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Abstract. Decision making in non-stationary and stochastic environments can be interpreted as
a variant of non-stationary multi armed bandit task where the optimal decision requires iden-
ti�cation of the current context. We formalize the problem using a Bayesian approach taking
biological constraints into account (limited memory) that allow us to de�ne a sub-optimal theo-
retical model. From this theoretical model, we derive a biological model of the striatum based on
its micro-anatomy that is able to learn state and action representations. We show that this model
matches the theoretical model for low stochasticity in the environment and could be considered
as a neural implementation of the theoretical model. Both models are tested on non-stationary
multi-armed bandit task and compared to animal performances.

Keywords: Basal Ganglia, Striatum, Reinforcement Learning, Computational model, Bayesian
model Decision making, Stochastic, Multi-context

Author Summary. Decision making in changing environments requires knowledge of the cur-
rent context in order to adapt the response to the environment. Such context identi�cation is
based on the recent history of actions and their outcome: when some action used to be rewarded
but is not anymore, it might be a sign of a context change. An ideal observer with in�nite memory
could optimally estimate the current context and act accordingly. Taking biological constraint
into account, we show that a model of the striatum, which is the largest nucleus of the basal
ganglia, can solve the task in a sub-optimal way as it has been shown to be the case in rats in a
T-maze task.
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1 Introduction

In their day to day life, animals face two kinds of uncertainty. One that is expected and one that
is not. For example, if an animal try to jump to catch a prey, there is a known risk of failure such
that the prey can eventually evade the predator. Depending on the direction of the wind and the
terrain topology, the prey can smell the predator and this la�er has thus to decide what is the
best distance to jump. �ose parameters represent the context from which the predator has to
adapt its behavior. Failing to do so means death in the long term. �e di�culty is to appreciate
the direction of the wind that may locally vary because of terrain topology and local turbulences.
A variation can be transient, meaning the direction of the wind has not really changed, but such
variation can be also the sign of a more global change in the direction of the wind. If the predator
fails to characterize such context, a jumping distance that used to be safe in one given context
won’t be in another one. Ultimately, this could mean a failure at catching the prey.

Earlier studies have categorized and named such randomness into expected and unexpected
uncertainty (Yu & Dayan, 2003). Expected uncertainty refers to the variability in the di�erent
parameters of the environmental model constructed by the agent (since we use agents to model
animals performing reward based tasks, we use the terms animal and agent interchangeably).
A typical example of this is a stochastic reward distribution when the agent is performing a
reward based learning task. Standard reinforcement learning models have been used to tackle
problems with expected uncertainty (Kaelbling, Li�man, & Moore, 1996; Su�on & Barto, 1998).
Unexpected uncertainty on the other hand refers to the case where there is a consistent di�er-
ence between observations and the prediction by the agent. �is could occur for example when
there is a change in the environment (non-stationary environment). Specialised reinforcement
learning models like modular reinforcement learning can identify the context of the environment
and are therefore successful in solving such tasks. In this work, we are mostly interested in the
role of the striatum in reward based tasks that involve both expected and unexpected uncertainty.

A lot of results tends to identify the basal ganglia (BG) as a key player in reward based learn-
ing tasks and model them as a reinforcement learning (RL) engine (Joel, Niv, & Ruppin, 2002;
Chakravarthy, Joseph, & Bapi, 2010). Furthermore, striatum, which is a major component of the
BG, has a rich microcircuitry consisting in central structures called striosomes, and matrisomes
surrounding the striosomes (Graybiel, Flaherty, & Giménez-Amaya, 1991). �e striatum is be-
lieved to form representations of state and action space used for performing RL tasks (Charpier
& Deniau, 1997). �e striosomes are believed to map the state space (Wilson, Takahashi, Schoen-
baum, & Niv, 2014) while the matrisomes are believed to map the action space (Flaherty & Gray-
biel, 1994) based on their di�erential cortical projections. In addition, the striatum has reciprocal
projections to both the Ventral Tegmental Area (VTA) and the Substantia Nigra pars compacta
(SNc). It receives reward prediction error from these midbrain nuclei and uses it to map the de-
veloped representations to state (Granger, 2006) and action values (Seo, Lee, & Averbeck, 2012)
which are used for action selection. �e striatum has also been hypothesized to perform context
dependent tasks by mapping di�erent contexts to di�erent striatal modules (Amemori, Gibb, &
Graybiel, 2011).

