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Abstract (196/200 words) 22 

Resting-state functional connectivity (FC) has become a major fMRI method to study 23 

network organization of human brains. There is recent interest in the temporal 24 

fluctuations of FC calculated using short time-windows (“dynamic FC”) because it 25 

could provide information inaccessible with conventional “static” FC that is typically 26 

calculated using the entire scan lasting several tens of minutes. Although multiple 27 

studies have revealed considerable temporal fluctuations in FC, it is still unclear 28 

whether the fluctuations of FC measured in hemodynamics reflect the dynamics of 29 

underlying neural activity. We addressed this question using simultaneous imaging of 30 

neuronal calcium and hemodynamic signals in mice, and found coordinated temporal 31 

dynamics of calcium FC and hemodynamic FC measured in the same short time 32 

windows. Moreover, we found that variation in transient neuronal coactivation patterns 33 

(CAPs) was significantly related to temporal fluctuations of sliding window FC in 34 

hemodynamics. Finally, we show that observed dynamics of FC cannot be fully 35 

accounted for by simulated data assuming stationary FC. These results provide evidence 36 

for the neuronal origin of dynamic FC and further suggest that information relevant to 37 

FC is condensed in temporally sparse events that can be extracted using a small number 38 

of time points. 39 

 40 

 41 
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Introduction 44 

Resting state functional connectivity (FC) uses temporal correlation of spontaneous 45 

neuronal activity to assess network organization of brain regions in a non-invasive 46 

manner (Fox and Raichle 2007). Traditionally, FC has been calculated using all time 47 

points in a scan that typically lasts between several minutes to tens of minutes (Biswal 48 

et al. 1995; Fox et al. 2005; Van Dijk et al. 2010). Such “static” FC has been shown to 49 

largely reflect anatomical connectivity (Adachi et al. 2012; Honey et al. 2009; Matsui et 50 

al. 2012; Matsui et al. 2011; Vincent et al. 2007). Recently, in contrast to traditional 51 

analysis of “static” FC, the temporal fluctuation of FC across short time windows is 52 

increasingly recognized as a useful aspect of FC (Allen et al. 2014; Hutchison et al. 53 

2013; Zalesky et al. 2014). Such “dynamic” FC (dFC) calculated using short 54 

time-windows could provide information that is inaccessible with static FC about the 55 

functional network organizations of healthy and diseased brains (Calhoun et al. 2014; 56 

Preti et al. 2016) [We note that the term “dynamics” refers to the non-stationarity of FC 57 

obtained with the sliding window analyses and does not refer to a process that is not 58 

invariant against to temporal reordering of the samples (Liégeois et al. 2017)]. The 59 

presence of temporal fluctuations in FC has also informed theoreticians to constrain 60 

realistic models of brain networks (Deco et al. 2013; Hansen et al. 2015; Messé et al. 61 

2014). 62 

However, despite growing interest, the neurophysiological basis of dFC is still 63 

weak. Previous attempts to investigate neural origin of dFC by simultaneous 64 

measurement of electrophysiological and functional magnetic resonance imaging 65 

(fMRI) are limited in several ways (Lu et al. 2007; Pan et al. 2011; Tagliazucchi et al. 66 

2012b; Thompson et al. 2013). In some studies, electrophysiological recording was 67 

limited to a small number of recording sites due to technical difficulty (Lu et al. 2007; 68 

Pan et al. 2011; Thompson et al. 2013); hence, information on the global pattern of 69 

neuronal activity was lacking. In another study, electrophysiological signals were 70 

obtained with an electroencephalogram, which records global neuronal activity but 71 

lacks precise spatial information (Tagliazucchi et al. 2012b). Thus, the link between 72 

temporal fluctuations of FC in hemodynamics and that of large-scale neuronal activity 73 

has not been adequately proven. 74 

Several studies have also questioned whether the apparent “dynamics” of FC 75 

calculated using the sliding window method is related to temporal instability of 76 
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spontaneous brain network (Hindriks et al. 2016; Laumann et al. 2016). While many 77 

studies have attributed temporal fluctuations of sliding window FC to non-stationarity 78 

of spontaneous neuronal activity correlation (Allen et al. 2014; Zalesky et al. 2014), 79 

some recent studies have demonstrated that the temporal fluctuations of FC observed in 80 

the real and the simulated data, which is stationary by construction, are statistically 81 

indistinguishable (Hindriks et al. 2016; Laumann et al. 2016). Furthermore, Laumann 82 

and colleagues have shown that, in the human resting-state BOLD time series are 83 

largely stationary, discounting head-motion and fluctuating arousal (Laumann et al. 84 

2016). Therefore, not only the neuronal basis of dFC, but also the existence of statistical 85 

non-stationarity of FC, or at least the capability of sliding window methods to detect the 86 

non-stationarity, is called into question. 87 

In the present study, we addressed these questions using simultaneous imaging of 88 

neuronal calcium and blood oxygen level dependent (BOLD) hemodynamic signals in 89 

the entire neocortex of transgenic mice expressing a genetically encoded calcium 90 

indicator (Matsui et al. 2016; Vanni and Murphy 2014; White et al. 2011). In the present 91 

experimental setup, wide-field calcium signal provided access to neuronal activity at 92 

higher temporal resolution and signal-to-noise ratio compared to that of hemodynamic 93 

signal (Matsui et al. 2016; Murakami et al. 2017; Murakami et al. 2015; Tohmi et al. 94 

2014; Vanni and Murphy 2014). Moreover, unlike human fMRI data, in the present 95 

dataset, mice were tightly head-fixed and lightly anesthetized; thus, excluding head 96 

motions from contaminating FC. Main findings of the present study are as follows. First, 97 

we found consistency between the “dynamics” of FC calculated using calcium and 98 

hemodynamic signals, suggesting the neuronal origin of the temporal fluctuations of 99 

hemodynamic FC. Second, we found that temporal fluctuations of the spatial pattern of 100 

transient neuronal coactivations as measured in calcium signal were significantly 101 

correlated with temporal fluctuations of hemodynamic FC. Finally, we found that 102 

statistical properties of sliding window FC were significantly different between the real 103 

and the simulated data suggesting non-stationarity of resting-state FC.  104 
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Materials and Methods 105 

Animals 106 

Emx1-IRES-cre and Ai38 (Zariwala et al. 2012) mice were obtained from the Jackson 107 

