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ABSTRACT 

Rare copy-number variants (CNVs) and gene-disruptive mutations associated with 

neurodevelopmental disease are characterized by phenotypic heterogeneity. When affected 

children inherit these mutations, they usually present more severe features than carrier parents, 

leading to challenges in diagnosis and management. To understand how the genetic background 

modulates phenotypes of these variants, we analyzed clinical and exome-sequencing data from 

757 probands and 233 parents and siblings who carry disease-associated mutations. We found 

that the number of rare pathogenic secondary mutations in developmental genes (second-hits) 

modulates the expressivity of disease in probands with 16p12.1 deletion (n=26, p=0.014) and in 

autism probands with gene-disruptive mutations (n=184, p=0.031) when compared to their 

carrier family members. Probands with 16p12.1 deletion and a strong family history of 

neuropsychiatric disease were more likely to manifest multiple and more severe clinical features 

(p=0.035) and carry a higher burden of second-hits compared to those with mild or no family 

history (p=0.001). The amount of secondary variants determined the severity of cognitive 

impairment in 432 probands carrying pathogenic rare CNVs or de novo mutations in disease 

genes and negatively correlated with head size in 84 probands with 16p11.2 deletion, suggesting 

an effect of the genetic background across multiple phenotypic domains. These second-hits 

involved known disease genes, such as SETD5, AUTS2, and NRXN1, and novel candidate 

modifiers, such as CDH23, RYR3, and DNAH3, affecting core developmental processes. Our 

findings suggest that in the era of personalized medicine, accurate diagnosis will require 

complete evaluation of the genetic background even after a candidate gene mutation is identified.   
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INTRODUCTION 

Significant advances in high-throughput genomic sequencing technologies have helped to 

identify hundreds of genes as risk factors for neurodevelopmental and neuropsychiatric 

disorders, such as autism, intellectual disability, schizophrenia, and epilepsy. For example, in 

2002 only 2-3% of autism cases were explained by genetic factors, whereas current studies 

suggest that rare disruptive mutations, including copy-number variants (CNVs) and single-

nucleotide variants (SNVs), account for 10-30% of autism cases1-5. Despite initial claims of 

association with a specific disorder or syndrome, several of these pathogenic variants show 

incomplete penetrance and variable expressivity6-9. For example, the 16p11.2 BP4-BP5 deletion 

(OMIM #611913)10 was first described in children with autism, but further studies on other 

clinical and population cohorts demonstrated that this deletion is also associated with individuals 

with intellectual disability and developmental delay (ID/DD), obesity, epilepsy, cardiac disease, 

and scoliosis, and only about 24% of cases manifest an autism phenotype10-20. Phenotypic 

variability is not restricted to multi-genic CNVs but has also been reported for single genes with 

disruptive mutations, including DISC1, PTEN, SCN1A, CHD2, NRXN1, FOXP2, and GRIN2B 

8,21-28. While some of these effects could be due to allelic heterogeneity, phenotypic variability 

among carriers of the same molecular lesion suggests a strong role for variants in the genetic 

background28-32. For example, in a large family described by St. Clair and colleagues, carriers of 

a balanced translocation disrupting DISC1 manifested a wide range of neuropsychiatric features, 

including schizophrenia, bipolar disorder and depression33-35.  

This phenomenon was exemplified by our delineation of a 520-kbp deletion on 

chromosome 16p12.1 (OMIM #136570) that is associated with developmental delay and 

extensive phenotypic variability36. Interestingly, in most cases, this deletion was inherited from a 
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parent who also manifested mild neuropsychiatric features, and the severely affected children 

were more likely to carry another large (>500 kbp) rare CNV. We hypothesized that while each 

pathogenic primary mutation sensitizes the genome to varying extents, additional secondary 

variants in the genetic background modulate the ultimate clinical manifestation. 

In this study, we evaluated 757 probands and 233 family members carrying disease-

associated primary mutations (17 rare CNVs or disruptive mutations in 301 genes). A 

comparison of the genetic background between probands and parents or siblings showed that in 

the presence of the same primary mutation, variability and severity of neurodevelopmental 

disease is contingent upon the number of rare pathogenic variants in the genetic background.  
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SUBJECTS AND METHODS 

Patient recruitment and clinical data ascertainment 

We obtained clinical and/or genomic data from 141 children carrying the 16p12.1 deletion, as 

well as 39 deletion carrier and 30 non-carrier parents. Probands and parents recruited through 

direct contact provided consent according to the protocol reviewed and approved by The 

Pennsylvania State University Institutional Review Board. When individuals were not contacted 

directly, de-identified phenotypic (case histories and clinical information) and genomic data were 

used; as such, these cases were exempt from IRB review and conformed to the Helsinki 

Declaration. 

 We extracted clinical information from medical records or clinical questionnaires 

completed by different physicians from 180 carrier individuals and available family members.  