In this article, we focus on stochastic and non-stationary tasks and we develop both theo-
retical and biologically plausible models to solve them. A�er formalizing the task de�nition, we
derive an ideal Bayesian model for solving such tasks (Lloyd & Leslie, 2013). Considering some
realistic task constraints on the model, we modi�ed the theoretical Bayesian model to solve the
problem iteratively. Following this idea, we develop a model of the striatum to handle these
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tasks. More precisely, we use a layered Self Organizing Map (Kohonen, 2001) architecture to
model the striosomes and matrisomes as Strio-SOM and Matri-SOM where a single Strio-SOM
neuron projects to the surrounding Matri-SOM neurons. �e Strio-SOM and the Matri-SOM ac-
tivity are mapped to compute state and action values, respectively and used for action selection.
�is striatal model is extended to a multi module based architecture to deal with multiple context
paradigms. �e biological plausibility imposes on the model limitations such as �nite memory
which is also incorporated into the theoretical model. �us the theoretical model sets a bound on
the expected performance for a probabilistic context dependent task. We show that the neural
model is able to meet the optimal bound for low values of stochasticity in reward.

2 Materials and Methods

2.1 Non-Stationary Bandit Task

In the classical multi-armed bandit task (Auer, Cesa-Bianchi, & Fischer, 2002), at each time
t ∈ {1, ..., T}, an agent chooses an arm at ∈ {1, ..., N} according to a policy π and receives
a rewardRt(at). �e rewards {Rt(i)}i∈{1,...,N} are drawn from a set of unknown distribution pi
with expectation µ(i). �e agent’s objective is to �nd a policy π such as to maximize the cumu-
lated expected reward

∑T
t=1 µ(at). �e optimal policy (oracle) π∗ consists in choosing at = i∗

such that i∗ = argmax(µi)i∈{1,...,N}.

In the non-stationary case, the rewards {Rt(i)}i∈{1,...,N} are drawn from a set of unknown
and non-stationary distribution pi(t) that may vary over time. �ese variations can be continu-
ous (Slivkins & Upfal, 2008) or abrupt (Garivier & Moulines, 2011; Besbes, Gur, & Zeevi, 2014; Raj
& Kalyani, 2017). In this work, we’ll consider only abruptly changing environments: the distri-
bution of rewards remains stationary for a given period and a change occurs at an unknown time
instants (breakpoints). �e period between two breakpoints is called a context. In the general
case, the number of breakpoints and the number of di�erent context is unknown. In the present
study however, we’ll restrict to the caseN = 2 using a set of two di�erent contexts (with several
possible breakpoints alternating between the two contexts).

Such non-stationary bandit task can be related to some extent to a change-point detection
problem that has been extensively studied in the context of controlled dynamic systems (Hink-
ley, 1970; Basseville & Nikiforov, 1993). However in the case of non-stationary bandit task, the
agent is not a mere observer but an actor that may choose to pull this or that arm in order to
sample the current context and gain information. �e expected regret (di�erence between opti-
mal reward and obtained reward) can be bound in both the stationary and non stationary bandit
tasks. �ere exist some near optimal algorithms which aim to achieve this bound in station-
ary (Agrawal, 1995) and non-stationary bandit tasks (Garivier & Moulines, 2011; Besbes et al.,
2014; Raj & Kalyani, 2017). While the policy proposed by these algorithms is optimal even in our
problem for maximizing expected reward, they assume knowledge of certain parameters like T
(length of context) which is not available to the agent. In addition, they cannot cope with biolog-
ical constraints such as �nite size memory and limited computational resources. �is motivates
the need for a biologically plausible optimal policy.

2.2 Bayesian formulation

We consider a non-stationary two-armed bandit task (arms a1 and a2) using two di�erent con-
texts (c1 and c2) that can change at unknown times. In context c1, the optimal action is a1 and
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in context c2, the optimal action is a2. �e case where the optimal action is the same in the
two contexts is not studied here. �e reward for the optimal arm is R+ and the reward for the
sub-optimal arm is R−, independently of the context. �e reward distribution matrix is de�ned
as:

R =

[
r11 r12
r21 r22

]
where rij is the probability of ge�ing R+ when choosing arm ai in context cj . Reciprocally
1− rij is the probability of ge�ing R− when choosing arm ai in context cj .