Laboratory (Sacramento, CA). These mice were crossed and all cortical excitatory 108 

neurons expressed GCaMP3. Mice (P60–P90) were prepared for in vivo wide-field 109 

simultaneous imaging. Anesthesia was induced with isoflurane (3 %) and maintained 110 

with isoflurane (1 – 2 % in surgery, 0.5 – 0.8 % during imaging) and chlorprothixene 111 

(0.3 – 0.8 mg/kg, intramuscular injection). For simultaneous imaging of calcium and 112 

hemodynamic signals, a custom-made metal head plate was attached to the skull using 113 

dental cement (Sun Medical Company, Ltd, Shiga, Japan) and a large craniotomy was 114 

made over the whole cortex. The craniotomy was sealed with 1 % agarose and a glass 115 

coverslip. During the imaging, body temperature was maintained by a heat pad. All 116 

experiments were carried out in accordance with the NIH Guide for the Care and Use of 117 

Laboratory Animals, the institutional animal welfare guidelines set forth by the Animal 118 

Care and Use Committee of Kyushu University, and the study was approved by the 119 

Ethical Committee of Kyushu University. 120 

 121 

Simultaneous Calcium and Intrinsic Signal Imaging 122 

The data for simultaneous imaging of calcium and hemodynamic signals was taken 123 

from a published report (Matsui et al. 2016). Briefly, simultaneous imaging of calcium 124 

and intrinsic signals in vivo was performed using a macro zoom fluorescence 125 

microscope (MVX-10, Olympus, Tokyo, Japan) or an upright fluorescence microscope 126 

(ECLIPSE Ni-U, Nikon, Tokyo, Japan), equipped with a 1x objective. A 625 nm LED 127 

light source was used to obtain intrinsic signals, which we referred to as the 128 

hemodynamic signal (Vanni and Murphy 2014). At this wavelength, the optical intrinsic 129 

signal primarily reflects deoxyhemoglobin signal (HbR) (Ma et al. 2016). GCaMP was 130 

excited by a 100 W mercury lamp through a GFP mirror unit (Olympus). Intrinsic signal 131 

data was collected at a frame rate of 5 Hz using a CCD camera (1,000m; Adimec, 132 

Boston, MA, U.S.A.) and calcium signal data was collected at a frame rate of 10 Hz 133 

using a CCD camera (DS-Qi1 Mc; Nikon). The emission filters were 625 nm long pass 134 

(SC-60, Fuji film, Tokyo, Japan) for intrinsic signals, and 505-535 nm band pass 135 

(FF01-520/35-25, Semrock, Lake Forest, Illinois) for calcium signals. Data were 136 

acquired for 30-60 min per animal (5 min per scan). 137 
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 138 

Data Preprocessing 139 

All data analyses were conducted in Matlab (MathWorks, Natick, MA) using a method 140 

described previously (Matsui et al. 2016). Briefly, all the image frames were corrected 141 

for possible within-scan motion by rigid-body transformation. Calcium and 142 

hemodynamic images were then coregistered by rigid-body transformation using 143 

manually selected anatomical landmarks that were visible in both images (e.g., 144 

branching points of blood vessels). All of the images were then spatially down-sampled 145 

by a factor of two. Pixels within the cortex (at this point including large blood vessels 146 

including the sinus) were extracted manually. For both calcium and hemodynamics, 147 

slow drift in each pixel’s time course was removed using a high-pass filter (> 0.01 Hz, 148 

second order Butterworth. No low-pass filter was used). After filtering, each pixel’s 149 

time course was normalized by subtracting the mean across time and then dividing by 150 

the standard deviation across time. Global signal regression was conducted by 151 

regressing out the time course of average signal within the brain from each pixel’s time 152 

course. Finally, hemodynamic signal was multiplied by -1 to set the polarity of the 153 

activity change equal to that in the calcium signal. 154 

 In some analyses, the calcium signal was further preprocessed. To obtain the high 155 

frequency calcium signal, an additional high-pass filter (> 0.1 Hz) followed by a median 156 

filter was applied. The median filter was applied as follows: For each frame, we defined 157 

a time-window (width = 200 frames) whose center was positioned at the frame. Then, 158 

the signal of the frame was replaced by the median of the time-window [B(t) = 159 

median(A(t-100), …, A(t+100)); where A(k) denotes the original signal at frame k and 160 

B(k) denotes median filtered signal at frame k]. To obtain the low frequency calcium 161 

signal, an additional low-pass filter (< 0.1 Hz) was applied. 162 

 163 

Extraction of Region-of-Interest (ROI) Time Courses 164 

Selection of ROI and time courses are conducted as described previously (Matsui et al. 165 

2016). Briefly, 38 cortical regions (19 for each hemisphere) were selected as ROIs 166 

based on a previous mouse functional connectivity study (White et al. 2011) 167 

(Supplementary Fig. 1). Each ROI was a 6 × 6 pixel square (0.5 mm × 0.5 mm) 168 

centered at a selected coordinate. The time course for each ROI was calculated by 169 

averaging the time courses of pixels within the ROI that corresponded to gray matter. 170 
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ROIs located outside of the FOV were discarded. 171 

 172 

Analysis of FC 173 

For both calcium and hemodynamic signals, FC was calculated using a standard 174 

seed-based correlation method (Matsui et al. 2016). First, the correlation coefficient 175 

between the time course of a selected ROI ("seed time course") and the time course of 176 

every pixel within the brain was calculated. Second, FC values were averaged across 177 

scans to obtain FC values for each pixel. The spatial correlation between FC maps of 178 

calcium and hemodynamic signals was calculated by taking the pixel-by-pixel 179 

correlation coefficient between the two maps using all the gray matter pixels. FC with 180 

short time window was obtained by taking correlation coefficient using all the frames 181 

within a 30-sec window. Steps of 3 sec and 30 sec were used for the sliding window and 182 

non-overlapping window, respectively. Scan-shifted control was calculated by shifting 183 

the scan number of hemodynamics data relative to simultaneously obtained calcium 184 

data. 185 

 186 

Analysis of Co-Activation Patterns (CAPs) 187 

CAP analysis was adopted from previous fMRI studies (Liu and Duyn 2013). Briefly, 188 

calcium time course from each ROI was z-normalized. CAPs were calculated for each 189 

