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view the activity corresponding to all the actions for a particular state. �e ratio of correct choices
chosen in 200 trials averaged over 25 sessions in given in Figure 6B. �us, we can see that the
agent is able to solve stochastic reward based tasks. Experimental evidence shows that that the
percentage of times the agent chooses the arm with reward probability P1, when the ratio of the
reward probabilities is P1/(P1+P2), follows a sigmoid activity with center at 0.5 which is well
captured by the model (Figure 6D).

Figure 6. A.Schematic of the cue based decision making task where the agent has to choose between
the two shapes shown in the screen and each shape has a di�erent probability of reward associated with
it. B.Percentage of correct responses averaged over 25 sessions for 200 trials. C. Mapping of the action
inputs forms a center-surround structure when we view the combined activity of the Matri-SOM for all
action inputs D. Ratio of choosing response 1 with associated probability P1 w.r.t to the sum P1+P2. The
model follows a similar trend to the experimental plot adapted from (Pasquereau et al., 2007)

3.3 �eoretical vs neural model

We have introduced both a theoretical model capable of solving non stationary bandit tasks and
a neural network model which provides a biologically plausible mechanism for the same task.
Since there are no available experiments dealing with these tasks (to the best of our knowledge),
we shall use the theoretical model to understand the performances of the neural model. In that
regard, we use a two arm bandit task which was the underlying problem in both the tasks de-
scribed beforehand. �e reward distributions is reversed a�er 500 trials and the performance
of the agent is characterized by averaging performances over 25 sessions. We also observe the
performances for di�erent values of ε which represents the probability of reward for the non-
pro�table arm.
Figure 7A (blue) demonstrates the probability of context 1 estimated by the theoretical model
whereas Figure 7B (blue) gives the estimation by the neural network model. We observe that the
theoretical model is able to identify the context even for larger values of ε. However, the neural
network model is mostly able to identify the context for small values of ε but fails for larger val-
ues. A similar trend can be seen in Figure 7A (orange) and Figure 7B (orange) where we measure
the percentage of correct choices by the agent. We observe that the theoretical model is able to
learn faster upon context reversal for all values of ε but the neural model needs to relearn for
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higher values of ε.
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Figure 7. Estimated probability of being in context 1 (blue) and percentage of optimal choices (orange)
by the theoretical model, depending on the reward probability ε. B1 to B4. Estimated probability of
being in context 1 (blue) and percentage of optimal choices (orange) by the theoretical model, depending
on the reward probability ε.

From these experimental results, we can conclude that the neural model is able to follow the
theoretical model only for low values of ε and behaves like a single context agent for larger values.
�is can be further seen in Figure 8 which shows that the neural model performances lies between
the theoretical optimal and a single context model and could be the biological mechanism used
for solving non stationary bandit tasks.
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Figure 8. Schematic of the extended model to handle modular RL tasks showing the case with two
striatal modules. The state representations of the two modules are used to calculate their respective
responsibilities which are then used by the striatal interneurons to choose the appropriate module.

4 Discussion

We have presented a theoretical model to solve non stationary bandit tasks. �is is also accom-
panied by a biologically plausible computational model of the striatum which also a�empts to
tackle these problems.

