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Abstract 23 

Background 24 

The last decade has witnessed dramatic improvements in whole-genome sequencing capabilities coupled 25 

to drastically decreased costs, leading to an inundation of high-quality de novo genomes. For this reason, 26 

continued development of genome quality metrics is imperative. The current study utilized the recently 27 

updated Atlantic bottlenose dolphin (Tursiops truncatus) genome and annotation to evaluate a 28 

proteomics-based metric of genome accuracy. 29 

 30 

Results 31 

Proteomic analysis of six tissues provided experimental confirmation of 10 402 proteins from 4 711 32 

protein groups, almost 1/3 of the possible predicted proteins in the genome. There was an increased 33 

median molecular weight and number of identified peptides per protein using the current T. truncatus 34 

annotation versus the previous annotation. Identification of larger proteins with more identified peptides 35 

implied reduced database fragmentation and improved gene annotation accuracy. A metric is proposed, 36 

NP10, that attempts to capture this quality improvement. When using the new T. truncatus genome there 37 

was a 21 % improvement in NP10. This metric was further demonstrated by using a publicly available 38 

proteomic data set to compare human genome annotations from 2004, 2013 and 2016, which had a 33 % 39 

improvement in NP10. 40 

 41 

Conclusions 42 

These results demonstrate that new whole-genome sequencing techniques can rapidly generate high 43 

quality de novo genome assemblies and emphasizes the speed of advancing bioanalytical measurements 44 

in a non-model organism. Moreover, proteomics may be a useful metrological tool to benchmark genome 45 

accuracy, though there is a need for reference proteomic datasets to facilitate this utility in new de novo 46 

and existing genomes. 47 
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Background 48 

Since 2007 there has been a rapid decrease in whole-genome sequencing costs coupled with 49 

improved read lengths and development of long-range techniques such as synthetic long-reads and 50 

mapping protocols. Concurrently, the access to high performance computing environments has improved 51 

along with an endless supply of new genome assembly and annotation tools. With these new resources it 52 

is now possible to rapidly generate high-quality de novo genomes for non-model organisms. Excellent 53 

examples of this are two recently completed mammalian genomes (the domestic goat, Capra hircus [1, 2], 54 

and the Hawaiian monk seal, Neomonachus schauinslandi [3]) that utilized a combination of approaches 55 

including optical mapping, synthetic long reads, long read technology and chromatin interaction mapping 56 

to generate highly contiguous (scaffold N50 > 29.5 Mbp) de novo genomes at a relatively low cost. 57 

Overall, the result of these parallel advancements are numerous large-scale sequencing projects [4], the 58 

most ambitious targeting approximately 9 000 eukaryotic species (Earth BioGenome Project). With the 59 

forthcoming inundation of new high-quality de novo genomes, there is a continued need for improved 60 

metrics to evaluate genome accuracy. 61 

Genome assemblies and annotations are evaluated in terms of contiguity and completeness, both 62 

indicators of genome accuracy. Measures of contiguity, such as scaffold N50 or N90 length, typically 63 

correspond to the quality of the genome assembly [5]. Scaffold N50 or N90 length is similar to a median 64 

or quantile scaffold length but is dependent on assembly size. Greater scaffold contiguity tends to result in 65 

more protein-coding sequences and isoforms. For example, one of the initial finished human genome 66 

assemblies from 2004 (NCBI Build 34) had a scaffold N50 of 27.2 Mbp and 27 180 protein-coding 67 

sequences, which has since been improved to a scaffold N50 of 59.4 Mbp and 109 018 protein-coding 68 

sequences (NCBI Release 108, March 2016). Gains can be even more pronounced in non-model 69 

organisms with improved de novo genome assemblies. For example, the Alligator mississippiensis 70 