ROIs. Frames corresponding to large peaks (> 2 s.d.) of the time course of a given ROI 190 

were considered CAPs. We examined if CAPs calculated using calcium signal could 191 

predict sliding-window FC calculated using hemodynamic signal. For each ROI and 192 

each time window, we quantified the similarity between the sliding window FC and 193 

CAPs by calculating spatial correlation between the FC map and CAPs. To quantify 194 

coordinated temporal variations in CAPs and FCs, we also calculated temporal 195 

deviation of CAP and FC from the mean patterns as described in the followings. First, 196 

we calculated average patterns of CAPs and FCs in a given scan. For a given scan and a 197 

ROIi, average of all CAPs was calculated using the entire scan(CAPscan)i. Similarly, a 198 

FC map was calculated for the same scan and the same ROI [(FCscan)i]. We repeated this 199 

procedure to obtain ROI-by-ROI matrices of CAPscan and FCscan. Next, we calculated 200 

ROI-by-ROI matrices of CAPs and FCs in a short time window (CAPwindow and 201 

FCwindow) using the same procedure used to calculate CAPscan and FCscan but for each 30 202 

sec time window. Then difference between the CAPwindow and CAPscan was taken to 203 
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quantify the deviation of CAP in a time window from the mean CAP pattern in the 204 

entire scan [ΔCAP = CAPwindow − CAPscan]. Similarly, ΔFC was obtained by subtracting 205 

FCscan from FCwindow. Finally, correlation coefficient between non-diagonal elements of 206 

the ROI-by-ROI matrices of ΔCAP and ΔFC were calculated. When CAPs were absent 207 

for a particular ROI in a time window, that ROI was omitted from the calculation for the 208 

time window. 209 

 210 

Cluster Analysis and Kurtosis Analysis 211 

For the state analysis of sliding window FC, we adopted the k-means clustering 212 

algorithm used in the previous studies (Allen et al. 2014; Laumann et al. 2016). 213 

Correlation distance (1-r) was used to compute the separation between each window’s 214 

FC-matrix (using all 38 ROIs) and the k-means clustering was iterated 100 times with 215 

random centroid positions to avoid local minima. The windowed FC-matrices were 216 

mean-centered by scan to eliminate scan-level and subject-level features from 217 

contributing the clustering result. K-means clustering was applied in the same manner to 218 

the simulated data that was matched in size to the real data. The cluster validity index 219 

was used to evaluate the quality of clustering for the range of cluster numbers (k = 2-10). 220 

The cluster validity index was computed as the average ratio of within-cluster distance 221 

to between-cluster distance. 222 

Non-stationarity of spontaneous neuronal signal correlation was assessed by 223 

calculating multivariate kurtosis using the same procedure as described by Laumann 224 

and colleagues (Laumann et al. 2016). One value of kurtosis was calculated for each 225 

FC-matrix (using all 38 ROIs) obtained each scan. The same procedure was applied to 226 

the simulated data that was matched in size to the real data. Significant difference 227 

between the kurtosis measure of the real and the simulated data indicates either 228 

non-stationarity of FC or non-gaussianity of the signal or both. 229 

 230 

Time Course Simulation 231 

To obtain a null dataset to evaluate the non-stationarity of the real data, we constructed 232 

simulated time courses using a method developed by Laumann and colleagues 233 

(Laumann et al. 2016). Briefly, random normal deviates having the same dimensionality 234 

as a real dataset are sampled. These time courses are multiplied in the spectral domain 235 

by the average power spectrum of the (bandpass filtered) real data. These time courses 236 
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are then projected onto the eigenvectors derived from the covariance matrix of the real 237 

data. This procedure produces simulated data that are stationary by construction but 238 

matched to real data in the covariance structure and mean spectral content. 239 

 240 

Assessment of motion-related and physiological artifacts 241 

To estimate the strength of motion-related and physiological artifacts from functional 242 

images, we calculated DVARS using the hemodynamic signal with a procedure 243 

described in fMRI literatures (Power et al. 2012; Power et al. 2014). Specifically, for 244 

each scan, after the preprocessing, root mean squares of the temporal derivatives of the 245 

hemodynamic time courses were calculated and averaged across ROIs to obtain one 246 

time course of DVARS. To remove the data potentially contaminated by the artifact, we 247 

conducted two types of analyses. First, for each scan, the histogram of DVARS was 248 

calculated to exclude scans with strong skewness (Supplementary Fig. 3) 249 

(scan-censoring). To define the DVARS histogram with strong skewness, we calculated 250 

DVARS histograms for 1000 sets of simulation described in the preceding section. If the 251 

skewness of the data was larger than the 99th percentiles of the simulation, the scan was 252 

considered to be strongly skewed. Second, frame-censoring was conducted at multiple 253 

DVARS thresholds as described in the fMRI literatures (Power et al. 2012; Power et al. 254 

2014). For a given threshold, frames with DVARS larger than the threshold were simply 255 

discarded from the subsequent analyses. 256 

 257 

Assessment of the normality of the signal 258 

To check for the normality of the hemodynamic and the calcium signals, we computed 259 

the 4th moment of the signal distribution for each scan. For each scan, signals in all the 260 

ROIs were concatenated before calculating the 4th moment. Similar results were 261 

obtained when the 4th moment was calculated separately for individual ROIs and then 262 

the mean of the 4th moment was obtained for each scan (data not shown). The calculated 263 

4th moment of the real data was then compared with that of the 1000 simulated time 264 

courses obtained by the procedure described above. If the 4th moment of the real data 265 

was larger than the 99th percentile of the simulation, the signal in the scan was 266 

considered to be non-normal. In the case of calcium signal, we applied median filter to 267 

remove high frequency noise and enforce normality of the signal. Calcium time courses 268 

often contained some high frequency noise on top of the slower calcium activity (Fig. 269 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/169698doi: bioRxiv preprint 

https://doi.org/10.1101/169698
http://creativecommons.org/licenses/by/4.0/


 10

1A), which was most likely due to the moderate level of excitation light adjusted to 270 

avoid bleaching of GCaMP fluorophore. We consider that the median filter removed 271 

these high frequency noise while retaining slower calcium signal that was 272 

approximately normally distributed.  273 
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Results 274 

