider the model of Law and Gold [11], that accounts for both the behavior and neural
firing properties of monkeys learning the Random Dot Motion task. In both cases we see
that learning is maximized when training occurs at 85% accuracy.

Perceptron

The Perceptron is a classic one-layer neural network model that learns to map multidimen-
sional stimuli x onto binary labels, y via a linear threshold process [14]. To implement this
mapping, the Perceptron first computes the decision variable h as

h = w · x (11)

where w are the weights of the network, and then assigns the label according to

y =

{
1 h > 0
0 h ≤ 0

(12)

The weights, w, which constitute the parameters of the model, are updated based on feedback
about the true label t by a the learning rule,

w← w + (t− y)x (13)

This learning rule implies that the Perceptron only updates its weights when the predicted
label y does not match the actual label t – that is, the Perceptron only learns when it makes
mistakes. Näıvely then, one might expect that optimal learning would involve maximizing
the error rate. However, because Equation 13 is actually a gradient descent based rule (e.g.
Chapter 39 in [20]), the analysis of the previous sections applies and the optimal error rate
for training is 15.87%.

To test this prediction we simulated the Perceptron learning rule for a range of training
error rates between 0.01 and 0.5 in steps of 0.01 (1000 simulations per error rate). The degree
of learning was captured by the precision β (see Methods). As predicted by the theory, the
network learns most effectively when trained at the optimal error rate (Figure 2A) and the
dynamics of learning are well described, up to a scale factor, by Equation 34 (Figure 2B).

Biologically plausible model of perceptual learning

To demonstrate how the Eighty Five Percent Rule might apply to learning in biological
systems, we simulated the Law and Gold model of perceptual learning [11]. This model has
been shown to capture the long term changes in behavior, neural firing and synaptic weights
as monkeys learn to perform the Random Dot Motion task.

Specifically, the model assumes that monkeys make the perceptual decision between left
and right on the basis of neural activity in area MT – an area in the dorsal visual stream that
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Figure 2: The Eighty Five Percent Rule applied to the Perceptron. (A) The relative precision,
β/βmax, as a function of training error rate and training duration. Training at the optimal
error rate leads to the fastest learning throughout. (B) The dynamics of learning agree well
with the theory.

is known to represent motion information [15]. In the Random Dot Motion task, neurons in
MT have been found to respond to both the direction θ and coherence COH of the dot motion
stimulus such that each neuron responds most strongly to a particular ‘preferred’ direction
and that the magnitude of this response increases with coherence. This pattern of firing
is well described by a simple set of equations (see Methods) and thus the noisy population
response, x, to a stimulus of arbitrary direction and coherence is easily simulated.

From this MT population response, Law and Gold proposed that animals construct a
decision variable in a separate area of the brain (lateral interparietal area, LIP) as the
weighted sum of activity in MT; i.e.

h = w · x + ε (14)

where w are the weights between MT and LIP neurons and ε is random neuronal noise
that cannot be reduced by learning. The presence of this irreducible neural noise is a key
difference between the Law and Gold model (Equation 14) and the Perceptron (Equation
11) as it means that no amount of learning can lead to perfect performance. However, as
shown in the Methods section, the presence of irreducible noise does not change the optimal
accuracy for learning which is still 85%.

Another difference between the Perceptron and the Law and Gold model is the form of
the learning rule. In particular, weights are updated according to a reinforcement learning
rule based on a reward prediction error

δ = r − E[r] (15)

where r is the reward presented on the current trial (1 for a correct answer, 0 for an incorrect
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answer) and E[r] is the predicted reward

E[r] =
1

1 + exp(−B|h|)
(16)

where B is a proportionality constant that is estimated online by the model (see Methods).
Given the prediction error, the model updates its weights according to

w← w + ηCδx (17)

where C is the choice (-1 for left, +1 for right) and η is the learning rate. Despite the super-
ficial differences with the Perceptron learning rule (Equation 13) the Law and Gold model
still implements gradient descent on the error rate [13] and learning should be optimized at
85%.

To test this prediction we simulated the model at a variety of different target training error
rates. Each target training rate was simulated 100 times with different parameters for the MT
neurons (see Methods). The precision, β, of the trained network was estimated by fitting
simulated behavior of the network on a set of test coherences that varied logarithmically
between 1 and 100%. As shown in Figure 3A the precision after training is well described
(up to a scale factor) by the theory. In addition, in Figure 3B, we show the expected
difference in behavior - in terms of psychometric choice curves - for three different training
error rates. While these differences are small, they are large enough that they could be
distinguished experimentally.