4.1 Adapting to changing contexts

�e problem of identifying a change in context in the environment based on the rewards obtained
in the previous trials has been extensively studied in the �eld of change detection (Basseville &
Nikiforov, 1993). Given the past history of reward samples upon taking a particular action, Page
Hinkley (PH) statistics (Hinkley, 1970) is a popular method for testing the hypothesis that a
change in context has occurred (Hartland, Gelly, Baskiotis, Teytaud, & Sebag, 2006; Hartland,
Baskiotis, Gelly, Sebag, & Teytaud, 2007). Under the constraint that the rewards come from the
exponential family of distributions, PH statistics guarantee minimal expected time before change
detection (Lorden, 1971). Our model uses similar ideas of accumulation of mean of rewards in the
past trial to predict change in contexts but uses limited memory as a realistic biological constraint.
In addition, the model predicts the probability of context change in each trial as opposed to only
predicting the occurrence of context change. �e model uses information about all the actions
in the limited history as opposed to traditional change detection algorithms which assume that
the rewards in the history were generated from a single action.
In non stationary bandit tasks, the agent needs to choose an action in each trial in addition to
identifying contexts. Earlier studies have shown that sliding window UCB (SW-UCB) (Garivier &
Moulines, 2011) is a theoretically optimal policy for such tasks. In addition to being incompatible
with biological constraints like limited memory, SW-UCB assumes that the context change is
periodic with a period T (used to determine a padding function). �e policy in our theoretical
model is the same as SW-UCB without any padding functions, since the knowledge of the context
period is unavailable to the agent.
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4.2 �eoretical Model as a Constrained Version of the Full Bayesian Model

�e inherent complexity of non stationary bandit problems motivated a Bayesian approach to
solve these problems. While the full Bayesian model a�empted to give the best possible bound for
these tasks, the theoretical model aimed to give a characterization of the expected performance
under some realistic constraints such as the ones encountered by an animal solving these tasks.
One of the key constraints is the assumption of a limited history. Since the animal has �nite
memory, it can use information from only a small and recent history to guide its decision making
(Todd, Niv, & Cohen, 2009). Exploration in action selection is a facet of RL and is also observed in
earlier studies (Doya, Samejima, Katagiri, & Kawato, 2002). �is is also captured as a constraint
in our theoretical model (11).

4.3 Striatal Microanatomy and Contextual Learning

Our striatal model is derived from a computational model of the basal ganglia proposed for han-
dling non stationary tasks (Shivkumar et al., 2017). �e model is based on the assumption that
the striosomes map the state space and the matrisomes map the action space. �is is supported
from earlier results that the striosomes receive input from the orbitofrontal cortex (Eblen & Gray-
biel, 1995) known for coding reward related states (Wilson et al., 2014). Anatomical studies also
show that striosome medium spiny neurons (MSNs) project directly to SNc (Lanciego, Luquin, &
Obeso, 2012) which could compute state values as in our model. Evidence suggests that similar to
how projections from the striosomes code for state value, projections from the matrisomes code
for action value (Doya et al., 2002). Experimental results show the existence of such neurons in
the striatum which code speci�cally for action value (Samejima, Ueda, Doya, & Kimura, 2005).
�is is well captured in our model as the Matri-SOM projects to action value neurons in out
striatal model. Action selection is done using the so�max policy (24) following the action value
computation in the striatum. �is policy uses a parameter β which controls the exploration of
the agent. We believe that this could be the role of STN, GPe and GPi before action selection is
done at the level of the thalamus. �is is supported by earlier results which suggest that the un-
derlying stochasticity in the so�-max rule could be achieved indirectly by the chaotic dynamics
of the STN-GPe loop (Kalva, Rengaswamy, Chakravarthy, & Gupte, 2012).

4.4 Comparing the �eoretical and the Neural Model

�e two models proposed in our work were developed and validated independently from each
other. However, they share some common features and we can observe that the performance of
the neural model falls between the performance of the theoretical model and the neural model
with a single module (Figure 8). �e theoretical model acts as a lower bound to the performance
of the neural model for the given stochasticity in the problem. �e neural model is able to achieve
performance comparable to the theoretical model for low values of ε but fails to do so for larger
ε where it becomes similar to a single module system. �us, we predict that our neural model
can explain behavior in stochastic multi context tasks for ε < 0.3. �is also allows us to bound
performance of the animal performing such tasks in highly stochastic conditions which is chal-
lenging from an experimental perspective due to the large number of trials required. Another
feature of our theoretical model is that it is a very simple model with no assumptions on the re-
ward or the context distributions. However, despite its simplistic formulation, the model is quite
powerful and can capture all the previous results reasonably well. �e modular arrangement of
identifying context and using it for task selection is very similar to the proposed striatal model.
�us, the striatal model could be a biologically plausible neural implementation of the theoretical
model.
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