Consistent FC dynamics in calcium and hemodynamic signals 275 

Transgenic mice expressing GCaMP in neocortical neurons were used to simultaneously 276 

measure neuronal calcium signal and hemodynamics in a large portion of bilateral 277 

neocortex (Fig. 1A) (Matsui et al. 2016). Mice were lightly anesthetized and head-fixed 278 

with metal plates so that head-motion could not contaminate the signals. For both 279 

calcium and hemodynamic signals, power spectra of the signals exhibited 280 

approximately linear trend on log-log plots (Supplementary Fig. 2) suggesting that the 281 

non-neuronal artifact was small. We used sliding window correlation (30 sec window at 282 

3 sec steps) to examine if calcium and hemodynamic FC in mice exhibited “dynamic” 283 

changes. Consistent with previous reports in humans (Allen et al. 2014; Chang and 284 

Glover 2010; Zalesky et al. 2014) and other animals (Hutchison et al. 2014; Majeed et 285 

al. 2009), FC between pairs of ROIs calculated with sliding windows showed 286 

considerable variability over different time points both in calcium signal and 287 

hemodynamics (Fig. 1B-C). Consistent with the idea that variability in hemodynamic 288 

FC arises from underlying neuronal activity, we found close matches between dFC of 289 

calcium and hemodynamics (correlation coefficients, 0.631 and 0.675 for Figs. 1B and 290 

1C, respectively). Correlation between the time courses of calcium FC and 291 

hemodynamic FC was significantly larger for the data than that of the scan-shifted 292 

control (P < 10-20, Kolmogorov-Smirnov test; Fig. 1D). 293 

 To further examine the consistency between dFC in calcium and hemodynamics in 294 

the entire neocortex, we calculated calcium and hemodynamic FC among all pairs of 295 

ROIs and compared them across time windows (Fig. 2A-B). The ROI-based 296 

FC-matrices in calcium and hemodynamics both showed variability across time 297 

windows. On the other hand, FC matrices in calcium and hemodynamics within each 298 

time window were similar. If dFC in calcium and hemodynamics were matched, the 299 

similarity between calcium and hemodynamic FC in the same time window should be 300 

higher than that calculated using different time windows (e.g., similarity between 301 

Ca-FCwindow#1 and Hemo-FCwindow#1 would be higher than the similarity between 302 

Ca-FCwindow#1 and Hemo-FCwindow#2). Otherwise, the similarity between FC-matrices in 303 

calcium and hemodynamics merely reflects the overall similarity of FC in calcium and 304 

hemodynamics but not the coordinated “dynamics” of calcium and hemodynamic FC. 305 

Across all the data, we found that the distribution of the correlation coefficient between 306 
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the FC-matrices in calcium and hemodynamics was shifted toward positive values 307 

compared with that calculated with the scan-shifted data (P < 10-14, 308 

Kolmogorov-Smirnov test; Fig. 2C). The difference between the real data and the 309 

trial-shifted data was also consistently positive across animals (p < 0.0156, n = 7 mice, 310 

sign-rank test; Fig. 2D) and was seen across various window sizes ranging from 1 sec to 311 

60 sec (Fig. 2E). Together these results suggest that temporal variability in 312 

hemodynamic FC, as measured with sliding window, arises from neural activity rather 313 

than from movement-related artifacts (Laumann et al. 2016) or non-neuronal 314 

physiological artifacts such as heartbeat and respiration (Bianciardi et al. 2009; Shmueli 315 

et al. 2007). 316 

 317 

Variations in transient neuronal coactivations explained variations in FC 318 

What are the potential neuronal events that create dFC? Recent fMRI studies proposed 319 

that variability in the neuronal coactivation pattern (CAP) of brain areas is directly 320 

reflected in the “dynamic” change of FC observed with the sliding window correlation 321 

(Liu and Duyn 2013). To address this possibility, for each scan, we compared sliding 322 

window FC calculated using hemodynamics with the CAPs calculated using calcium 323 

signal. The use of calcium signal for extracting CAPs allowed us to capture faster 324 

spatiotemporal dynamics than the hemodynamics. More importantly, the use of two 325 

different signals also allowed us to avoid comparing sliding window FC and CAPs that 326 

were derived from the same signals and could lead to circular logic. 327 

For each anatomical ROI, we first detected peaks in the calcium signal within a 328 

given time-window and then defined CAPs as the frames in the calcium signal 329 

corresponding to the detected peak locations (Fig. 3A) (Liu and Duyn 2013). Similar to 330 

the previous reports in fMRI (Liu et al. 2013; Liu and Duyn 2013), we found variations 331 

in the spatial patterns of CAPs extracted from the same ROI (Fig. 3A, panels above time 332 

courses). We used CAPs to examine if variations of the spatial pattern of CAPs in 333 

different time windows could explain the spatial variation of sliding window FC. For 334 

each ROI in each 30 sec window, we extracted CAPs and FC using calcium and 335 

hemodynamic signals, respectively. In the example 30 sec windows shown in Figure 3A, 336 

time courses of the chosen ROI showed transient activations that resulted in 11 and 3 337 

frames of CAPs (corresponding to 1.1 and 0.3 sec of data, respectively). Despite the 338 

small number of frames corresponding to CAPs, the average spatial pattern of CAPs in 339 
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the time window closely matched the spatial pattern of hemodynamic FC calculated in 340 

the same time window (compare mean CAP and mean FC in Fig. 3A). 341 

To further compare CAPs with sliding window hemodynamic FC across ROIs, we 342 

calculated CAPs for all pairs of ROIs and compared them with FC of the same 343 

ROI-pairs in the same time window (Fig. 3B). Across all the data, CAP-matrices and 344 

FC matrices showed high positive correlation (Fig. 3C-D; mean R = 0.525 across 345 

animals) suggesting that CAP and FC calculated using the same sliding window were 346 

similar. 347 

The similarity between calcium CAP and hemodynamic FC in short time window 348 

does not necessarily indicate coordinated temporal variation between CAP and FC, but 349 

could result entirely from similarity between the time-average patterns of CAP and FC. 350 