Medical records were comprehensively reviewed for medical history of the probands, including 

developmental milestones, anthropometric measures, clinical diagnosis of nervous system, 

cardiac, visual, gastrointestinal, urinary and reproductive organ defects, as well as clinical notes 

describing tests and observations of cognitive, neurological, and behavioral features. Family 

history of behavioral, developmental and psychiatric features was also assessed from the medical 

records. In addition to or in the absence of medical records, information regarding prenatal and 

developmental history, presence or absence of overt phenotypes such as craniofacial, skeletal and 

muscular features, and cognitive and behavioral features of the probands were obtained through 

clinical questionnaires completed by physicians. Clinical questionnaires and direct interviews 

with parents were also used to collect family history information and history of neuropsychiatric 

features of the parents, including depression, learning difficulties, alcohol/drug abuse, attention-

deficit disorder, bipolar disorder, behavioral issues, delusions, and hallucinations.    
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We used a modified de Vries scoring system for quantifying the number and severity of 

phenotypic abnormalities in affected children, which allows for a uniform assessment of 

developmental phenotypes from clinical records (Table S1)6,37-40. Originally used for 

characterizing phenotypes associated with subtelomeric and balanced chromosomal 

rearrangements, this method, used reliably in several studies, allows for a uniform assessment of 

developmental phenotypes from clinical records38-40. Using keyword searches for more than 50 

clinical terms, we binned specific features into nine broad phenotypic categories, including 

craniofacial/skeletal features, head phenotype (macro/microcephaly), growth, 

developmental/speech/motor delay/intellectual disability, abnormal behavior, hypo/hypertonia, 

epilepsy, congenital malformation, and family history of neurodevelopmental and psychiatric 

features. Each feature was given a score ranging from 0 (feature not present) to a maximum of 4 

(severe feature) based on presence of a specific feature and its severity, and a total score ranging 

from 1 (few features) to 18 (many severe features) was calculated to denote the number and 

severity of the phenotypic categories affected in each proband. 

Family history information was used to bin families with the deletion into strong, mild or 

negative family history categories based on the severity of neurodevelopmental or psychiatric 

features (Figure S1). We considered families to have a strong family history when either parent 

presented at least one major psychiatric or developmental feature (such as intellectual disability, 

schizophrenia, bipolar disorder, congenital features, or multiple episodes of epilepsy) or two or 

more mild psychiatric features (such as mild depression, difficulties in school, or alcohol/drug 

abuse), and/or siblings exhibited neurodevelopmental or behavioral features (such as 

developmental/speech delay, intellectual disability, or autism). We considered families to have 

mild family history when parents presented one mild psychiatric feature. Families were 
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categorized as having a negative family history when neither parents nor siblings exhibited any 

of the assessed features.  

 Genomic and clinical data for families with autism were obtained from the Simons 

Foundation Autism Research Initiative (SFARI) following appropriate approvals. Full-scale 

intellectual quotient (FSIQ), Social Responsiveness Scale (SRS) T-scores and body-mass index 

(BMI) z-scores data were obtained for 53 individuals carrying rare disease-associated CNVs and 

295 individuals with de novo mutations from the Simons Simplex Collection (SSC)41,42. FSIQ, 

SRS T-scores, BMI and head circumference z-scores were downloaded for 86 individuals from 

families with 16p11.2 BP4-BP5 deletion collected as part of the Simons Variation in Individuals 

Project (SVIP).  

 

Exome sequencing and SNP arrays 

We generated exome sequencing and SNP microarray data for 105 individuals from 26 families 

with the 16p12.1 deletion using standardized pipelines43-45. Genomic DNA was extracted from 

peripheral blood using QiaAMP maxi DNA extraction kit (Qiagen) and treated with RNAse. 

DNA was then quantified using Qubitor PicoGreen methods (Thermo Fisher Scientific), and 

sample integrity was assessed in agarose gel. After passing quality control, exome sequencing 

was performed on these samples at the Genomic Services Lab at the HudsonAlpha Institute for 

Biotechnology (n=57) and at the Genomics Core Facility, The Huck Institutes of the Life 

Sciences, The Pennsylvania State University (n=48). Genomic libraries were constructed using 

the NimbleGen SeqCap EZ Exome v3 capture kit, and paired-end sequencing (2×100 bp) was 

performed using Illumina HiSeq v4. Reads were trimmed using Sickle v.1.33 and aligned using 

BWA-MEM v.0.7.13 to the 1000 Genomes Project Phase I reference genome (hg19/GRCh37)46. 
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Mapped reads were then processed according to the GATK v.3.5 Best Practices Pipeline, 

including removal of duplicate reads, local realignment of insertion/deletion sites, and 

recalibration of base quality scores43-45. In order to detect splice-site mutations in regions 

flanking exons, we extended our target regions by 100 bp at the 5’ and 3’ ends of each exon, 

increasing our total extended target size to 137 Mbp.  

 SNVs and small indels located within 100 bp of the exon capture probes were called for 

individual samples using GATK v.3.5 HaplotypeCaller, and were jointly genotyped using GATK 

GenotypeGVCFs. After variant quality score recalibration, called variants were annotated using 

Annovar v.2016Feb01 including predictive tools for pathogenicity of the alternate allele 

(Mutation Taster, CADD score), allele frequency in the Exome Aggregation Consortium (ExAC 

database), and Residual Variation Intolerance Scores (RVIS)47-50. Called variants were filtered 

for the following attributes: quality score ≥50, read depth ≥8, number of reads with 0 mapping 

quality ≤4 and ≤10% of all reads, ratio of quality score to alternate reads ≥1.5, and allele balance 

between 0.25 and 0.75 (heterozygous) or ≥0.9 (homozygous). An average of 62.6 Mbp 

representing 99.1 % of the primary target (64 Mbp) was achieved at ≥8X coverage across the 

105 samples (excluding padded regions), with an average number of 18,900 variants called per 

sample (Table S2). Loss-of-function mutations (LoF), including stopgain, frameshift insertion or 

deletion, splice-site mutations (predicted by MutationTaster as disease causing, “D”, or disease 

causing automatic, “A”), and de novo mutations in probands were visually confirmed basis using 

Integrative Genomics Viewer (IGV)51. Rare (ExAC≤0.1%) missense mutations with Phred-like 

CADD ≥25 were investigated in sets of genes associated with neurodevelopmental disorders or 

reported as disease causing in OMIM 2-4,14,41,52-68. A subset of disruptive mutations in disease-

associated genes was validated using Sanger sequencing.  
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 High-resolution microarrays (Illumina Omni 2.5 BeadChip) were performed on 105 

individuals (16p12.1 deletion carriers n=59, non-carriers n=46) at the Genomic Services Lab at 

the HudsonAlpha Institute for Biotechnology (n=38), Yale Center for Genome Analysis (YCGA) 

(n=43), and the Department of Genome Sciences at the University of Washington (n=24). 