(American alligator) genome recently improved from a scaffold N50 of 508 kbp to 10 Mbp using new 71 

sequencing methods [6]. Similarly, the focus of this study, Tursiops truncatus (Atlantic bottlenose 72 

dolphin), improved from a scaffold N50 of 116 kbp to 26.6 Mbp. Studies have shown that assembly 73 
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contiguity often corresponds to assembly quality [5] but does not necessarily correlate with genome 74 

completeness and therefore accuracy [7]. One way to evaluate genome completeness is by using predicted 75 

conserved gene products. First used in the Core Eukaryotic Genes Mapping Approach (CEGMA) [8, 9], 76 

this concept has developed into Benchmarking Universal Single-Copy Orthologs (BUSCO), which is a 77 

content-based quality assessment that uses universal single-copy markers to gauge genome completeness 78 

[7]. It is evident that using many metrics to benchmark de novo genomes is essential to evaluating 79 

genome quality. Given the orthogonal nature of proteomics and its dependence on accurately predicted 80 

gene annotations, a quality metric based in this analytical domain may be advantageous. 81 

Data-dependent acquisition bottom-up shotgun proteomics is one method to confirm gene 82 

annotations by observing the predicted proteins using mass spectrometry. First, proteins are digested with 83 

a known protease and the resulting peptides are fragmented within a mass spectrometer. Next, using an 84 

accurate mass of the peptide and the resulting fragmentation pattern, search algorithms can 85 

probabilistically identify peptides and then infer proteins in the search database. Alternatively, spectral 86 

libraries directly match fragmentation patterns, though these initial assignments are typically made using 87 

database-dependent approaches [10-12]. With the current generation of mass spectrometers, which have 88 

high duty cycles with high mass accuracy and resolution, we may be approaching the era of being able to 89 

infer the majority of proteins in a genome. For example, a recent proteomic analysis of HeLa tissue 90 

accounted for 91.5 % of gene products measured in the same tissue by RNA-seq (12 209 protein coding 91 

sequences versus 13 347 gene products) [13]. Since bottom-up shotgun proteomics relies completely on a 92 

database for peptide identifications and protein inference, it may be possible that a high-quality mass 93 

spectrometric dataset could be used to benchmark genome assembly and annotation quality. 94 

The purpose of the current study was two-fold: (i) provide detailed proteomic profiling of a 95 

marine mammal and (ii) use this data to evaluate the new T. truncatus assembly and annotation. On 96 

average over 4 800 proteins were identified in six different tissues, and when combined yielded 10 402 97 

protein identifications. Although not an exhaustive proteomic dataset, it confirmed approximately 1/3 of 98 

the predicted protein-coding genes. This dataset is an invaluable resource to support comparative 99 
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proteomics in diving mammals related to comparative evolution [14] and biomimicry [15] and 100 

demonstrates the feasibility of accelerating cutting-edge bioanalytical approaches in non-model 101 

organisms. Secondly, the new de novo assembly resulted in increased protein identifications but also a 102 

decreased number of peptide identifications, despite more than a 200-fold improvement in scaffold N50 103 

over the previous assembly. We investigated these differences at the peptide and protein level to identify 104 

global trends and proposed a new measure of genome annotation quality, NP10. This new measure was 105 

further demonstrated by evaluating human genome improvements over the past decade using publicly 106 

available proteomic data. Overall, these results highlight the improved annotation accuracy of the new T. 107 

truncatus genome, the utility of proteomics as a metrological tool for evaluating genome annotation 108 

quality, and emphasizes the need for reference proteomic datasets to facilitate metrology in new and 109 

existing genomes. 110 

 111 

Results 112 

Proteomic analysis of six tissues using NIST_Tur_tru v1 113 

The initial goal of this study was to advance metrological capabilities in T. truncatus. This was 114 

accomplished by demonstrating proteomic measurements of six tissues from T. truncatus. On average, 2 115 