Therefore, to further examine if coordinated temporal variations in CAPs and FCs exist, 351 

we calculated ∆CAP and ∆FC by subtracting from each CAP and FC in each time 352 

window the average pattern of CAP and FC, respectively, that were calculated using the 353 

entire scan (Fig. 4A). Coordinated change in ∆CAP and ∆FC indicates similar temporal 354 

fluctuation of CAP and sliding-window FC that cannot be accounted for by the 355 

similarity in the mean pattern of CAP and FC calculated using the entire scan. We found 356 

that the distribution of the correlation between ∆CAP and ∆FC for the real data was 357 

shifted toward positive values whereas the same distribution calculated using 358 

trial-shifted data was centered near zero (P < 10-30, Kolmogorov-Smirnov test; Fig. 4B). 359 

Furthermore, the correlation between ∆CAP and ∆FC was consistently positive across 360 

all animals (P < 0.156, n = 7 mice, sign rank test; Fig. 4C) and was seen across various 361 

sizes of time-windows ranging from 1 to 60 sec (Fig. 4D). Excluding scans with 362 

potential artifacts using DVARS (Power et al. 2012; Power et al. 2014) still yielded a 363 

significant difference between the real and the trial-shifted data (Supplementary Fig. 9). 364 

Taken together, these results suggest temporal fluctuations of the spatial pattern of 365 

CAPs at least partly explain temporal fluctuations of hemodynamic FC calculated using 366 

sliding windows. 367 

 368 

“Dynamics” of FC arise from non-stationarity of resting-state activity 369 

Because FC is estimated by using finite number of time-points, temporal fluctuations of 370 

FC observed in short time-windows could arise from mere sampling error even when 371 

underlying FC is stationary (Laumann et al. 2016). We next addressed whether the 372 
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sampling error could explain the dFC observed in the present data. We compared two 373 

indices used in a previous study, namely cluster validity index and kurtosis, for real data 374 

and simulated data that are matched in spectral and covariance properties (Fig. 5A) 375 

(Laumann et al. 2016). The cluster validity index measures degree of clustering of 376 

multiple sliding window FC calculated within the scan. Note that smaller cluster 377 

validity index indicates more clustering (see Methods for details). For both calcium and 378 

hemodynamic signals, we found cluster validity index of real data to be significantly 379 

smaller than that of simulated data (Fig. 5B), suggesting that the real data had cluster 380 

structure that could not be fully accounted for by sampling error. Similarly, we 381 

calculated kurtosis of the covariance matrices of real and simulated data. If the kurtosis 382 

of real data were larger than that of simulated data assuming a stationary Gaussian 383 

process, non-stationarity is implied for the real data, if the real data is normally 384 

distributed (Laumann et al. 2016). For the hemodynamic signal, the real data was 385 

approximately normally distributed (Supplementary Fig. 8A). Thus, we calculated the 386 

kurtosis using the hemodynamic signal without further preprocessing. For the calcium 387 

signal, because the original signal was not normally distributed, we applied further 388 

preprocessing before calculating the kurtosis. First, we applied an additional high pass 389 

temporal filter to remove low frequencies (< 0.1 Hz). Then we used a median filter to 390 

enforce a normality of the signal (Supplementary Fig. 6). For both hemodynamic and 391 

calcium signals, we found that the kurtosis of the real data was significantly higher than 392 

that of the simulated data (P < 10-10 for calcium, sign rank test, n = 50 scans that showed 393 

approximately normal distribution of the signal (see Methods for the details of the 394 

assessment of normality); P < 10-11 for hemodynamics, sign rank test, n = 64 scans; Fig. 395 

5C, Supplementary Fig. 8B). Calcium signal at low frequency (< 0.1 Hz) was 396 

approximately normal without additional preprocessing (Supplementary Fig. 7A). The 397 

kurtosis of the real and the simulated data was also significantly different at this 398 

frequency range, though the magnitude of the difference was smaller (Supplementary 399 

Fig. 7B). Together, these results suggest that dFC arise from non-stationarity of 400 

spontaneous neuronal activity, and analyses based on sliding window correlation have 401 

the potential to detect non-stationarity. 402 

 To assess potential contribution of motion-related and physiological artifacts on the 403 

analysis of the non-stationarity using kurtosis, we used DVARS calculated using the 404 

hemodynamic signal to exclude time points for which the artifacts might have been 405 
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problematic (Power et al. 2012; Power et al. 2014). In some scans with large peaks in 406 

the time courses of DVARS, indicating potential body movements, the histogram of 407 

DVARS was strongly right-skewed (Supplementary Fig. 3). Analysis of the kurtosis 408 

using a subset of scans for which DVARS distribution was not right-skewed compared 409 

to the stationary simulation also revealed a significant difference between the real and 410 

the simulated data (P < 10-14, sign rank test, n = 25; Supplementary Fig. 4; see Materials 411 

and Methods for details). Furthermore, frame-censoring at several thresholds of DVARS 412 

revealed that the difference of kurtosis between the real and the simulated data did not 413 

depend on the levels of DVARS thresholds (Supplementary Fig. 5). These results 414 

suggest that the motion-related and physiological artifacts, as detected by DVARS, did 415 

not significantly affect the present results.  416 
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Discussion 417 

In the present study, we used simultaneous imaging of calcium and hemodynamic 418 

signals to show that temporal fluctuations in hemodynamic FC calculated in a short 419 

time window closely follow that of calcium FC, suggesting the neuronal origin of dFC. 420 

We have further shown that the spatial pattern of hemodynamic FC in a short time 421 

window is predicted by averaging transient coactivations in the calcium signal (CAPs) 422 

contained within the same time-window suggesting that temporally interspersed 423 

transient neuronal events underlie resting-state FC. Finally, we have shown that in both 424 

calcium and hemodynamic signals, statistical properties of FC calculated in a short time 425 

window was significantly different from that obtained with simulated signals that were 426 

stationary by construction. These results advocate for the analysis of the “dynamic” 427 

aspect of FC obtained in human fMRI experiments. Insights of the neuronal events 428 

underlying dFC provided by the present study would also be informative for developing 429 

appropriate analysis methods for dFC. 430 

 431 

Relationship to previous investigations of the neuronal origin of dFC 432 

To provide direct evidence linking neuronal activity and dFC, several groups have 433 

conducted simultaneous recording of fMRI and local field potential (LFP) (Lu et al. 434 