PennCNV v.1.0.3 was used to identify CNVs from high-resolution array data69. Individual and 

family-based (trios and quads) PennCNV calls were combined for autosomal chromosomes, 

while CNVs on chromosome X were called only at the individual level. Adjacent CNVs with 

overlapping base pairs or gaps with <20% of CNV length and <50 kbp were merged. Calls were 

filtered by size (≥50 kbp in length and containing ≥5 target probes), presence of at least one 

protein-coding gene (hg19 RefSeq gene), frequency (≤0.1% in a control population of 8,629 

individuals6 as determined by 50% reciprocal overlap), and overlap with segmental duplications 

and centromere/telomere sequences (≤75%). CNV calls in children and parents were visually 

confirmed by inspection of log-R ratio (LRR) and B-allele frequency (BAF) plots.  

For the autism collection, variant calls (SNVs and CNVs) from 716 individuals from the 

SSC were obtained from exome and SNP microarray studies41,42,70. Variant call files (VCF) and 

SNP array data from 84 families with 16p11.2 BP4-BP5 deletion were obtained from the SVIP. 

Single-nucleotide variants and CNVs were obtained and filtered following the same procedures 

as for the 16p12.1 deletion cohort43-45,50.  

 

Secondary variant burden analysis 

We defined “primary variant” or “first-hit” as follows: (a) rare CNVs previously 

associated with neurodevelopmental and neuropsychiatric disorders6, (b) previously reported de 

novo mutations in candidate genes41,42, and (c) likely damaging variants (loss of function and 
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missense mutations with CADD≥25) in recurrent genes associated with neurodevelopmental and 

neuropsychiatric disorders. We defined “secondary variant” or “second-hit” as an additional rare 

likely pathogenic mutation (<0.1% frequency CNV or SNV with CADD≥25) affecting a 

functionally intolerant gene in an individual who already carries a disease-associated primary 

mutation (Figure 1A). 

 We restricted our search for secondary variants to a subset of genes less likely to harbor 

mutations in a control population, as a proxy for association of genes with disease. The RVIS has 

been shown to be a good predictor of gene tolerance to functional variation, and genes within the 

20th percentile of RVIS scores have been shown to be enriched in developmental function42,48. 

Secondary variant burden was measured as the number of functionally intolerant genes (with 

RVIS≤20th percentile) affected in the individual: either carrying rare (frequency in ExAC 

database ≤0.1%) likely pathogenic variants (loss-of-function and missense mutations with a 

Phred-like CADD ≥25, representing the top 0.3% of most deleterious mutations in the human 

genome) or within rare CNVs (found in ≤0.1% of a control population and ≥50 kbp)47,48. We did 

not observe any correlation between the number of secondary variants identified by exome 

sequencing and the total size (bp) of the region sequenced at ≥8X (Pearson correlation 

coefficient R= -0.08 for 16p12.1 deletion, p=0.43), which allowed us to directly compare the 

number of secondary variants within each cohort (Figure S2).  

We calculated the frequency of second hits in five subgroups of individuals carrying a 

disease-associated primary variant (Figure 1B): (a) We analyzed 26 probands, 23 carrier parents 

and available family members carrying 16p12.1 deletion. (b) We assessed 53 individuals from 

the SSC cohort who carry rare CNVs associated with syndromic and variably expressive 

genomic disorders6. (c) We analyzed 84 probands and available family members with 16p11.2 
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BP4-BP5 deletion from the SVIP cohort. (d) We evaluated the frequency of secondary variants 

in 295 individuals from the SSC cohort reported to carry severe de novo loss-of-function 

mutations in neurodevelopmental genes41,42. (e) We assessed 184 affected probands and matched 

unaffected siblings from the SSC cohort who inherited the same rare (≤0.1% frequency) loss-of-

function or likely pathogenic missense primary mutations (CADD ≥25) in genes associated with 

neurodevelopmental disorders71-74 

Hierarchical clustering (Ward’s method) of the genetic burden in probands, differences in 

burden between probands and carrier parents, and modified de Vries score was performed using 

JMP Pro 13.1.0. 

 

Functional analysis of secondary variants 

The function of second-hit genes in the 16p12.1 deletion cohort was analyzed using the 

Ingenuity Pathway Analysis (IPA, Qiagen Bioinformatics) and expression data derived from the 

GTex database72. (a) To identify enrichment in specific canonical pathways among the genes 

conferring a higher burden in probands, we performed IPA on 219 genes carrying second-site 

variants in probands and 130 genes in carrier parents, using the Ingenuity Knowledge Base as a 

reference set (QIAGEN)75 . Significant enrichment in specific pathways was identified using a 

one-tailed Fisher’s exact test with Benjamini-Hochberg Multiple Testing correction at FDR<0.05 

and z-score <-2. (b) Tissue-specific median RPKM expression values for human genes were 

obtained from the GTex database72. A gene was considered to be highly expressed in a specific 

tissue when its expression was at least two standard deviations greater than the average 

expression of the gene across 30 tissues, including skeletal muscle, urinary system (kidney and 

bladder), heart, reproductive system (cervix, vagina, testis, fallopian tube, ovary, prostate, 
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uterus), digestive system (esophagus, small intestine, colon and stomach), lung and liver. The 

number of secondary variants in genes with high expression in brain or non-brain tissues (GTex) 

was compared between probands and carrier parents using a paired t-test. 