Using Bayes theorem, and noticing that P (c = c1) = 1− P (c = c2), we have:

P (c = c1|a, r) =
P (a, r|c = c1)P (c = c1)

P (a, r|c = c1)P (c = c1) + P (a, r|c = c2)P (c = c2)
(1)

P (c = c2|a, r) =
P (a, r|c = c2)P (c = c2)

P (a, r|c = c1)P (c = c1) + P (a, r|c = c2)P (c = c2)
(2)

Considering a single trial and assuming we have no initial knowledge of the current context,
we have P (c = c1) = P (c = c2) = 0.5 which allow us to rewrite equation (1) as:

P (c = c1|a, r) =
P (a, r|c = c1)

P (a, r|c = c1) + P (a, r|c = c2)
(3)

We can now extend this to multiple trials by keeping track of the history of action selection
and rewards. We assume that our prior is stationary and remains constant across the trials. In
other words, P ((cn = c1)|cn−1, ..., c1) = P (c1 = c1) = 0.5, where ci is context in the ith trial.
�is is the case when the context can change every trial independent of the previous trials. �us,
at the ith trial, considering the chosen action ai and the reward ri, we have:

P ((cn = c1), ..., (c
1 = c1)|(an, rn), ..., (a1, r1)) =

P ((an, rn), ..., (a1, r1)|(cn = c1), ..., (c
1 = c1))

P ((an, rn), ..., (a1, r1)|(cn = c1), ..., (c1 = c1)) + P ((an, rn), ..., (a1, r1)|(cn = c2), ..., (c1 = c2))
(4)

Since the action-reward pairs across trials are independent, equation (4) can be further sim-
pli�ed into:

P ((cn = c1), ..., (c
1 = c1)|(an, rn), ..., (a1, r1)) =

i=n∏
i=1

P (ai, ri|ci = c1)

i=n∏
i=1

P (ai, ri|ci = c1) +
i=n∏
i
P (ai, ri|ci = c2)

(5)

Equation (5) requires to keep track the full event history (action and reward). It can be simpli�ed
using a local average of the observed events (sliding window) using only the τ last plays as it
has been proposed in the SW-UCB algorithm and proved to be almost rate-optimal in a minimax
sense (Garivier & Moulines, 2011).

P ((cn = c1), ..., (c
1 = c1)|(an, rn), ..., (a1, r1)) =

i=n∏
i=n−τ

P (ai, ri|ci = c1)

i=n∏
i=n−τ

P (ai, ri|ci = c1) +
i=n∏

i=n−τ
P (ai, ri|ci = c2)

(6)
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2.3 �eoretical Model

Even though we derived equation (6) to express the probability for a given context to be the
actual context, we still need to estimate the di�erent terms since they’re not accessible to the
agent. Our next best option is thus to use an estimate of the current context denoted ĉ from
which we can derive a new estimate:

P ((ĉn = c1), ..., (ĉ
1 = c1)|(an, rn), ..., (a1, r1)) =

i=n∏
i=n−τ

P (ai, ri|ĉi = c1)

i=n∏
i=n−τ

P (ai, ri|ĉi = c1) +
i=n∏

i=n−τ
P (ai, ri|ĉi = c2)

(7)

Using equation (7), we can now estimate the current context based on action and reward which
writes:

P (ai, ri|ĉi = c1) =
N((ai, ri)|ĉ = c1)

N(ĉ = c1)
(8)

whereN((ai, ri)|ĉ = c1) is the number of times the agent chose ai when it estimates the context
as being c1 and get the reward ri and N(ĉ = c1) is the number of times the agent estimates the
context as being c1. �is expression was derived such that agent can estimate the context it is in
by looking at the term P ((ĉn = c1), ..., (ĉ

1 = c1)|(an, rn), ..., (a1, r1)).

However, in order to calculate this, we need terms that imply that the agent has to estimate
the context and choose actions accordingly. �ere is thus an inherent circularity in the problem.
To break this circularity, we have to solve the problem iteratively. We try to estimate the reward
distribution function at trial number t and denote this as R̂t. Furthermore, we keep track of
another matrix N̂ t which counts the number of times the agent chose a particular action in a
particular estimated context. �ese two matrices reads as follows:

R̂t =

[
r̂t11 r̂t12
r̂t21 r̂t22

]
N̂ t =

[
n̂t11 n̂t12
n̂t21 n̂t22

]
where r̂tij represents the estimated probability of ge�ing a reward R+ when choosing action
aj in estimated context ĉi at trial t, n̂tij represents the number of times the agent chose action
ai in estimated context ĉj at trial t. For ease of notation, we de�ne the likelihood to be Lik =
P (ai, ri|ĉi = ck) with k ∈ {1, 2}. Equation (7) now reads:

P ((ĉn = c1), ..., (ĉ
1 = c1)|(an, rn), ..., (a1, r1)) =

i=n∏
i=n−τ

Li1

i=n∏
i=n−τ

Li1 +
i=n∏

i=n−τ
Li2

(9)

Assuming reward distributions are initially equal, we have:

R̂0 =

[
0.5 0.5
0.5 0.5

]
N̂0 =

[
0 0
0 0

]
P (ĉ0 = c1) = P (ĉ0 = c2) = 0.5

At trial t, the agent estimates the current context ĉi according to the estimate in previous trials
and chooses the action (aj) according to equations:

i = argmaxk∈{1,2}P (ĉt−1 = ck) (10)
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j =

{
argmaxk∈{1,2}r̂ik with probability 1− p
1 + b with probability p

(11)

where p is the probability of exploration and b ∼ Bernoulli(0.5). �e exploration ensures that
all the actions are sampled in the initial trials.