199 protein groups and 4 888 proteins were identified in each tissue. The reason for performing proteomic 116 

analysis on multiple tissue types was to capture more of the possible protein population. Although there 117 

were 1 310 protein identifications shared across tissues, there was also diversity in protein identifications 118 

between tissues with the brain and skin analyses having the most unique proteins (Figure 1). Proteomic 119 

results for each tissue are available (Additional File Tables S6 –S11). It is interesting to note that the liver, 120 

kidney and blubber came from the individual used for whole-genome sequencing. This dataset is 121 

relatively diverse and provides experimental evidence for over 32 000 proteotypic peptides.   122 

 123 

Comparison of Ttru_1.4 and NIST_Tur_tru v1 124 
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The second goal of the current study was to evaluate the new T. truncatus de novo genome assembly 125 

(GCA_001922835.1) and annotation (NIST_Tur_tru v1). This genome assembly was generated in the fall 126 

of 2016 using shotgun sequencing coupled to an in vitro histone ligation-based sequencing method (i.e., 127 

Chicago method) and proprietary assemblers described in detail by Putnam et al. [6]. This process 128 

resulted in a genome assembly with a scaffold N50 of 26.6 Mbp. Of the 159 species with genomes 129 

currently deposited on NCBI, 41 have scaffold N50 values greater than 26.6 Mbp. This level of contiguity 130 

is becoming more commonplace with three marine mammal genomes released in 2017 with scaffold N50 131 

greater than 19 Mbp (T. truncatus, Neomonachus schauinslandi, Hawaiian monk seal [3], and 132 

Delphinapterus leucas, beluga whale [16]). For comparison, the prior NCBI T. truncatus annotation 133 

(Ttru_1.4) was used. This assembly was a 2012 update [14] to the 2008 draft assembly based on Sanger 134 

sequencing, Ttru_1.2 [17]. 135 

Both Ttru_1.4 and NIST_Tur_tru v1 are publicly available on NCBI and have been annotated 136 

using NCBI’s eukaryotic annotation pipeline and made available in RefSeq [18]. The current annotation 137 

release, release 101 based on NIST_Tur_tru v1, has 24 026 genes and pseudogenes and 17 096 protein-138 

coding genes with 38 849 coding sequences. At the gene and transcript level, there were many changes 139 

from Ttru_1.4 that are delineated based on alignment of genes and transcripts: identical, minor changes, 140 

major changes, new, deprecated and other. These categories are defined and available through NCBI’s 141 

annotation report [19]. Briefly, 28 % of the prior genes and transcripts in Ttru_1.4 were deprecated, 72 % 142 

had minor or major changes, and 21 % of the genes and transcripts in the NIST release are new. 143 

Additionally, a small group of proteins have the prefix YP, which is not included in these NCBI 144 

categories. 145 

 Tandem mass spectrometry data collected from all six tissues was searched against each release. 146 

For both releases, almost 1/3 of the predicted protein-coding sequences were inferred by mass 147 

spectrometry. Specifically the NIST assembly identified 32 582 peptide groups belonging to 10 402 148 

proteins comprising 4 711 protein groups. The Ttru_1.4 assembly identified 33 738 peptide groups 149 

belonging to 6 899 proteins comprising 5 292 protein groups. Many of the differences between the two 150 
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results were due to a loss of deprecated sequences and minor/major changes (Figure 2). Broadly, these 151 

changes resulted in larger proteins with an increased median molecular weight and NP10 molecular 152 

weight.  153 

 154 

Confirming improvements in gene annotation 155 

There were 4,695 protein-coding sequences in the Ttru_1.4 annotation listed as partial, and one of the 156 

main improvements in the new NIST annotation was that 86 % of these sequences were merged into 157 

complete sequences. This offered an opportunity to evaluate the accuracy of these new assignments by 158 

determining whether peptides identified by mass spectrometry supported the new complete sequences. Of 159 