 Gene ontology (GO) enrichment analysis of secondary variants identified in SSC 

probands with de novo mutations and 16p11.2 BP4-BP5 deletion probands from SVIP was 

performed using the Panther Statistical Overrepresentation test76. Biological process GO terms 

(curated from Panther GO Slim) with significant enrichment for each gene set (FDR<0.05 with 

Bonferroni correction) were reported. Networks of connected GO terms were created using 

Cytoscape and the EnrichmentMap plug-in77,78.  

 

Statistics 

Proband-parent or proband-sibling secondary variant burdens and clinical severity scores were 

compared using a paired t-test. Genetic burden and clinical severity scores between different 

categories of probands with related or shared primary variants were compared using non-

parametric one-tailed Mann-Whitney tests, due to the hypothesis-driven nature of the 

experiment. Pearson correlation coefficients were calculated between the burden of secondary 

variants and FSIQ, SRS T-scores, BMI z-scores and head circumference (HC) z-scores. All 

statistics were calculated using Minitab software. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/257758doi: bioRxiv preprint 

https://doi.org/10.1101/257758
http://creativecommons.org/licenses/by-nd/4.0/


 

14 

 

RESULTS 

Secondary variants account for disease expressivity in 16p12.1 deletion probands 

We assessed how secondary variants can modulate phenotypes in concert with a first-hit by 

evaluating 757 affected probands and 233 family members carrying disease-associated primary 

variants (Figure 1). Using the 16p12.1 deletion as a paradigm for studying the genetic basis of 

variable expression of disease traits, we first analyzed 180 individuals with this deletion and their 

non-carrier family members (Figure 1B). The 16p12.1 deletion was inherited in 92.4% of cases, 

with a significant maternal bias (57.6% maternal (n=53) vs 34.8% paternal (n=32), one-tailed 

binomial test p=0.02) (Table S3). In accordance with the female protective model described for 

neurodevelopmental disorders6,79,80, we observed a significant gender bias among probands with 

the 16p12.1 deletion (67.9% males versus 32.1% females, one-tailed binomial test p<0.0001). 

Detailed clinical analysis of 141 affected children with 16p12.1 deletion showed a wide 

heterogeneity of phenotypes, with a high prevalence of neurodevelopmental, craniofacial and 

musculoskeletal features (>50%), and variable involvement of other organs and systems (Figure 

2A-B, Table S4). In contrast, 32 of 39 (82%) (61.5% females, 38.5% males) carrier parents 

showed mild cognitive, behavioral and/or psychiatric features (Table S5), consistent with 

previous reports of cognitive impairment and increased risk for schizophrenia in carriers of the 

16p12.1 deletion7,81,82. 

 To identify secondary variants within protein-coding regions that contribute to variable 

phenotypes, we performed exome sequencing and high-resolution SNP arrays in 105 individuals 

with the 16p12.1 deletion, including 59 deletion carriers (26 probands, 7 carrier siblings, 23 

carrier parents, and 3 grandparents) and available non-carrier family members (Table S6). We 

first evaluated whether the deletion could unmask recessive alleles, and found no rare pathogenic 

mutations within the seven 16p12.1 genes on the non-deleted chromosome (Table S7). We next 
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performed a case-by-case analysis of families for second hits elsewhere in the genome by 

focusing on rare CNVs (<0.1%, ≥50 kbp), de novo or rare (ExAC frequency <0.1%) loss-of-

function (LoF) mutations, and rare likely pathogenic missense variants (Phred-like CADD ≥25) 

in disease-associated genes (see Methods). We found that 25/26 probands (96%) carried 

secondary variants (an average of 2.5 private likely pathogenic mutations per proband) within 

disease-associated genes, and 4/26 probands (15%) carried another large (≥500 kbp) CNV 

(Tables S8-S10). For example, in one proband (family GL_001) we identified three disease-

associated mutations, including a de novo LoF mutation in the intellectual disability-associated 

gene SETD5 (c.1623_1624insAC, p.Asp542Thrfs*3) and LoF mutations in LAMC3 (c.1720C>T, 

p.Gln574X) and DMD (c.9G>A, p.Trp3X), both transmitted from the non-CNV carrying 

mother4,83,84 (Figure 2C). Similarly, another proband (family GL_022) carried a stop-gain 

mutation in the autism-associated gene OR52M1 (c.264G>A, p.W88X) transmitted from the 

CNV-carrying mother, and rare LoF mutations in two neuropsychiatric genes, NALCN 

(c.2297C>T, p.Ser766X) and CCDC137 (c.205G>T, p.Glu69X), transmitted from the 

father55,85,86. Further, in another family (family GL_011), a rare deletion in 2p16.3 inherited from 

a non-16p12.1 carrier parent, encompassing NRXN1, was also identified in a proband. In all of 

these examples, we found increased variability and more severe clinical features in probands 

than expected from a single hit alone (Table S11), suggesting that the clinical outcome could be 

due to a combination of effects due to the second hits and haploinsufficient genes within 

16p12.14,83,84,87,88. 