Based on the choice of ĉi and aj , the agent can update the values of R̂t and N̂ t according to:

n̂tij = n̂t−1ij + 1 (12)

r̂tij =
n̂t−1ij ∗ r̂

t−1
ij + rt

n̂tij
(13)

where r̂t is the reward obtained at trial t.
Furthermore, since r̂tij represents the estimated probability of ge�ing a reward R+ when

choosing action aj in estimated context ĉi at trial t, 1− r̂tij represents the estimated probability
of ge�ing a reward R−. Consequently, Lti is given by:

Lti =

{
r̂tij if rt = R+

1− r̂tij if rt = R−
(14)

Finally, substituting values of equation (14) in equation (9) yields:

P ((ĉt = c1)) =

i=t∏
i=t−τ

Li1

i=t∏
i=t−τ

Li1 +
i=t∏

i=t−τ
Li2

(15)

Equations (10) to (15) can now be used to formulate an algorithm in order to solve the non-
stationary bandit task as shown in Figure 1.

Estimate
current context 

(equation 10)

Choose action &
process reward

(equation 11)

Update trial 
matrix

(equation 12)

Update estimated 
reward matrix

(equation 13)

Start 
trial

Compute 
likelihood
(equation 14)

Estimate context 
probabilities

(equation 15)

Next 
trial

Figure 1. A synthesized view of themodel showing the di�erent steps necessary to solve a non stationary
bandit task.
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2.4 Neural Model (single module)

We proposed a theoretical model in the last section to solve non stationary bandit tasks. In this
section we develop a biologically plausible model of the striatum for these tasks. �is model is
derived from an existing model of the basal ganglia proposed to solve non stationary problems
(Shivkumar, Muralidharan, & Chakravarthy, 2017). �e center-surround structures seen in the
striatum are modeled using a layered SOM model. In a layered SOM model, each neuron in the
center SOM layer projects to a secondary SOM layer.

�e center layer in the striatal model is the Strio-SOM, which maps the state space and is
believed to model the striosomes. �e neurons in the Strio-SOM project to the Matri-SOM which
maps the action space and is believed to model the matrisomes (Figure 2). Givenm1×n1 neurons
in the Strio-SOM and m2 × n2 neurons in the Matri-SOM, the weights of the Strio-SOM(WS)
have dimension m1 × n1 × dim(s) where s is the state vector. Similarly, for an action vector a
the weights of all the Matri-SOMs (WM ) are of dimensionm1×n1×m2×n2×dim(a) as each
neuron in the Strio-SOM projects to a Matri-SOM. For a state input s, the activity for a neuron n
in the Strio-SOM is given in (16).

XS
[n] = exp(

−||WS
[n] − s||

2
2

σ2S
) (16)

where [n] represents the spatial location of the neuron n and σS controls the spread of the neuron
activity. �e complete activity of the Strio-SOM (XS) is the combination of individual activity
of all the neurons. �e neuron with the highest activity (”winner”) for a state s is denoted by n∗s
.
Similarly, for an action input a corresponding to a state s, the activity for a neuron n in the
Matri-SOM is given in (17).

XM
[n∗s ][n]

= exp(
−||WM

[n∗s ][n]
− a||22

σ2M
) (17)

where σM controls the spread of the neuron activity. �e complete activity of the Matri-SOM
corresponding to neuron n∗s(XM

[n∗s ]
) is the combination of individual activities of all the neurons

in the Matri-SOM corresponding to n∗s . �e neuron with the highest activity (”winner”) for an
action a in state s is denoted as n∗s,a
�e weight of a neuron n in the Strio-SOM for a state input s is updated according to (18)

WS
[n] ←WS

[n] + ηS .exp(
−||[n]− [n∗s]||22

σ2s
)(s−WS

[n]) (18)

�e weight of neuron n in the Matri-SOM for an action input a in a state s is updated according
to (19).