6 899 identified proteins using Ttru_1.4, 1 249 were partials. Of these 1 249 partial proteins identified 160 

using Ttru_1.4, 534 had minor changes, 256 major, 450 were deprecated and 9 were other (defined simply 161 

as other changes [19]). When this NIST annotation was used, 1 005 of these same 1 249 proteins were 162 

identified, with 985 no longer being listed as partial. The median improvement within each protein was 163 

two additional unique peptides and overall the median molecular weight improved 1.8-fold (Figure 3). Of 164 

these 1 005 partial proteins identified using Ttru_1.4, when using the NIST annotation, 886 had increased 165 

molecular weight and increased number of unique peptides.  166 

 167 

Comparing peptide identifications 168 

An unexpected result in the new annotation was that there were fewer peptide identifications. Given the 169 

major changes between the two releases related to deprecated genes, new genes, and major changes, we 170 

were interested in tracking these peptide level changes. Over 80 % of the peptide groups identified in 171 

NIST annotation were also identified using the Ttru_1.4 annotation (Figure 4). The new peptide 172 

identifications were linked to major and minor changes in genes with only 3.2 % due to new sequences. 173 

As would be expected, many of the peptide groups not identified in the NIST annotation were deprecated 174 

(41 %). Given that these 5 657 peptide groups lost using the NIST annotation were high-confidence 175 
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identifications, it may provide evidence for re-inclusion of these protein-coding sequences in future 176 

annotation releases. 177 

  178 

Specific examples of annotation improvements 179 

The goal of evaluating differences at a broad level is to capture and describe relevant changes at the 180 

granular level. At the peptide level, one the most striking improvements was related to titin, a major 181 

component in muscle tissue. In Ttru_1.4, titin (XP_004322250.1) was a partial sequence of 2,167 amino 182 

acids (241.7 kDa) and 60 unique peptides (40.2 %) were identified belonging to this sequence. In the 183 

NIST annotation, the coding sequence for titin (XP_019787158.1) was 32 192 amino acids (3 812.8 kDa) 184 

and 779 unique peptides (34.3 % coverage) were identified belonging to this sequence. This single 185 

sequence improvement is responsible for many changes observed at the peptide level (Figure 4). 186 

 Almost 2 % of the identified proteins using the NIST annotation were considered new. One 187 

important new protein of note is cystatin C (XP_019783122.1). This protein was not present in Ttru_1.4, 188 

while using the NIST annotation the mass spectrometry data identified three unique peptides (41.3 % 189 

coverage) belonging to the predicted 13.1 kDa protein. This protein has applications as a biomarker [20], 190 

and with these proteomic results, it is possible to create SI traceable mass spectrometer-based assays 191 

(similar to [21]). Another protein of note is serotransferrin (XP_019789750.1), which is 90 % identical 192 

and 3.5 % longer than the entry in Ttru_1.4 annotation (XP_004329553.1). Most of these changes were 193 

on the c-terminus section (from positions 537 to 634), which was supported by the proteomic data that 194 

identified four peptides spanning this region. There were other slight changes to the sequence that resulted 195 

in six more unique peptides identified in the improved serotransferrin, which supports the accuracy of the 196 

new annotation. Overall, there are many changes related to the over 10 000 protein identifications and 197 

many would be considered improvements as indicated by increased protein molecular weight and/or 198 

greater peptide coverage. At a gene-by-gene level these results can be used to confirm and improve 199 

annotations.  200 

 201 
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Confirming quality metric in human annotations 202 

In order to gauge the broader applicability of using proteomics as a quality measure of genomic 203 

annotations, we demonstrated NP10 in a more mature genome with deeper proteomics. The recent work by 204 

Bekker-Jensen et al. [13] is publicly available on ProteomeXchange [22, 23] and for this comparison the 205 

data generated from a 39 fraction high pH pre-fractionation of a HeLa cell digest followed by LC-MS/MS 206 

analysis was used for database searching. These data were searched against three human genome 207 

annotations from 2004, 2013 and 2016, each with markedly increased scaffold N50 values and database 208 

sizes (i.e., number of coding-sequences; Table 1). The number of identified proteins was 13 341, 22 906, 209 

and 48 019 proteins in Build 34, Release 105 and Release 108, respectively. The median molecular 210 

weight improved 25 % (from 51.06 to 53.46 to 63.99 kDa, respectively) whereas the improvement in 211 