 While private and disease-associated secondary mutations may explain the variable and 

severe features in the affected children on a case-by-case basis, we lacked the statistical power to 

implicate individual genes or variants that modulate specific 16p12.1 deletion phenotypes. 
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Therefore, we performed an integrative global analysis by quantifying rare (frequency ≤0.1%) 

and likely pathogenic variants (CNVs or SNVs with CADD≥25) within functionally intolerant 

genes (RVIS≤20th percentile), hereafter referred to as the burden of secondary variants or second 

hits. Intra-familial comparison of second-hit burden showed that probands have an excess of 

secondary variants compared to their carrier parents (paired t-test, p=0.014) (Figures 2D, S3 and 

S4A). Additionally, probands exhibited a greater number of affected phenotypic domains 

(p=0.04, modified de Vries scores, Table S1) and showed a trend towards an excess of secondary 

variants (p=0.09) compared to their carrier siblings (Figures S4B-C). We found an excess of 

proband second-hit genes that were preferentially expressed in the human brain (p=0.02, Figure 

S5) and enriched for developmental pathways (Table S12). 

 The severity and variability of neurodevelopmental features is contingent upon family 

history of neuropsychiatric disease80. In fact, the cognitive and social outcomes in probands with 

de novo 16p11.2 BP4-BP5 deletion or 22q11.2 deletion have been reported to positively 

correlate with the cognitive and social skills of their parents89,90. However, the genetic basis of 

such background effects has not been sufficiently studied. We assessed the genetic basis of 

family-specific background effects on the observed inter-familial variability of clinical features 

in probands with 16p12.1 deletion. We found that probands with a strong family history of 

neurodevelopmental and psychiatric disease were more likely to present a more severe and 

heterogeneous clinical presentation than those with mild or negative history, with a higher 

prevalence of dysmorphic features, epilepsy, and hypotonia (p=0.035) (Figures 3A and 3B). 

Interestingly, there was not only a higher secondary variant burden in probands with a strong 

family history (Mann Whitney one-tailed p=0.001), but also a higher difference in burden 

between probands and their carrier parents (p=0.003) (Figures 3C-3D and Figure S6A-C and 
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Table S5). Therefore, in families with a strong history of neurodevelopmental and psychiatric 

disease, severe manifestation of the disorder in the affected proband with 16p12.1 deletion is due 

to a higher number of rare and potentially pathogenic secondary variants transmitted mostly from 

non-16p12.1-deletion carrier parents (p=0.03, Figure 3E). Conversely, in families with a mild or 

negative family history, fewer secondary mutations in functionally intolerant genes are 

transmitted, contributing to a milder presentation of clinical features (Figure S6A). These results 

provide further evidence for a role of variants in the genetic background towards both intra- and 

inter-familial clinical variability observed in families with the 16p12.1 deletion. 

  

Secondary variants modulate quantitative phenotypes among individuals with 16p11.2 

deletion and other rare pathogenic CNVs 

We assessed whether the second-hit burden modifies quantitative phenotypes in carriers of other 

CNVs associated with neurodevelopmental phenotypes as well as in autism simplex cases with a 

previously identified de novo mutation (Figure 1B). In probands with disease-associated rare 

CNVs (n=53, Table S13) from the Simons Simplex Cohort (SSC), we observed a modest but 

significant negative correlation (Pearson correlation, R=-0.36, p=0.004) between the number of 

secondary variants and full-scale IQ scores (FSIQ), while no correlation was found for Body-

Mass Index (BMI) z-scores and Social Responsiveness Scale (SRS) T-scores, measures for 

obesity and autism (Figures 4A and S7A-C). Negative correlations between the number of 

secondary variants and FSIQ held true when we independently analyzed individuals carrying 

16p11.2 BP4-BP5 deletion (R=-0.64, p=0.04), 16p11.2 BP4-BP5 duplication (R =-0.74, 

p=0.007), 1q21.1 duplication (R =-0.60, p=0.14), or 7q11.23 duplication (R =-0.66, p=0.17) 

(Figure S8). This suggests that each primary mutation sensitizes the genome in a unique way 
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towards the development of intellectual disability phenotypes, and therefore requires a range of 

secondary variants that differ in number and effect to lead towards a more severe phenotype 

(Figure S9). 

We further expanded our analysis of secondary variants by evaluating a larger set of 84 

families with 16p11.2 BP4-BP5 deletion from the Simons Variation in Individuals Project 

(SVIP). We observed a higher median number of secondary variants in probands carrying the 

16p11.2 deletion that had intellectual disability (FSIQ<70, median=8) compared to those with no 

intellectual disability (FSIQ≥70, median=7 one-tailed Mann-Whitney, p=0.08, Figure 4B), 

without a difference in the number of synonymous mutations between the two subgroups 

(median of 9,957 synonymous changes for FSIQ<70 group versus 10,052 for the FSIQ≥70 

group, two-tailed Mann-Whitney, p=0.51, Figure S10A). As previously reported for the burden 

of second-hit CNVs, carriers of 16p11.2 deletion exhibited a mild negative correlation between 

FSIQ and secondary variant burden that did not attain statistical significance (Pearson 

correlation, R=-0.16, p=0.08, Figure S10B)91. We hypothesized that this marginal significance 

compared to that found in 16p11.2 deletion probands from the SSC cohort (Figure S8B) and the 

previously reported correlation with the second-hit CNV burden could be due to differences in 

clinical ascertainment. While the SVIP cohort was selected for individuals carrying a 16p11.2 

deletion and manifesting a more heterogeneous set of phenotypes, individuals from the SSC 

cohort were specifically ascertained for idiopathic autism92. These differences in ascertainment 

were also evident by the different distributions of quantitative phenotypes, including BMI, FSIQ, 

and SRS T-scores in both populations (see Figure S11).  

We next assessed whether probands with inherited or de novo16p11.2 deletion showed 

differences in their FSIQ scores. We found that children with an inherited deletion presented 
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lower FSIQ scores (n=8, median FSIQ=75) than probands with a de novo deletion (n=57, median 

FSIQ=85, one-tailed Mann-Whitney, p=0.006, Figure S12A), consistent with previous reports19. 