Discussion

In this paper we considered the effect of training accuracy on learning in the case of binary
classification tasks and gradient-descent-based learning rules. We found that the rate of
learning is maximized when the difficulty of training is adjusted to keep the training accuracy
at around 85%. We showed that training at the optimal accuracy proceeds exponentially
faster than training at a fixed difficulty. Finally we demonstrated the efficacy of the Eighty
Five Percent Rule in the case of artificial and biologically plausible neural networks.

Our results have implications for a number of fields. Perhaps most directly, our findings
move towards a theory for identifying the optimal environmental settings in order to maxi-
mize the rate of gradient-based learning. Thus the Eighty Five Percent Rule should apply
to a wide range of machine learning algorithms including multilayered feedforward and re-
current neural networks (e.g. including ‘deep learning’ networks using backpropagation [9],
Boltzmann machines [21], reservoir computing networks [22, 23]), as well as Perceptrons
(as we showed here). In addition the Eighty Five Percent Rule accords with the informal
intuition of many experimentalists that participant engagement is often maximized when
performance is maintained around 85% [24]. Indeed it is notable that staircasing procedures
(that aim to titrate difficulty such that error rate is fixed during learning) are commonly
designed to produce about 85% accuracy [17]. Despite the prevalence of this intuition, to
the best of our knowledge no formal theoretical work has addressed the effect of training
accuracy on learning, a test of which is an important direction for future work.
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Figure 3: The Eighty Five Percent Rule optimizes learning in the Law and Gold model
of perceptual learning. (A) Precision of the trained network as function of training error
rate. Grey dots represent the results of individual simulations – note that the empirical
error rate on each run often differs slightly from the target error rate due to noise. Red dots
correspond to the average precision and empirical error rate for each target error rate (error
bars ± standard deviation in both measures). (B) Accuracy as a function of coherence for
the network trained at three different error rates corresponding to near optimal (ER = 0.16),
too high (ER = 0.27) and too low (ER = 0.03).

More generally, our work closely to the Region of Proximal Learning and Desirable Dif-
ficulty frameworks in education [25–27] and Curriculum Learning and Self-Paced Learn-
ing [7, 8] in computer science. These related, but distinct, frameworks propose that people
and machines should learn best when training tasks involve just the right amount of difficulty.
In the Desirable Difficulties framework, the difficulty in the task must be of a ‘desirable’ kind,
such as spacing practice over time, that promotes learning as opposed to an undesirable kind
that does not. In the Region of Proximal Learning framework, which builds on early work by
Piaget [28] and Vygotsky [29], this optimal difficulty is in a region of difficulty just beyond
the person’s current ability. Curriculum and Self-Paced Learning in computer science build
on similar intuitions, that machines should learn best when training examples are presented
in order from easy to hard. In practice, the optimal difficulty in all of these domains is
determined empirically and is often dependent on many factors [30]. In this context, our
work offers a way of deriving the desired difficulty and the region of proximal learning in
the special case of binary classification tasks and gradient-descent learning rules. As such
our work represents the first step towards a more mathematical instantiation of these the-
ories, although it remains to be generalized to a broader class of circumstances, such as
multi-choice tasks and different learning algorithms.

With regard to different learning algorithms, it is important to note that not all models
will exhibit a sweet spot of difficulty for learning. As an example, consider how a Bayesian
learner would infer parameters φ by computing the posterior distribution given past stimuli,
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x1:t, and labels, y1:t,

p(φ|x1:t, y1:t) ∝ p(y1:t|φ,x1:t)p(φ)

=
t∏
i=1

p(yi|φ,xi)p(φ)
(18)

where the last line holds when the label depends only on the current stimulus. Clearly this
posterior distribution over parameters is independent of the ordering of the trials meaning
that a Bayesian learner would learn equally well if hard or easy examples are presented first.
This is not to say that Bayesian learners cannot benefit from carefully constructed training
sets, but that for a given set of training items the order of presentation has no bearing on
what is ultimately learned. This contrasts markedly with gradient-based algorithms, many
of which try to approximate the maximum a posteriori solution of a Bayesian model, whose
training is order dependent and whose learning is optimized with ∂ER/∂β.