NP10 was more pronounced with a 33 % improvement (from 100.17 to 101.87 to 133.55 kDa, 212 

respectively; Figure 5).  213 

 214 

Table 1. Descriptive statistics of human annotated databases and resulting proteomic 215 

identifications. 216 

  Build 34 Release 105 Release 108 

release date Feb 2004 Jun 2013 Mar 2016 

scaffold N50 29.1 Mbp 45.0 Mbp 59.4 Mbp 

coding sequences 27 180 45 107 109 018 

protein groups 9 762 10 059 10 219 

proteins 13 341 22 906 48 019 

peptide groups 175 895 184 580 184 806 

peptide spectral matches 390 909 405 852 405 950 

 217 

 218 

 219 
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Discussion 220 

Advances in bioanalytical platforms across domains (i.e., genomics, transcriptomics, and 221 

proteomics) are improving the accessibility of non-model organisms as viable research candidates. The 222 

results of the current study provide secondary confirmation of 10 402 proteins from 4 711 protein groups 223 

using a recently completed well-scaffolded high-coverage T. truncatus genome and shotgun proteomic 224 

analysis of six different tissues. Previous proteomic studies of T. truncatus have identified less than 100 225 

protein groups in serum [15, 21], while the most detailed published proteomic analysis of a marine 226 

mammal identified 206 proteins in cerebrospinal fluid of Zalophus californianus (California sea lion) 227 

[24]. Currently there are twelve marine mammal genomes that have been annotated by NCBI (of the 159 228 

species with genomes currently deposited on NCBI), though only T. truncatus and Z. californianus have 229 

published mass spectrometry based proteomic datasets. Work is underway to increase the number of 230 

marine mammal genomes along with companion high-quality proteomic datasets and spectral libraries. 231 

The results of the current study provide empirical confirmation of protein annotations, including 232 

observable proteotypic peptides, which can be a resource for future targeted studies in T. truncatus. For 233 

example, by improving the protein-coding sequence accuracy of serotransferrin in T. truncatus, future 234 

studies can extrapolate metrological advances in human serotransferrin sialoforms [25] to T. truncatus 235 

disease treatment [26]. Since the current results are not an exhaustive proteomic dataset, future studies 236 

will utilize different solubilization techniques, proteases, and separation techniques to provide even 237 

deeper proteome coverage (reviewed and demonstrated in the following [13, 27, 28]). Still, it is worth 238 

noting that in single study using a simple experimental approach we have identified almost 1/3 of the 239 

possible predicted proteins, emphasizing the ease of accomplishing bioanalytical advances in non-model 240 

organisms using modern techniques. 241 

In the current study, benchmark proteomic datasets were used to evaluate genome assembly and 242 

annotation improvements in T. truncatus and H. sapiens. Typically, a reference database is used to 243 

demonstrate proteomic improvements due to optimized protein extraction, solubilization and digestion, 244 

peptide separation, mass spectrometer speed and mass accuracy, search algorithm performance and 245 
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database accuracy. In contrast, when the mass spectrometric data are held constant and instead the 246 

database is varied, differences in proteomic results are indicative of database fragmentation and accuracy. 247 