This was also consistent with a non-significant increase in the burden of secondary variants 

among probands with an inherited 16p11.2 deletion compared to those with a de novo deletion 

(one-tailed Mann-Whitney, p=0.06, Figure S12B). Interestingly, the secondary variant burden in 

16p11.2  deletion probands negatively correlated with BMI (R=-0.21, p=0.03) and head 

circumference z-scores (R=-0.27 p=0.008, Figure S13A-B). When we adjusted for age to allow 

for manifestation of these phenotypes, we still observed a negative correlation for head size 

(age≥12months, n=80, R=-0.26, p=0.009, Figure 4C) but not for BMI (p>0.05, age>5 years and 

>10 years) (Figures S13 C-D)10,19. The observation that head circumference (HC) z-scores 

decline steadily (from >2 to <-2 scores) as second hits accumulate suggests that the deletion 

primarily leads to macrocephaly phenotypes, but the trait is modulated by the presence of second 

hits15,19,93. Our results show that carriers of the 16p11.2 deletion who carry an increased number 

of secondary variants are more likely to manifest a smaller head size, observed in about 5% of 

deletion carriers94,95. We also note that the second-hit burden did not correlate with SRS T-scores 

(R=0.00, p=0.5), suggesting a more complex effect of the genetic background towards the 

penetrance of autism in individuals with the deletion (Figure S14A-B). Overall, these results 

suggest that in the presence of the 16p11.2 deletion, secondary variants exert a differential role 

towards variability across multiple phenotypic domains.  

 

Secondary variants modulate disease manifestation among individuals with disruptive 

mutations in disease-associated genes 
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We next analyzed 295 simplex cases from the SSC cohort with previously identified de novo 

gene-disruptive mutations within 271 genes, and observed a moderately negative correlation 

between secondary variant burden and FSIQ scores (Pearson correlation, R=-0.22, p=0.0001, 

Figure 4D). Within this cohort, individuals with intellectual disability (FSIQ<70, n=93) 

presented an enrichment of second hits compared to those without intellectual disability (FSIQ 

≥70, n=197) (one-tailed Mann-Whitney, p=0.001, Figure S15A)41,42. We did not observe a role 

for secondary variant burden in modulating BMI z-scores (R=0.035, p=0.28, Figure S15B) or 

SRS T-scores (R=0.10, p=0.05, Figure S15C-D). Interestingly, we found that 17.4% (15/86) of 

the probands with de novo disruptive mutations in recurrent neurodevelopmental genes also 

carried a rare likely pathogenic secondary variant in other disease-associated genes (Table S14). 

Moreover, when probands were separated by gender, we observed a higher burden of secondary 

variants in females compared to males (one-tailed Mann-Whitney, p=0.02, Figure 4E). This 

supports the hypothesis that females require a higher contribution from the genetic background 

to reach the genetic threshold for neurodevelopmental disease than males79,96. When analyzing 

disruptive mutations in specific genes, we found that among individuals with damaging 

mutations in SCNIA, the severity of cognitive deficits was contingent upon the number of 

secondary variants (probands with FSIQ<70, n=8, median=16.5, versus those with FSIQ≥70, 

n=8, median=8.5, Mann-Whitney, one-tailed p=0.018) (Figure S16). This observation could also 

explain the diversity of other phenotypes co-occurring with the disruption of the epilepsy-

associated SCN1A gene, including intellectual disability and autism26.  

While there is a consensus on the pathogenic role of de novo gene-disruptive mutations in 

simplex families, the interpretation of inherited disruptive variants within the same genes is 

challenging29,31,32,97,98. To understand the role of the genetic background in the penetrance of 
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inherited disruptive mutations in disease-associated genes, we also analyzed 184 pairs of 

probands and unaffected siblings who inherited the same mutations from a parent (Table S15). 

We found a greater enrichment of second hits in probands compared to their unaffected siblings 

(p=0.031, Figure 4F). This result suggests that second hits contribute to increased penetrance of 

neurodevelopmental phenotypes in children with inherited potentially-pathogenic single-gene 

mutations.   

 

Secondary variants affect known disease genes and novel modifiers within core 

developmental processes 

To understand how secondary variants modify phenotypes among probands with pathogenic 

first-hit variants, we performed gene ontology enrichment analysis and characterized the function 

of second-hit genes from SSC and SVIP probands76. Interestingly, we found that genes carrying 

secondary variants in probands with de novo mutations from the SSC cohort are involved in 

multiple processes, including apoptosis, cell signaling and adhesion, and development (Figure 

5A, Table S16). Similarly, second hits found among probands with the 16p11.2 deletion 

clustered in developmental processes, cell signaling and adhesion, and nervous system processes 

(Figure 5B, Table S17). These results suggest that secondary variants affect diverse gene 

categories that consistently involve core cellular and developmental processes. More specifically, 

when we explored the set of genes carrying secondary single-nucleotide variants in probands 

with pathogenic CNVs and de novo SNVs, we identified 3,197 rare likely-pathogenic mutations 

encompassing a diverse set of 1,615 functionally intolerant genes. While 854 (53%) genes 

occurred only once as a second-hit, 761 genes (47%) were identified at least twice in our 

analysis, with CDH23, RYR3, FLNB, DNAH3, ACF1, SPTB and HMCN1 observed more than 10 
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times. Although several of these genes have been individually associated with a disease 

phenotype, further functional analyses are required to understand their specific contribution 

towards phenotypic variability99-104. Interestingly, 44 of the second-hit genes (such as CNTNAP2, 