Finally, we note that our analysis for maximizing the gradient, ∂ER/∂β, not only applies
to learning but to any process that affects the precision of neural representations, such as
attention, engagement, or more generally cognitive control [31, 32]. For example, attention
is known to improve the precision with which sensory stimuli are represented in the brain,
e.g. [33]. If exerting control leads to a change in precision of δβ, then the change in error
rate associated with exerting this control is

δER =
∂ER

∂β
δβ (19)

This predicts that the benefits of engaging cognitive control should be maximized when
∂ER/∂β is maximized, that is at ER∗. More generally this relates to the Expected Value of
Control theory [31,32,34] which suggests that the learning gradient, ∂ER/∂β, is monitored
by control-related areas of the brain such as anterior cingulate cortex.

Along similar lines, our work points to a mathematical theory of the state of ‘Flow’ [35].
This state, ‘in which an individual is completely immersed in an activity without reflective
self-consciousness but with a deep sense of control’, is thought to occur most often when the
demands of the task are well matched to the skills of the participant. This idea of balance
between skill and challenge was captured originally with a simple conceptual diagram (Figure
4) with two other states: ‘anxiety’ when challenge exceeds skill and ‘boredom’ when skill
exceeds challenge. These three qualitatively different regions (flow, anxiety and boredom)
arise naturally in our model. Identifying the precision, β, with the level of skill and the level
challenge with the inverse of true decision variable, 1/∆, we see that when challenge equals
skill, flow is associated with a high learning rate and accuracy, anxiety with low learning
rate and accuracy and boredom with high accuracy but low learning rate (Figure 4B and
C). Intriguingly, recent work by Vuorre and Metcalfe, has found that subjective feelings
of Flow peaks on tasks that are subjectively rated as being of intermediate difficulty [36].
In addition work on learning to control brain computer interfaces finds that subjective,
self-reported measures of ‘optimal difficulty’, peak at a difficulty associated with maximal
learning not at a difficulty associated with optimal decoding of neural activity [37]. Going
forward, it will be interesting to test whether these subjective measures of engagement peak
at the point of maximal learning gradient, which for binary classification tasks is 85%.
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Figure 4: Proposed relationship between the Eighty Five Percent Rule and Flow. (A)
Original model of flow as a state that is achieved when skill and challenge are well balanced.
Normalized learning rate, ∂ER/∂β, (B) and accuracy (C) as a function of skill and challenge
suggests that flow corresponds to high learning and accuracy, boredom corresponds to low
learning and high accuracy, while anxiety is associated with low learning and low accuracy.

Methods

Optimal error rate for learning

In order to compute the optimal difficulty for training, we need to find the value of ∆ that
maximizes the learning gradient, ∂ER/∂β. From Equation 3 we have

∂ER

∂β
= ∆p(−β∆) (20)

From here the optimal difficulty, ∆∗, can be found by computing the derivative of the gradient
with respect to ∆, i.e.

∂

∂∆

∂ER

∂β
= − ∂

∂∆
(∆p(−β∆))

= −p(−β∆) + β∆
∂p(x)

∂x

∣∣∣∣
x=−β∆

(21)

Setting this derivative equal to zero gives us the following expression for the optimal difficulty,
∆∗, and error rate, ER∗

β∆∗ =
p(−β∆∗)

p′(−β∆∗)
and ER∗ = F (−β∆∗) (22)

where p′(x) denotes the derivative of p(x) with respect to x. Because β and ∆∗ only ever
appear together in these expressions, equation 22 implies that β∆∗ is a constant. Thus,
while the optimal difficulty, ∆∗, changes as a function of precision (Figure 1C), the optimal
training error rate, ER∗ does not (Figure 1D). That is, training with the error rate clamped
at ER∗ is guaranteed to maximize the rate of learning.
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The exact value of ER∗ depends on the distribution of noise, n, in Equation 2. In the
case of Gaussian noise, we have

p(x) =
1√
2π

exp

(
−x

2

2

)
(23)

which implies that
p(x)

p′(x)
= −1

x
(24)

and that the optimal difficulty is
∆∗ = β−1 (25)

Consequently the optimal error rate for Gaussian noise is

ER∗ =
1

2

(
1− erf

(
1√
2

))
≈ 0.1587 (26)

Similarly for Laplacian noise (p(x) = 1
2

exp(−|x|)) and Cauchy noise (p(x) = (π(1 + x2))−1)
we have optimal error rates of

ER∗Laplace =
1

2
exp(−1) ≈ 0.1839

ER∗Cauchy =
1

π
arctan(−1) +

1

2
= 0.25

(27)

Optimal learning with endogenous noise

The above analyses for optimal training accuracy also applies in the case where the decision
variable, h, is corrupted by endogenous, irreducible noise, ε, in addition to representation
noise, n, that can be reduced by learning; i.e.