WM
[n∗s ][n]

←WM
[n∗s ][n]

+ ηMexp(
−||[n]− [n∗s,a]||22

σ2M
)(a−WM

[n∗s ][n]
) (19)

�ese representations can be used to evaluate the states and actions and guide the decision
making process. �e schematic of our striatal model to solve stochastic RL tasks is given in Figure
2.
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Striatum

Matrisome

Striosome

Matrisome

Striosome

Matrisome

Striosome

State input

Action input

SNc/VTA

Action values

Excitatory
Inhibitory
Modulatory

Intranuclear

Figure 2. Schematic diagram of the Striatummodel where the arrows indicate the connections and their
types. The state input is mapped by the striosomes and the surrounding matrisomes map the actions
possible in that state.

Let the agent performing the task be in state s. �e striosome activity gives us the represen-
tation of the state in the striatum. �is activity is modeled by the Strio-SOM as given in (16).
�us the activity is of dimension m1 × n1.
�is activity of the Strio-SOM projects to the SNc and represents the value for the state s in
our model (20). �e Striatal-SNc (WStr→SNc) are trained using the signal from SNc which is
representative of Temporal Di�erence (TD) error (δ) (21). �e TD error is calculated as δ =
r + γV (s′) − V (s) where s′ is the new state a�er taking action a, r is the reward obtained and
γ is the discount factor.

V (s) =
∑
∀n

WStr→SNc
[n] XS

[n] (20)

∆WStr→SNc
[n] = ηStr→SNcδXS

[n] (21)

where V(s) represents the value for state s, ηStr→SNc is the learning rate for WStr→SNc.
�e actions that can be performed in a state s are represented by the matrisome activity

surrounding the striosome neuron for that state. �is is given by the activity of the Matri-SOM
corresponding to the neuron with the highest activity in the Strio-SOM (n∗s) in our model. �e
activity of a Matri-SOM neuron for an action a is given in (17) and is of dimension m2 × n2.

�e Matri-SOM activity X for action a is projected to the action value neurons as given in
(22). If na is the action value neuron for the action a, XQ

[na]
corresponds to the action value for a

the action in the state s in our model. �ese connections are also trained using TD error as above
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and the update equation is given in (23)

XQ
[na]

=
∑
∀n

W
Str(Xm)→Str(Q)
[n∗s ][n]

XM
[n∗s ][n] (22)

∆W
Str(Xm)→Str(Q)
[n∗s ][n]

= ηStr(Xm)→Str(Q)δXM
[n∗s ][n]

(23)

whereXQ represents the activity of the action value neurons, ηStr(Xm)→Str(Q)) is the learn-
ing rate for WStr(Xm)→Str(Q) .

�e activity of the action value neurons are used for action selection by using a so�max
policy in our model (24). We believe that this is carried out by the dynamics of the STN- GPe
oscillations with the striatal action value neurons projecting to the GPe. �is is further elaborated
in the ‘Discussion’ section.

P (a|s) =
exp(βXQ

[na]
)∑

a′∈A
exp(βXQ

[na′ ]
)

(24)

where β is the inverse temperature and A denotes the action set for the agent.

2.5 Neural Model (multi-modules)

�e modular nature of the striatal anatomy has been proposed to be responsible for solving non
stationary tasks using a modular RL framework (Shivkumar et al., 2017). In this method, the
agent allocates separate modules to separate contexts. Each of the modules has its own copy of
the environment in a particular context, represented by an environment feature signal (ρ). �is
copy is used to generate a responsibility signal, denoted by λ, which indicates how close the
current context is to the one represented by the module. �us by identifying the module with
the highest responsibility signal we can follow the policy developed in that module to solve the
problem in an e�cient manner. We can extend the model described above to incorporate the
modular RL framework. �e schematic for the extended model is given in Figure 3.
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Figure 3. A schematic of the extended model to handle modular RL tasks showing the case with two
striatal modules. The state representations of the two modules are used to calculate their respective
responsibilities which are then used by the striatal interneurons to choose the appropriate module.

We believe that context selection happens at the level of the striatum and the context mod-
ulated activity is projected to the action value neurons. For clarity, we have expanded the intra-
nuclear activity of the striatum in the model schematic (Fig. 3). Supposing there are K modules
denoted by M1,M2...,MK . We now de�ne the weights and activities in the previous sections
for each module and denote Mi with each term associated with module Mi. �us, for a module
m, the following variables undergo a change in notation:

XS → XS,m (16)
XM → XM,m (17)
WS →WS,m (18)
WM →WM,m (19)
V (s)→ V m(s) (20)

WStr→SNc →WStr→SNc,m (21)
WStr(Xm)→Str(Q) →WStr(Xm)→Str(Q),m (23)

We propose that in addition to the value of the state s, the activity of the Strio-SOM also projects
to the SNc to represent the environment feature signal (ρm). �e weights of these projections
are denoted asWStr→SNc,m