2007; Pan et al. 2011; Thompson et al. 2013) or EEG (Chang et al. 2013; Tagliazucchi 435 

et al. 2012b). However, these previous studies were limited in several ways. Since LFP 436 

recordings were limited from a small number of recording sites whereas EEG recording 437 

did not have enough spatial resolution, evidence directly linking global spatial pattern of 438 

neuronal activity with hemodynamic FC has been lacking. Using simultaneous imaging 439 

of calcium and hemodynamic signals, the present study provides evidence suggesting 440 

that temporal variability of hemodynamic FC and its time-to-time spatial patterns reflect 441 

spatial patterns of large-scale neuronal activity. Moreover, since the present study used 442 

anesthetized and head-fixed mice, the results are unlikely to be attributable to head 443 

motion. 444 

Recent human fMRI studies have proposed that neuronal activity important for FC 445 

is condensed into transient large scale neuronal coactivations (i.e. CAPs) (Liu and Duyn 446 

2013; Tagliazucchi et al. 2012a; Tagliazucchi et al. 2011). Consistent with this idea, 447 

imaging studies in mice revealed transient neuronal coactivations across brain areas 448 

(Matsui et al. 2016; Mohajerani et al. 2013; Vanni and Murphy 2014). In our previous 449 
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study, we searched for neuronal coactivations that resembled the spatial patterns of 450 

(static) FC and showed that such neuronal coactivations were converted into spatially 451 

similar hemodynamic signals (Matsui et al. 2016). In the present study, we took a 452 

different approach that was similar to single frame analysis methods employed in recent 453 

human fMRI studies (Karahanoğlu and Van De Ville 2015; Liu et al. 2013; Liu and 454 

Duyn 2013; Tagliazucchi et al. 2011). We were especially interested whether CAPs 455 

represent the potential neuronal events underlying the temporal variability of sliding 456 

window FC. Because derivation of CAPs and sliding-window FC using identical BOLD 457 

signals could potentially lead to circular logic, in the present study, we examined the 458 

link between CAPs and sliding-window FC derived from different signals (calcium and 459 

hemodynamics, respectively). Instead of specifically looking at neuronal coactivations 460 

that resembled “static” FC, we took all the individual CAPs into our analysis and 461 

showed that variation of the spatial pattern of individual CAPs across time windows 462 

was significantly related to variations of hemodynamic FC across time windows. Thus, 463 

the present findings suggest importance of the development of analysis that specifically 464 

focuses on CAPs (Karahanoğlu and Van De Ville 2015; Liu et al. 2013). However, the 465 

modest correlation found between CAP and sliding window FC implies that the 466 

fluctuations of calcium and hemodynamic signals from the average pattern maybe small. 467 

It should also be noted that, although statistically significant, the correlation between 468 

∆CAP and ∆FC was relatively weak. Part of the reason for this could be non-neuronal 469 

physiological noise that contributed to hemodynamics (Matsui et al. 2016). In the 470 

present study, because of the use of anesthesia and head-fixation, head motion is 471 

unlikely to be the primary source of the non-neuronal noise. However, other 472 

physiological activities, e.g. respiration and heartbeat, are known to affect 473 

hemodynamics (Chang et al. 2009; Chang and Glover 2009) and, thus, likely to affect 474 

temporal fluctuation of hemodynamic FC as well. Although scan-wise data exclusion 475 

using DVARS suggested that the motion-contamination was not the major cause of the 476 

observed temporal correlation between ∆CAP and ∆FC (Supplementary Fig. 9), the 477 

common artifacts on hemodynamic and calcium signals could have contributed to the 478 

observed temporal correlation. Our results (i.e. relatively low correlation between 479 

∆CAP and ∆FC) indicate that correction for such non-neuronal physiological noise 480 

(Glover et al. 2000) is likely to be essential for the analysis of dFC. 481 

 482 
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Non-stationarity of spontaneous brain activity correlation 483 

It has been of a matter of debate to what extent temporal fluctuations of FC is 484 

attributed to the dynamics of underlying neuronal activity but not to non-neuronal 485 

sources of noise (e.g., head motion, sampling variability; reviewed in (Hutchison et al. 486 

2013)). Laumann and colleagues have reported that most of the temporal fluctuations of 487 

single subject FC is explained by head motion (Laumann et al. 2016). After controlling 488 

for the head motion, Laumann and colleagues have concluded that statistical properties 489 

of resting-state FC in human fMRI is indistinguishable from those obtained with 490 

simulated signals that are stationary by construction. A similar study by Hindriks and 491 

colleagues has also indicated the apparent dFC calculated with the sliding window 492 

method does not necessarily indicate non-stationarity of resting brain network (Hindriks 493 

et al. 2016). However, in terms of spontaneous neuronal activity itself, there is 494 

substantial evidences showing that spontaneous neuronal activity is non-stationary 495 

(Foster and Wilson 2006; Ji and Wilson 2007; Logothetis et al. 2012). In particular, 496 

under both awake and anesthetized states, transient neuronal events such as 497 

sharp-wave-ripples have been shown to produce coordinated activity across the entire 498 

brain (Logothetis et al. 2012). The present results are consistent with these previous 499 

studies supporting the non-stationarity of neuronal activity, and further showed that FC 500 

calculated using such non-stationary neuronal activity also showed non-stationarity, as 501 

expected.  502 

 503 

Potential contribution of arousal 504 

Fluctuation in the level of arousal has been shown to contribute to apparent “dynamics” 505 

and non-stationarity of FC (Laumann et al. 2016; Tagliazucchi and Laufs 2014). The 506 

present study observed larger temporal variability of hemodynamic FC in anesthetized 507 

mice than in awake, eyes open-fixated humans (Laumann et al. 2016). Interestingly, a 508 

recent study reports large within-subject FC variability in subjects instructed to close 509 

their eyes (Pannunzi et al. 2017), which predisposes to sleep (Tagliazucchi and Laufs 510 

2014). In the present study, it could be possible that fluctuating level of anesthesia, 511 

instead of the subject’s sleep state, could have contributed to the greater variability of 512 

FC. Alternatively, rapid fluctuation between awake and sleep states in mice (Adler et al. 513 

2014), could have contributed to the greater variability of FC compared to humans. 514 

According to the results of the analysis using power spectra (Supplementary Fig. 2) and 515 
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DVARS (Supplementary Figs. 3-5), we consider that the level of arousal rarely reached 516 

a point at which the animal started to struggle. Nevertheless, the present data alone was 517 

not sufficient to exclude the possibility that the fluctuation of the level of arousal 518 

accounted for a large fraction of the FC “dynamics” and non-stationarity observed here. 519 