MBD5, SCN1A, CHD8 and AUTS2) have been recurrently associated with neurodevelopmental 

disorders71 (Figure S17), and 58 genes have been previously identified as a “causative” gene in 

simplex autism cases41,42 (Table S18). We further assessed the location of mutations within a 

subset of recurrent second-hit genes, including RIMS1, DIP2A, KDM5B and ACOX2, and found 

no specificity for the location of the secondary variants within the protein sequences compared to 

previously reported primary mutations within these genes (Figure 5C). In fact, in some cases, we 

observed stopgain secondary variants that were more premature in the protein sequence than 

previously reported disruptive mutations in these genes, suggesting that the second-hit can exert 

an effect as severe as the first-hit. The allelic diversity of second hits within these genes suggests 

that further functional analysis should be performed in order to understand their impact on 

phenotypic variability. 
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DISCUSSION 

Our results support an oligogenic model, where the primary variant provides a sensitized 

genomic background for neurodevelopmental disease and secondary variants within 

functionally-intolerant genes determine the phenotypic trajectory of the disorder6. We propose 

that to surpass the genetic threshold for overt neurodevelopmental disease, molecular lesions 

need to accumulate, and that the number of second hits required for disease manifestation varies 

depending on the pathogenic effect of the first-hit. Some primary variants that are more tolerant 

to changes in the genetic background, such as the 16p12.1 deletion, are transmitted through 

generations and only surpass the threshold for severe disease with the accumulation of several 

rare pathogenic mutations28,105. We show that probands with 16p12.1 deletion have an average of 

two additional mutations affecting functionally intolerant genes compared to their carrier parents. 

Other variants such as 16p11.2 deletion, which are often de novo, push the genetic background 

closer to the threshold for severe manifestation and require lesser contribution from secondary 

variants. Similarly, rare syndromic CNVs such as Smith-Magenis syndrome and Sotos 

syndrome, which occur mostly de novo and encompass more functionally intolerant genes 

compared to variably expressive CNVs (p=0.026, one-tailed Mann-Whitney, Table S19, Figures 

S18), would push the genetic liability beyond the threshold for severe disease6,36,106. While 

additional mutations may not be necessary for complete penetrance of the disease, when present, 

these variants could modify the syndromic phenotypes. For instance, deleterious mutations in 

histone modifier genes have been reported to contribute to the conotruncal heart manifestation of 

22q11.2 deletion syndrome107. This would also be the case for single-gene disorders where 

second hits potentially explain the discordant clinical features reported among affected carriers 
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of the same molecular alteration, as described for Rett syndrome and individuals with disruptive 

mutations in the intellectual disability gene PACS1108,109.  

 Our results exemplify how variants in the genetic background not only contribute to a 

severe manifestation of the first-hit, but also to their variable clinical manifestation. This burden 

is even higher among probands with strong family history of neurodevelopmental or psychiatric 

disease, explaining their more severe clinical manifestation compared to probands with mild or 

negative family history of disease. These results provide an interpretation for the previously 

reported role of parental profiles towards the final clinical outcome in probands carrying 

inherited rare CNVs89,90, and highlight the importance of interrogating the family history of 

psychiatric and neurodevelopmental disease for more accurate diagnostic assessment of the 

affected children.  

We also found that secondary variants could modulate the manifestation of specific 

phenotypes. For example, in the presence of disease-associated rare CNVs or disruptive 

mutations in individual genes, secondary variants modulate FSIQ scores, where a high burden of 

second hits is likely to lead to severe cognitive deficits. However, the extent to which secondary 

variants can modulate a trait appears to depend upon the pathogenicity of the first-hit in that 

specific phenotypic domain. For example, we show that individuals with intellectual disability 

who carry 16p11.2 deletion have a disruption of only one additional functionally intolerant gene 

on average, likely enough to surpass the genetic threshold for intellectual disability. Moreover, 

the correlation observed between HC z-scores and burden of secondary variants could explain 

the incomplete penetrance of macrocephaly among carriers of the deletion 94,95,110,111. 

Overall, these results suggest a multi-dimensional effect of secondary variants towards 

clinical features, and that their contribution to specific phenotypic domains depends on the extent 
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to which the primary variant sensitizes an individual towards a specific phenotypic trajectory. An 

important observation from our study is that a large number of disease-associated variants, that 

were deemed to be solely causative for the disorder, are in fact accompanied by substantial 

amount of rare genetic variation. Longitudinal and quantitative phenotyping across multiple 

developmental domains in all family members, along with whole genome sequencing studies in 

affected and asymptomatic individuals with a primary variant, are necessary for a more accurate 

understanding of these complex disorders. Therefore, in this new era of personalized medicine, it 

is critical that even after identifying a likely diagnostic disruptive mutation, further analysis of 

secondary variants are performed in order to provide appropriate counseling and management. 

 

DESCRIPTION OF SUPPLEMENTAL DATA 

Supplemental data includes 18 figures and 19 tables. 
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FIGURES TITLES AND LEGENDS 

Figure 1. Strategy for understanding the role of the genetic background in phenotypic 

variability of neurodevelopmental disease. A. Schematic of primary and secondary variants 

used in this study. Disease-associated mutations common among different individuals were 

considered as “primary variants” and likely pathogenic SNVs (colored X) or CNVs (colored 

boxes) affecting functionally intolerant genes were defined as “secondary variants”. B. 

Combined clinical and genomic analysis of 757 probands and 233 family members carrying 

primary variants associated with disease (16p12.1 deletion, 16p11.2 deletion, 16 rare CNVs, de 

novo mutations in autism simplex cases, and inherited mutations in disease-associated genes) 

was performed to understand the role of rare (<0.1%) likely pathogenic secondary variants 

(SNVs with CADD≥25 and CNVs) in functionally intolerant genes (RVIS≤20th percentile) in 

the variable manifestation of neurodevelopmental disease. 