Proteomic analysis of multiple tissues allowed for greater protein diversity when evaluating T. truncatus, 248 

though the publicly available human data performed exceptionally well despite using a single tissue since 249 

it utilized highly optimized separation techniques. An optimum proteomic benchmark dataset would be 250 

one that offers the possibility of the deepest proteome coverage. This would rely on using multiple 251 

tissues, extraction protocols, enzymes and optimum separation techniques coupled to modern mass 252 

spectrometers. These datasets could be developed in parallel to the exponential increase in de novo 253 

genomes being released and annotated and would prove invaluable in exercises assessing assembly and 254 

annotation performance (such as Assemblathon 2 [5]). Importantly, given the abundance and accessibility 255 

of public proteomic data in this “Golden Age of Proteomics” (as coined by [29]) and modular open-access 256 

proteogenomic pipelines such as Galaxy-P [30, 31], it would be possible to incorporate these reference 257 

mass spectrometric datasets and proteomic derived quality metrics into genome assembly and annotation 258 

pipelines. 259 

In parallel to improvements in genome assembly contiguity and annotation accuracy, proteomic 260 

results should have increased peptide numbers per protein, higher protein identifications due to isoform 261 

resolution and improved coverage of higher molecular weight proteins due to better long-range accuracy. 262 

For instance, when evaluating the substantial reduction in partial sequences between Ttru_1.4 and 263 

NIST_Tur_tru v1, there was an increase of 81 % in median molecular weight of these proteins that 264 

coincided with more peptide identifications within these new complete sequences. The most drastic 265 

example in this case study was titin, which went from 60 to 779 identified peptides with the addition of 266 

over 32 000 amino acids to the previously partial sequence. This also emphasizes that greater numbers of 267 

protein identifications does not imply higher quality since a more fragmented genome will give more 268 

protein identifications. Instead, identification of larger proteins with more identified peptides is more 269 

indicative of improved quality. The proposed metric, NP10, attempts to capture this quality measure. One 270 

issue is that the NP10 may be glossing over how changes in spectral assignments to peptides with 271 
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changing databases affect proteomic quality (such as false discovery rates). There is an opportunity to 272 

develop a streamlined method to track MS/MS spectra assignments and quantify those changes with 273 

database improvements in order to establish finer measures of search space effects on proteomic 274 

performance. Overall, these results demonstrate that new whole-genome sequencing techniques can 275 

provide high quality de novo genome assemblies and that proteomics is a useful metrological tool to 276 

evaluate annotation and benchmark genome accuracy. 277 

 278 

Methods 279 

Sample source and preparation 280 

Bottlenose dolphin tissues were collected from animals under appropriate permits (Additional File Table 281 

S1) and stored at liquid nitrogen temperatures (-150 to -180 °C) until cryohomogenization in the National 282 

Institute of Science and Technology’s Marine Environmental Specimen Bank [32]. From the resulting 283 

fine powder, 5 mg was subsampled and the proteins were extracted using RapiGest (Waters, Milford 284 

MA). Briefly, 150 µL of 0.1 % (w/v) RapiGest (in 50 mM ammonium bicarbonate) was added, resulting 285 

in a solution of 33 µg/µL tissue. The extraction mixture was shaken at 600 rpm for 25 min at room 286 

temperature followed by removal of large debris using a benchtop microcentrifuge. From this solution, a 287 

5 µL aliquot was removed and suspended in 35 µL of 0.1 % (w/v) RapiGest (in 50 mM ammonium 288 

bicarbonate), followed by the addition of 40 uL of 50 mM ammonium bicarbonate. Next, the sample was 289 

reduced with 10 µL of 45 mM dithiothreitol (DTT; final concentration of 5 mM) and incubated at 60 °C 290 

for 30 min, then allowed to cool to room temperature. The mixture was alkylated using 3.75 µL of 375 291 

mM iodoacetamide (Pierce, Thermo Scientific, Waltham, MA; final concentration of 15 mM) and 292 

incubated in the dark at room temperature for 20 min. Prior to addition of trypsin, 100 µL of 50 mM 293 

ammonium bicarbonate was added. A 3.3 µL aliquot of trypsin (MS-Grade; 1 µg/µl in 50 mM acetic acid) 294 

was added (1:50 trypsin:protein) and samples were incubated overnight at 37 °C. The digestion was 295 

halted and RapiGest cleaved with the addition of 100 µL of 3 % (v/v) trifluoroacetic acid (1% final 296 
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concentration) and incubated at 37 °C for 30 min before centrifugation and removal of the supernatant. 297 