ρ and are trained using the signal from SNc which is representative of
context prediction error (δ∗). �e corresponding equations are given in (25) and (26). �e context
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prediction error is calculated as δ∗ = r − ρm(s)

ρ{m}(s) =
∑
∀n

W
Str→SNc,{m}
ρ,[n] X

S,{m}
[n] (25)

∆W
Str→SNc,{m}
ρ,[n] = ηStr→SNcρ δ∗X

S,{m}
[n]

(26)

�e responsibility signal for each module is denoted by λm for module m. In a given state
s, the module with the highest λ is chosen for deciding the action in that state. Biologically,
we believe that this selection of the appropriate module for the context is guided by the striatal
interneurons (Sullivan, Chen, & Morikawa, 2008). Let the winning module in the state s be
denoted by m∗. �e winning module projects to the action value neurons (27) following which
the processing is the same as in the previous section.

XQ
[na]

=
∑
∀n

W
Str(Xm)→Str(Q),m∗

[n∗s ][n]
XM,m∗

[n∗s ][n] (27)

�e dynamics of the responsibility signal is given in (28)

λ̇ = −λ− αλ(δ∗)2 (28)

where αλ controls the in�uence of context prediction error on the responsibility signal and
δ∗ is the context prediction error.

3 Results

3.1 T-Maze tasks

�e study of non stationary bandit tasks is a reasonably underexplored area owing to the com-
plexity of decision making involved in these tasks. However, some of the earlier results (Lloyd
& Leslie, 2013) make some predictions which we aim to replicate with our model. �e task per-
formed by the agent is a T-maze task (Olton, 1979) where the agent has to choose one of the
arms in a maze. Upon choosing the arm, the agent gets a reward Rmax with a given probability
(Psuccess) and a reward Rmin with a given probability (Pfailure). �e task can be extended to a
context-dependent problem by reversing the reward distributions with trials.
We study the performance with changing Rmax/Rmin and Psuccess/Pfailure. Animals tend to
choose rewards which have a higher magnitude and greater rewards lead to faster convergence
(Figure 4A). Similarly, with the same magnitude, animals tend to prefer distributions which re-
ward with a higher probability (Figure 4C). �ese e�ects are captured by our model as shown in
Figure 4B and Figure 4D respectively. �e �gures show the ratio of the correct choices by the
agent in 50 trials averaged over 50 sessions. �e value of exploration factor, p (11) was set as 0.1
and the window length, τ (7) was chosen as 5.
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Figure 4. A. Results from the (Lloyd & Leslie, 2013) model according to the di�erences in reward mag-
nitude between the two arms, reward probability being the same. B. Results from the proposed neural
model. Only the 4:3 ratio case prevents the model from converging. C. Results from the (Lloyd & Leslie,
2013) model according to the di�erences in reward probabilities between the two arms, rewardmagnitude
being the same. D. Results from the proposed neural model that are comparable (but slightly worse) to
the peformances of (Lloyd & Leslie, 2013).

Experimental evidence (Brunswik, 1939) shows that partial reinforcement and stochastic re-
wards have a signi�cant e�ect on reversal learning. We consider a task where the animal is
trained on a T-maze with di�erent reward probabilities for 24 trials and then the rewarding prob-
abilities are reversed. We look at the percentage of the trials where the animal chooses the arm
which is unpro�table at �rst and becomes pro�table a�er the reversal. We can observe that the
model results (Figure 5) show similar trends to earlier results (Figure 5A). �e tasks with de-
terministic rewards showed quicker reversal as compared to probabilistic rewards that showed
slower policy modulation by the agent.
Stochastic reward distributions also have an e�ect on extinction (Miltenberger, 2011) of a learned
policy. To test this, we consider a task where the animal on a T-maze for 24 trials as above. How-
ever, the rewards for both arms are set as 0 following the 24 trials and the rate of unlearning
is studied. We observe that de�nite rewarding tasks show faster extinction as compared to the
tasks with stochastic rewards (Figure 5C) which is captured by the model (Figure. 5D).
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Figure 5. A. Results from the (Lloyd & Leslie, 2013) model as the percentage of trials where the animal
chooses the arm which is non-profitable for the first 24 trials and becomes profitable following that. B.
Results from the proposed neural model on the task described in A One can see that the model shows
similar trends where the definite reward tasks show faster reversal learning. C. Results from the (Lloyd
& Leslie, 2013) model as the percentage of trials where the animal chooses the arm which was rewarding
before 24 trials following which both arms are not rewarded. D. Results from the proposed neural model
on the task described in C. One can see that the model shows similar trends as the definite reward task
show faster unlearning.