h = ∆ + n+ ε (28)

In this case we can split the overall precision, β, into two components, one based on represen-
tational uncertainty that can be reduced, βn, and another based on endogenous uncertainty
that cannot, βε. For Gaussian noise, these precisions are related to each other by

1

β2
=

1

β2
n

+
1

β2
ε

(29)

More generally, the precisions are related by some function, G, such that β = G(βn, βε).
Since only n can be reduced by learning, it makes sense to perform gradient descent on βn
such that the learning rule should be

dβn
dt

= −η∂ER
∂βn

= −η∂ER
∂β

∂β

∂βn

(30)

Note that ∂β/∂βn is independent of ∆ so maximizing learning rate w.r.t. ∆ means maxi-
mizing ∂ER/∂β as before. This implies that the optimal training difficulty will be the same,
e.g. 85% for Gaussian noise, regardless whether endogenous noise is present or not.
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Dynamics of learning

To calculate the dynamics of learning we need to integrate equation 7 over time. This, of
course depends on the learning gradient, ∂ER/∂β, which varies depending on the noise and
whether the error rate or the true decision variable is fixed during training.

Fixed error rate

In this case we fix the error rate during training to ERf . This implies that the difficulty
should change over time according to

∆(t) = − 1

β(t)
F−1(ERf ) (31)

where F−1(·) is the inverse cdf. This implies that β evolves over time according to

dβ

dt
= −η∂ER

∂β

= η∆(t)p(−β∆(t))

= − η

β(t)
F−1(ERf )p(F

−1(ERf ))

=
ηKf

β(t)

(32)

where we have introduced Kf as

Kf = −F−1(ERf )p(F
−1(ERf )) (33)

Integrating equation 32 and solving for β(t) we get

β(t) =
√
β2

0 + 2ηKf (t− t0) (34)

where t0 is the initial time point, and β0 is the initial value of β. Thus, for fixed error rate
the precision grows as the square root of time with the rate determined by Kf which depends
on both the training error rate and the noise distribution. For the optimal error rate we
have, Kf = p(−1).

Fixed decision variable

In this case the true decision variable is fixed at ∆f and the error rate varies as a function
of time. In this case we have

dβ

dt
= −η∂ER

∂β
= ∆fp(−β∆f ) (35)

Formally, this can be solved as∫ β

β0

1

p(−β∆f )
dβ = ∆f (t− t0) (36)
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However, the exact form for β(t) will depend on p(x).
In the Gaussian case we cannot derive a closed form expression for β(t). The closest we

can get is to write ∫ β∆f√
2

0

exp(x2)dx =

∫ β0∆f√
2

0

exp(x2)dx+
∆2

2
√
π

(t− t0) (37)

For long times, and large β, we can write∫ β∆f√
2

0

exp(x2)dx < exp

(
β2∆2

f

2

)
(38)

which implies that for long times β grows slower than
√

log t, which is exponentially slower
than the fixed error rate case.

In contrast to the Gaussian case, the Laplacian case lends itself to closed form analysis
and we can derive the following expression for β

β =
1

∆f

log

(
exp(β0∆f ) +

1

2
η∆2

f (t− t0)

)
(39)

Again this shows logarithmic dependence on t indicating that learning is much slower with
a fixed difficulty.

In the case of Cauchy noise we can compute the integral in equation and find that β is
the root of the following equation

∆f

3
β3 + β =

∆f

3
β3

0 + β0 +
∆f

π
(t− t0) (40)

For long training times this implies that β grows as the cube root of t. Thus in the Cauchy
case, while the rate of learning is still greatest at the optimal difficulty, the improvement is
not as dramatic as in the other cases.

Application to the Perceptron

To implement the Perceptron example, we assumed that true labels t were generated by
a ‘Teacher Perceptron’ [38] with normalized weight vector, e. Learning was quantified by
decomposing the learned weights w into two components: one proportional to e and a second
orthogonal to e, i.e.

w = |w| (e cos θ + e⊥ sin θ) (41)

where θ is the angle between w and e, and e⊥ is the unit vector perpendicular to e in the
plane defined by e and w. This allows us to write the decision variable h in terms of signal
and noise components as

h = |w| ((e · x) cos θ + (e⊥ · x) sin θ)

= |w|(2t− 1)∆ cos θ︸ ︷︷ ︸
signal

+ |w|(e⊥ · x) sin θ︸ ︷︷ ︸
noise

(42)
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where the difficulty ∆ = |e · x| is the distance between x and the decision boundary, and
the (2t− 1) term simply controls which side of the boundary x is on. This implies that the
precision β is proportional to cot θ, with a constant of proportionality determined by the
dimensionality of x.