Future experiments conducting simultaneous recordings of functional images and 520 

physiological signals (e.g. electroencephalogram, respiration-rates) in mice would be 521 

able to assess the exact amount of non-stationarity in FC under a defined state of 522 

arousal. 523 

 524 

Other limitations of the study 525 

It should be clearly stated that the present results do not guarantee that sliding window 526 

methods are always capable of detecting non-stationarity in human resting-state fMRI 527 

data. The present study used tightly head-restrained animals and high signal to 528 

noise-ration (SNR) imaging at a high frame rate (5 and 10 Hz for hemodynamics and 529 

calcium signal, respectively). Compared to the present experimental conditions, overall 530 

SNR in typical human resting-state fMRI is likely to be substantially compromised. 531 

Under such low SNR conditions, it is not clear whether simple sliding window 532 

correlation methods can detect the non-stationarity of FC (Hindriks et al. 2016; 533 

Laumann et al. 2016). With respect to SNR, we expect that the recent development of 534 

high-speed fMRI (Feinberg et al. 2010) will significantly improve the detectability of 535 

non-stationarity. Nevertheless, the present results suggest that, rather than the sliding 536 

window based method, an alternative analysis strategy that directly extracts CAPs from 537 

hemodynamic signals (Karahanoğlu and Van De Ville 2015; Liu et al. 2013; Liu and 538 

Duyn 2013; Tagliazucchi et al. 2012a) may be more appropriate for extracting relevant 539 

information related to dFC. Care should be taken, however, since the smaller brain and 540 

the low dimensionality of FC in the mouse (compared to the human) could also have 541 

made CAPs from just a few frames look similar to those of FC. 542 

It should also be noted that the present results do not claim that dFC has significant 543 

behavioral or cognitive consequences. Instead of examining the potential relationship 544 

between dFC and cognitive dynamics or behavioral variability [see for recent review 545 

(Preti et al. 2016)], here we focused on validating the neuronal origin of dFC. 546 

Experiments under anesthesia greatly reduced potential confounding factors, such as 547 

head motion and arousal state (Hutchison et al. 2014; Laumann et al. 2016). 548 
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Nevertheless, the present wide-field imaging setup can be naturally extended to awake 549 

imaging with task-performing mice (Ferezou et al. 2007; Wekselblatt et al. 2016). Such 550 

experiments would reveal the potential consequences of the dFC on its behavioral 551 

outcome.  552 
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Figure Captions 760 

Figure 1. Representative dynamics of simultaneously observed calcium and 761 

hemodynamic FC. (A) Experimental setup. The left most panel shows the setup for 762 

simultaneous imaging. Right side shows example calcium time courses for two ROIs 763 

(green and cyan traces indicate M1 and V1 ROIs, respectively. Positions of the ROIs 764 

indicated in the example field of view. See Supplementary Figure 1 for abbreviations). 765 

FC with short time window uses subset of frames contained in short (30 sec) windows 766 

(red dotted squares). Sliding FC for hemodynamic signal was carried out similarly. 767 

(B)-(C) Examples dynamics of calcium and hemodynamic FC. (B) FC between right V1 768 

and right AC. (C) FC between left M1 and left pPar. See Supplementary Figure 1 for 769 

ROI positions and abbreviations. (D) Histogram of correlation between time courses of 770 

Ca-FC and Hemo-FC for the data (solid line) and the scan-shifted control (dotted line). 771 

Data from all pairs of ROIs for all scans obtained in all mice were used. 772 

 773 

Figure 2. Significant relationship between calcium and hemodynamic FC 774 

calculated in short time windows. (A)-(B) Example ROI-by-ROI FC matrices for 775 

calcium and hemodynamics for different (non-overlapping) 30 sec windows. FC 776 

matrices were similar for calcium and hemodynamics in the same time window, but not 777 

across different time windows. (A) and (B) are two different examples from different 778 

animals. (C) Cumulative histogram of correlation between FC matrices for calcium and 779 

hemodynamics. Dotted line indicates trial-shifted control. (D) Correlation between FC 780 

matrices for calcium and hemodynamics was larger for the data than for the trial-shifted 781 

control significantly across animals. (E) Correlation between FC matrices of calcium 782 

and hemodynamics was larger for the data than the trial-shifted control across different 783 

window-sizes (1, 2, 3, 5, 6, 10, 12, 15, 20, 30 and 60 sec). Error bars indicate s.e.m. 784 

across animals (n = 7). 785 

 786 

Figure 3. Comparison of calcium CAPs and hemodynamic FC across 787 

time-windows. (A) Procedure for detection of CAPs in calcium signal. For a given ROI, 788 

a calcium time course was extracted and z normalized (green time courses). Then, peaks 789 

exceeding 2 s.d. (red dots) were extracted. The frames corresponding to the peaks were 790 

considered CAPs (panels above the time courses). For each window, CAPs in calcium 791 

signal were averaged to obtain mean calcium CAP. Hemodynamic CAPs were 792 
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calculated similarly (see Methods). Maps of Ca-FC and Hemo-FC were also calculated 793 

using the same time window. (B) Schematics to show the procedure of comparing 794 

calcium CAP and Hemo-FC across all ROI pairs in each time window. In each 30 sec 795 

time window, mean calcium CAPs and Hemo-FC maps were calculated for all ROIs as 796 

seeds (left). Then, for each seed-ROI j, calcium CAP and Hemo-FC values in ROI i 797 

were extracted to obtain a pair of CAP-FC values for the ROI-pairs (i, j) (middle). 798 

Finally, for each time-window, CAP-FC values were compared across all pairs of ROIs 799 

(right). (C) Histograms of correlation between CAP and Hemo-FC for all time windows 800 

across all animals. Vertical line indicates mean across time windows. (D) Mean 801 

correlation between CAP and Hemo-FC across animals. Note that (C) shows entire 802 

distribution of the data whereas (D) shows reproducibility across mice. Error bar 803 

indicates s.e.m. across animals (n = 7). 804 

 805 

Figure 4. Temporal fluctuations in calcium CAPs and Hemo-FC was significantly 806 

related. (A) Schematics of the analysis. In each 30 sec time-window, mean calcium 807 