3.2 Bandit tasks solved by neural model

In this section, we demonstrate that the proposed model of striatum model is capable of solving
bandit tasks. We consider a cue based decision making task where the animal has to choose one
of the cues displayed on the screen. �is task was �rst described in (Pasquereau et al., 2007) and
a schematic of the task is given in Fig. 6A. �e animal is presented with two cues in each trial at
two locations (Fig. 6A). Each shape is associated with a di�erent probability of reward. �e agent
has to choose one of the shapes and gets a reward according to the associated probability. We
show that our striatal model is able to solve this task. We consider a 4 dimensional state vector,
where each dimension is 1 if the shape is shown and 0 otherwise. �e action vector is also 4
dimensional with each dimension denoting the action that is chosen by the agent. �e various
parameters of the model are given in Table 1.

Parameter Value Parameter Value
Strio-SOM dimension (m1 × n1) 3× 2 Matri-SOM dimension (m2 × n2) 3× 3
σS 0.01 σM 0.1
ηS 0.4 ηM 0.4
γ 0.95 ηStr→SNc 0.05
ηStr(Xm)→Str(Q) 5× 10−4 β 50
αλ 0.8 ηStr→SNcρ 0.1

Table 1. Parameter values for cue based decision making task

�e agent (model) is pre-trained where it is given various state and action inputs. We show
that the representational maps developed have a center-surround structure (Figure 6C when we
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view the activity corresponding to all the actions for a particular state. �e ratio of correct choices
chosen in 200 trials averaged over 25 sessions in given in Figure 6B. �us, we can see that the
agent is able to solve stochastic reward based tasks. Experimental evidence shows that that the
percentage of times the agent chooses the arm with reward probability P1, when the ratio of the
reward probabilities is P1/(P1+P2), follows a sigmoid activity with center at 0.5 which is well
captured by the model (Figure 6D).

Figure 6. A.Schematic of the cue based decision making task where the agent has to choose between
the two shapes shown in the screen and each shape has a di�erent probability of reward associated with
it. B.Percentage of correct responses averaged over 25 sessions for 200 trials. C. Mapping of the action
inputs forms a center-surround structure when we view the combined activity of the Matri-SOM for all
action inputs D. Ratio of choosing response 1 with associated probability P1 w.r.t to the sum P1+P2. The
model follows a similar trend to the experimental plot adapted from (Pasquereau et al., 2007)

3.3 �eoretical vs neural model

We have introduced both a theoretical model capable of solving non stationary bandit tasks and
a neural network model which provides a biologically plausible mechanism for the same task.
Since there are no available experiments dealing with these tasks (to the best of our knowledge),
we shall use the theoretical model to understand the performances of the neural model. In that
regard, we use a two arm bandit task which was the underlying problem in both the tasks de-
scribed beforehand. �e reward distributions is reversed a�er 500 trials and the performance
of the agent is characterized by averaging performances over 25 sessions. We also observe the
performances for di�erent values of ε which represents the probability of reward for the non-
pro�table arm.
Figure 7A (blue) demonstrates the probability of context 1 estimated by the theoretical model
whereas Figure 7B (blue) gives the estimation by the neural network model. We observe that the
theoretical model is able to identify the context even for larger values of ε. However, the neural
network model is mostly able to identify the context for small values of ε but fails for larger val-
ues. A similar trend can be seen in Figure 7A (orange) and Figure 7B (orange) where we measure
the percentage of correct choices by the agent. We observe that the theoretical model is able to
learn faster upon context reversal for all values of ε but the neural model needs to relearn for
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Figure 7. Estimated probability of being in context 1 (blue) and percentage of optimal choices (orange)
by the theoretical model, depending on the reward probability ε. B1 to B4. Estimated probability of
being in context 1 (blue) and percentage of optimal choices (orange) by the theoretical model, depending
on the reward probability ε.

From these experimental results, we can conclude that the neural model is able to follow the
theoretical model only for low values of ε and behaves like a single context agent for larger values.
�is can be further seen in Figure 8 which shows that the neural model performances lies between
the theoretical optimal and a single context model and could be the biological mechanism used
for solving non stationary bandit tasks.
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Figure 8. Schematic of the extended model to handle modular RL tasks showing the case with two
striatal modules. The state representations of the two modules are used to calculate their respective
responsibilities which are then used by the striatal interneurons to choose the appropriate module.

4 Discussion

We have presented a theoretical model to solve non stationary bandit tasks. �is is also accom-
panied by a biologically plausible computational model of the striatum which also a�empts to
tackle these problems.