In the case where the observations x are sampled from distributions that obey the central
limit theorem, then the noise term is approximately Gaussian implying that the optimal error
rate for training the Perceptron, ER∗ = 15.87%.

To test this prediction we simulated the Perceptron learning rule for a range of training
error rates between 0.01 and 0.5 in steps of 0.01 (1000 simulations per error rate). Stimuli, x,
were 100 dimensional and independently sampled from a Gaussian distribution with mean
0 and variance 1. Similarly, the true weights e were sampled from a mean 0, variance 1
Gaussian. To mimic the effect of a modest degree of initial training, we initialized the weight
vector w randomly with the constraint that |θ| < 1.6π. The difficulty ∆ was adjusted on a
trial-by-trial basis according to

∆ = F−1(ER)λ tan θ (43)

which ensures that the training error rate is clamped at ER. The degree of learning was
captured by the precision β.

Application to Law and Gold model

The model of perceptual learning follows the exposition in Law and Gold [11]. To aid
comparison with that paper we retain almost all of their notation, with the two exceptions
being their β parameter which we rename as B to avoid confusion with the precision and
their learning rate parameter α which we write as η.

MT neuron activity

Following Law and Gold [11], the average firing rate of an MT neuron, i, in response to a
moving dot stimulus with direction θ and coherence COH is

mi = T (k0
i + COH(kni + (kpi − kni )f(θ|Θi))) (44)

where T is the duration of the stimulus, k0
i is the response of neuron i to a zero-motion

coherence stimulus, kpi is the response to a stimulus moving in the preferred direction and kni
is the response to a stimulus in the null direction. f(θ|Θi) is the tuning curve of the neuron
around its preferred direction Θi

f(θ|Θi) = exp

(
−(θ −Θi)

2

2σ2
θ

)
(45)

where σθ (= 30 degrees) is the width of the tuning curve which is assumed to be identical
for all neurons.

Neural activity on each trial was assumed to be noisily distributed around this mean
firing rate. Specifically the activity, xi, of each neuron is given by a rectified (to ensure
xi > 0) sample from a Gaussian with mean mi and variance vi

vi = φimi (46)
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where φi is the Fano factor of the neuron.
Thus each MT neuron was characterized by five free parameters. These free parameters

were sampled randomly for each neuron such that θi ∼ U(−180, 180), k0
i ∼ U(0, 20), kpi ∼

U(0, 50), kni ∼ U(−k0
i , 0) and φi ∼ U(1, 5). Note that kni is set between −k0

i and 0 to ensure
that the minimum average firing rate never dips below zero. Each trial was defined by three
task parameters: T = 1 second, Θ = ±90 degrees and COH which was adjusted based on
performance to achieve a fixed error rate during training (see below). As in the original
paper, the number of neurons was set to 7200 and the learning rate, η was 10−7.

Computing predicted reward

The predicted reward E[r] was computed according to equation 16. In line with Law and
Gold (Supplemental Figure 2 in [11]), the proportionality constant B was computed using
logistic regression on the accuracy and absolute value of the decision variable, |h|, from last
L trials, where L = min(300, t).

Weight normalization

In addition to the weight update rule (Equation 17), weights were normalized after each
update to keep the sum of the squared weights,

∑
iw

2
i = wamp a constant (=0.02). While

this normalization has only a small overall effect (see Supplementary Material in [11]), we
replicate this weight normalization here for consistency with the original model.

Adjusting coherence to achieve fixed training difficulty

To initialize the network, the first 50 trials of the simulation had a fixed coherence COH =
0.9. After this initialization period, the coherence was adjusted according to the difference
between the target accuracy, Atarget, and actual accuracy in the last L trials, AL, where
L = min(300, t). Specifically, the coherence on trial t was set as

COHt =
1

1 + exp(−Γt)
(47)

where Γt was adjusted according to

Γt+1 = Γt + dΓ(Atarget − AL) (48)

and dΓ was 0.1.

Estimating precision parameter post training

To estimate the post-training precision parameter, β, we simulated behavior of the trained
network on a set of 20 logarithmically spaced coherences between 10−3 to 1. Behavior at
each coherence was simulated 100 times and learning was disabled during this testing phase.
The precision parameter, β, was estimated using logistic regression between accuracy on
each trial (0 or 1) and coherence; i.e.,

ACC ∼ 1

1 + exp(−β × COH)
(49)
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