Figure 2. Rare pathogenic mutations in functionally intolerant genes contribute to the 

phenotypic heterogeneity in 16p12.1 deletion. A. Phenotypic spectrum of 16p12.1 deletion in 

probands (n=141, red) and carrier parents (n=39, green). Probands exhibit a spectrum of severe 

developmental features compared to the mild cognitive and psychiatric features observed in 

carrier parents. Features represented were observed in ≥5% of probands or carrier parents. B. No 

overt common physical features were identified among carriers, suggesting the absence of facial 

features caused by the 16p12.1 microdeletion. Photographs of matched probands and 16p12.1 

deletion carrier parents are shown. C. Private disruptive mutations in genes associated with 

neurodevelopmental disease, mostly occurring de novo or transmitted  from non-carrier parents, 

ultimately lead to overt neurodevelopmental disease features in children with the deletion. DD: 

Developmental Delay; ASD: Autism Spectrum Disorder; ADHD: Attention Deficit 
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Hyperactivity Disorder; OCD: Obsessive-compulsive-like behavior. D. Global analysis of rare 

(≤0.1%) likely pathogenic secondary variants (SNVs with CADD≥25 or CNVs ≥50kbp) in genes 

intolerant to functional variation (RVIS≤20th percentile) in proband-carrier parent pairs with 

available exome and SNP array data. Probands present a higher second-hit mutation burden 

compared to their carrier parents (n=18, paired t-test, p=0.014).  

Figure 3. Strong family history of neurodevelopmental and psychiatric disease is associated 

with excess of secondary variants and severe phenotypic outcome in 16p12.1 deletion 

probands. A. Diagram showing phenotypic heterogeneity in 56 probands with 16p12.1 deletion 

(black= phenotype present, white=absent, grey=not determined) and their family history of 

neurodevelopmental and psychiatric disease (red=strong family history, blue=mild/negative 

family history). B. Probands with strong family history of psychiatric and neurodevelopmental 

disease (n=9) have a more heterogeneous clinical manifestation (higher de Vries scores) than 

those with mild or negative family history (n=7) (one-tailed, Mann-Whitney, p=0.035). C. A 

higher burden of secondary variants (one-tailed Mann-Whitney p=0.001) and D. a greater 

difference in second-hit burden compared to carrier parents (p=0.0003) is found for probands 

with a strong family history (n=9) compared to those with a mild/negative family history (n=7). 

E. A higher proportion of secondary variants are transmitted from non-carrier parents in 

probands with strong family history compared to those with mild/negative family history (one-

tailed Mann-Whitney, p=0.03). 

Figure 4. Burden of secondary variants modulates quantitative phenotypes among 

probands with a first-hit CNV or SNV associated with neurodevelopmental disease. A. 

Negative correlation between the number of secondary variants and full-scale IQ (FSIQ) scores 

in individuals (n=53) carrying 16 CNVs associated with neurodevelopmental disease (Pearson 
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correlation, R=-0.36, p=0.004). Probands with 16p11.2 deletion (green), 16p11.2 duplication 

(red) 1q21.1 duplication (blue) and 7q11.23 duplication (yellow) are highlighted, while grey 

circles represent probands with other rare CNVs. B. Higher burden of secondary variants among 

probands with 16p11.2 deletion and FSIQ<70 (n=17), compared to probands with FSIQ≥70 

(n=65, one-tailed, Mann-Whitney, p=0.08). Dots in the boxplots represent data points lower than 

10th or higher than 90th percentiles. C. Negative correlation between the number of secondary 

variants and head circumference z-scores (age≥12 months, n=80, Pearson correlation R=-0.26, 

p=0.009), showing that while the 16p11.2 deletion leads to macrocephaly, secondary variants 

modulate this phenotype in the presence of the deletion. D. Autism probands with de novo 

disruptive mutations and available FSIQ scores (n=290) show a moderate negative correlation 

(Pearson correlation coefficient, R=-0.22, p=0.0001) between the number of secondary variants 

and FSIQ scores. E. Enrichment in the number of secondary variants in female probands with de 

novo mutations (n=46) compared to male probands (n=245, one-tailed Mann-Whitney, p=0.02) 

Dots in the boxplots represent data points lower than the 10th or higher than 90th percentile F. 

Probands present an excess of secondary variants compared to their unaffected siblings (n=184 

pairs) matched for the same inherited disruptive mutations (loss-of function or missense 

CADD≥25) in genes recurrently disrupted in neurodevelopmental disease (paired t-test, 

p=0.031).  

Figure 5. Secondary variants affect core biological processes and disease-associated genes. 

Genes with secondary variants found in A. autism probands carrying de novo disruptive 

mutations (SSC) and B. probands with the 16p11.2 deletion (SVIP) are enriched in core 

biological processes (FDR<0.05 with Bonferroni correction). Recurrent clusters of enriched gene 

ontology terms for “developmental processes”, “cell signaling”, “cell adhesion” and “transport” 
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functions are present among second hits found in each cohort. The size of each circle represents 

the number of genes annotated for each GO term; red shading of each circle represents the FDR 

for enrichment of each GO term among second-hit genes in each cohort, with darker shades 

indicating a lower FDR. Line thickness represents the number of shared annotated genes between 

pairs of GO terms. C. Location of variants in the protein sequences of RIMS1, DIP2A, KDM5B 

and ACOX2 as examples of recurrent genes with secondary variants (green arrows) in probands 

with first-hit pathogenic CNVs or de novo disruptive mutations and previously reported to carry 

de novo disrupting mutations in simplex autism cases (red arrows). 
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