4.1 Adapting to changing contexts

�e problem of identifying a change in context in the environment based on the rewards obtained
in the previous trials has been extensively studied in the �eld of change detection (Basseville &
Nikiforov, 1993). Given the past history of reward samples upon taking a particular action, Page
Hinkley (PH) statistics (Hinkley, 1970) is a popular method for testing the hypothesis that a
change in context has occurred (Hartland, Gelly, Baskiotis, Teytaud, & Sebag, 2006; Hartland,
Baskiotis, Gelly, Sebag, & Teytaud, 2007). Under the constraint that the rewards come from the
exponential family of distributions, PH statistics guarantee minimal expected time before change
detection (Lorden, 1971). Our model uses similar ideas of accumulation of mean of rewards in the
past trial to predict change in contexts but uses limited memory as a realistic biological constraint.
In addition, the model predicts the probability of context change in each trial as opposed to only
predicting the occurrence of context change. �e model uses information about all the actions
in the limited history as opposed to traditional change detection algorithms which assume that
the rewards in the history were generated from a single action.
In non stationary bandit tasks, the agent needs to choose an action in each trial in addition to
identifying contexts. Earlier studies have shown that sliding window UCB (SW-UCB) (Garivier &
Moulines, 2011) is a theoretically optimal policy for such tasks. In addition to being incompatible
with biological constraints like limited memory, SW-UCB assumes that the context change is
periodic with a period T (used to determine a padding function). �e policy in our theoretical
model is the same as SW-UCB without any padding functions, since the knowledge of the context
period is unavailable to the agent.
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4.2 �eoretical Model as a Constrained Version of the Full Bayesian Model

�e inherent complexity of non stationary bandit problems motivated a Bayesian approach to
solve these problems. While the full Bayesian model a�empted to give the best possible bound for
these tasks, the theoretical model aimed to give a characterization of the expected performance
under some realistic constraints such as the ones encountered by an animal solving these tasks.
One of the key constraints is the assumption of a limited history. Since the animal has �nite
memory, it can use information from only a small and recent history to guide its decision making
(Todd, Niv, & Cohen, 2009). Exploration in action selection is a facet of RL and is also observed in
earlier studies (Doya, Samejima, Katagiri, & Kawato, 2002). �is is also captured as a constraint
in our theoretical model (11).

4.3 Striatal Microanatomy and Contextual Learning

Our striatal model is derived from a computational model of the basal ganglia proposed for han-
dling non stationary tasks (Shivkumar et al., 2017). �e model is based on the assumption that
the striosomes map the state space and the matrisomes map the action space. �is is supported
from earlier results that the striosomes receive input from the orbitofrontal cortex (Eblen & Gray-
biel, 1995) known for coding reward related states (Wilson et al., 2014). Anatomical studies also
show that striosome medium spiny neurons (MSNs) project directly to SNc (Lanciego, Luquin, &
Obeso, 2012) which could compute state values as in our model. Evidence suggests that similar to
how projections from the striosomes code for state value, projections from the matrisomes code
for action value (Doya et al., 2002). Experimental results show the existence of such neurons in
the striatum which code speci�cally for action value (Samejima, Ueda, Doya, & Kimura, 2005).
�is is well captured in our model as the Matri-SOM projects to action value neurons in out
striatal model. Action selection is done using the so�max policy (24) following the action value
computation in the striatum. �is policy uses a parameter β which controls the exploration of
the agent. We believe that this could be the role of STN, GPe and GPi before action selection is
done at the level of the thalamus. �is is supported by earlier results which suggest that the un-
derlying stochasticity in the so�-max rule could be achieved indirectly by the chaotic dynamics
of the STN-GPe loop (Kalva, Rengaswamy, Chakravarthy, & Gupte, 2012).

4.4 Comparing the �eoretical and the Neural Model

�e two models proposed in our work were developed and validated independently from each
other. However, they share some common features and we can observe that the performance of
the neural model falls between the performance of the theoretical model and the neural model
with a single module (Figure 8). �e theoretical model acts as a lower bound to the performance
of the neural model for the given stochasticity in the problem. �e neural model is able to achieve
performance comparable to the theoretical model for low values of ε but fails to do so for larger
ε where it becomes similar to a single module system. �us, we predict that our neural model
can explain behavior in stochastic multi context tasks for ε < 0.3. �is also allows us to bound
performance of the animal performing such tasks in highly stochastic conditions which is chal-
lenging from an experimental perspective due to the large number of trials required. Another
feature of our theoretical model is that it is a very simple model with no assumptions on the re-
ward or the context distributions. However, despite its simplistic formulation, the model is quite
powerful and can capture all the previous results reasonably well. �e modular arrangement of
identifying context and using it for task selection is very similar to the proposed striatal model.
�us, the striatal model could be a biologically plausible neural implementation of the theoretical
model.
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