CAP and Hemo-FC were calculated (indicated as window CAP and window FC, 808 

respectively). From window CAP and window FC, average calcium CAP and average 809 

Hemo-FC that were calculated using the entire scan, in which the 30-sec window 810 

belongs to, were subtracted to obtain maps of ∆CAP and ∆FC, respectively. Finally, 811 

values of ∆CAP and ∆FC were compared across ROI pairs similarly as in Figure 3B. 812 

(B) Histograms of correlation between ∆CAP and ∆FC for all time windows across all 813 

animals. Vertical lines indicate mean across time windows. Solid and dotted lines 814 

indicate real and trial-shifted data, respectively. (C) Correlation between ∆CAP and 815 

∆FC was significantly larger for the data than for trial-shifted control across animals. 816 

(D) Same as (C) but with different window-sizes (1, 2, 3, 5, 6, 10, 12, 15, 20, 30 and 60 817 

sec). Error bars indicate s.e.m. across animals (n = 7). 818 

 819 

Figure 5. Comparison with simulated data indicated non-stationarity of the real 820 

data. (A) Examples of real and simulated time courses. Simulated time course (black) 821 

was matched to real data (green; calcium) in mean spectral content (middle panels) and 822 

ROI-by-ROI covariance matrix (right panels). The same procedure was applied to 823 

create simulated hemodynamic data (not shown). (B) Cluster validity index calculated 824 

for different number of clusters (k = 2-10). In both calcium (left) and hemodynamics 825 
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(right), the cluster validity index was smaller for the real (solid lines) than the simulated 826 

data (dotted lines) indicating that the real data tended to be more clustered. (C) Kurtosis 827 

of real and simulated covariance matrices. For both calcium (left) and hemodynamics 828 

(right), multivariate kurtosis was larger for the real than for the simulated data. Error 829 

bars indicate s.e.m. across animals (n = 7). 830 

 831 

Supplementary Figure 1. Anatomical locations of ROIs. Anatomical locations of 19 832 

ROIs are shown for the right hemisphere. Anatomical nomenclatures of ROIs are shown 833 

on the right. ROIs in the left hemisphere are taken at mirror symmetric positions to 834 

yield a total of 38 ROIs. 835 

 836 

Supplementary Figure 2. Power spectrum of calcium and hemodynamic signals. 837 

(A) Example power spectrum of hemodynamic signal for one mouse. Hemodynamic 838 

signals were not temporally filtered. Black, individual scan. Red, average across scans. 839 

(B) Average power spectrum of hemodynamic signal across mice (Red). Black, 840 

individual mouse (averaged across scans). (C) Example power spectrum of calcium 841 

signal for one mouse. Calcium signals were not temporally filtered. Black, individual 842 

scan. Red, average across scans. (D) Average power spectrum of calcium signal across 843 

mice (red). Black, individual mouse (average across scans). 844 

 845 

Supplementary Figure 3. Example time courses and histograms of DVARS 846 

calculated using hemodynamic signal. (A) Example time course of DVARS for one 847 

mouse. (B) Histogram of DVARS for the data shown in (A). Inset, same histogram but 848 

for different y-axis range. The histogram was not markedly right skewed (skewness = 849 

1.60). (C) Another example time course of DVARS obtained in the same mouse as in 850 

(A). In this scan, large peaks probably representing motion and/or physiological 851 

artifacts were observed. (D) Histogram of DVARS calculated using data shown in (C). 852 

Inset, same histogram but for different y-axis range. The histogram was strongly 853 

right-skewed (skewness = 6.54). 854 

 855 

Supplementary Figure 4. Difference between the kurtosis of real and simulated 856 

data in Hemodynamics. Kurtosis was calculated for scans selected based on the 857 

distribution of DVARS (n = 25). See Methods for details of the selection of the scans. *, 858 
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P < 0.0001 (sign rank test). Error bars indicate s.e.m. 859 

 860 

Supplementary Figure 5. Difference between the kurtosis of real and simulated 861 

data in hemodynamics as a function of DVARS threshold for frame-censoring. The 862 

difference of the kurtosis between the real and the simulated data (blue and red, 863 

respectively) was largely insensitive to the level of the DVARS threshold. Note that the 864 

smaller DVARS threshold indicates stricter threshold. Error bars indicate s.e.m. 865 

 866 

Supplementary Figure 6. Kurtosis analysis using calcium signal processed with 867 

additional high-pass and media filters. (A) Example histogram of high frequency 868 

calcium signal (> 0.1 Hz) in one ROI of one mouse before the application of median 869 

filter. Red, Gaussian fit. (B) Same as (A) but for the signal after the application of 870 

median filter. Red, Gaussian fit. Note better fitting with Gaussian after median filter 871 

application, suggesting enforced normality of the signal. 872 

 873 

Supplementary Figure 7. Kurtosis analysis using low frequency calcium signal. (A) 874 

Example histogram of low frequency calcium signal (0.01 Hz < f < 0.1 Hz) in one ROI 875 

of one mouse. Red, Gaussian fit. (B) Difference between the kurtosis of real and 876 

simulated data in low frequency calcium signal for scans selected based on the 877 

normality of the signal (55 scans). *, P < 10-9, sign rank test. Error bars indicate s.e.m. 878 

 879 

Supplementary Figure 8. Hemodynamic signal was approximately normally 880 

distributed. (A) Example histogram of hemodynamic signal in one ROI of one mouse. 881 

Red, Gaussian fit. Note that no additional preprocessing was performed. (B) Difference 882 

between the kurtosis of real and simulated data in hemodynamic signal for scans 883 

selected based on the normality of the signal (45 scans). *, P < 10-8, sign rank test. Error 884 

bars indicate s.e.m. 885 

 886 

Supplementary Figure 9. Significant temporal correlation between CAP and 887 

windowed-FC remained after removing scans with potential artifacts. (A) Same 888 

convention as in Figure 4B but for the data using scans selected for small movement 889 

and/or physiological artifacts based on DVARS (25 scans). *, P < 10-17, 890 

Kolmogorov-Smirnov test. (B) Same convention as in Figure 4C but for the selected 891 
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scans. Positive difference between the real and the shifted data was observed in 5 out of 892 

7 mice. 893 

 894 

 895 
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