Samples were processed using Pierce C18 spin columns (8 mg of C18 resin; Thermo Scientific) according 298 

to manufacturer’s instructions. Each sample was processed in duplicate yielding at maximum of 60 µg 299 

peptides. These solutions were evaporated to dryness in a vacufuge then reconstituted in 150 µL of 5 % 300 

acetonitrile in water. 301 

 302 

Mass Spectrometry 303 

Samples were analyzed using an UltiMate 3000 Nano LC coupled to a Fusion Lumos mass spectrometer 304 

(Thermo Fisher Scientific). Resulting peptide mixtures (10 µl) were loaded onto a PepMap 100 C18 trap 305 

column (75 µm id x 2 cm length; Thermo Fisher Scientific) at 3 µL/min for 10 min with 2 % (v/v) 306 

acetonitrile and 0.05 % (v/v) trifluoroacetic acid followed by separation on an Acclaim PepMap RSLC 2 307 

µm C18 column (75µm id x 25 cm length; Thermo Fisher Scientific) at 40 °C. Peptides were separated 308 

along a 130 min gradient of 5 % to 27.5 % mobile phase B [80 % (v/v) acetonitrile, 0.08 % (v/v) formic 309 

acid] over 105 min followed by a ramp to 40 % mobile phase B over 15 min and lastly to 95 % mobile 310 

phase B over 10 min at a flow rate of 300 nL/min. The mass spectrometer was operated in positive 311 

polarity and data dependent mode (topN, 3 s cycle time) with a dynamic exclusion of 60 s (with 10 ppm 312 

error). The RF lens was set at 30 %. Full scan resolution using the orbitrap was set at 120 000 and the 313 

mass range was set to m/z 375 to1500. Full scan ion target value was 4.0e5 allowing a maximum injection 314 

time of 50 ms. Monoisotopic peak determination was used, specifying peptides and an intensity threshold 315 

of 1.0e4 was used for precursor selection. Data-dependent fragmentation was performed using higher-316 

energy collisional dissociation (HCD) at a normalized collision energy of 32 with quadrupole isolation at 317 

m/z 0.7 width. The fragment scan resolution using the orbitrap was set at 30 000, m/z 110 as the first 318 

mass, ion target value of 2.0e5 and a 60 ms maximum injection time. 319 

Protein Search parameters 320 
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Resulting raw files from the analysis of six different T. truncatus tissues and raw files from a publicly 321 

available 39 fraction HeLa experiment (ProteomeXchange Consortium [23] via the PRIDE partner 322 

repository with the dataset identifier PXD004452) were processed and searched using Proteome 323 

Discoverer (v.2.0.0.802). For T. truncatus analysis, Sequest HT and Mascot (v2.6.0; Matrix Science) 324 

search algorithms were used, while only Sequest HT was used for human searches. For all searches, the 325 

protein.faa fasta file was retrieved from NCBI RefSeq [18] via ftp [33]. For searches with the prior T. 326 

truncatus annotation, GCF_000151865.2_Ttru_1.4 was used, while searches with the current T. truncatus 327 

annotation, GCF_001922835.1_NIST_Tur_tru_v1 was used. These correspond to release 100 and 101 for 328 

this organism on NCBI. The whole-genome sequencing projects can be found in GenBank [34] under 329 

entries ABRN00000000.2 (Ttru_1.4) and MRVK00000000.1 (NIST_Tur_tru_v1). For the human 330 

searches, the following were used: GCF_000001405.10_hg16_Build34.3 (Build 34), 331 

GCF_000001405.25_GRCh37.p13 (Release 105) and GCF_000001405.33_GRCh38.p7 (Release 108). 332 

The T. truncatus searches also used the common Repository of Adventitious Proteins database (cRAP; 333 

2012.01.01; the Global Proteome Machine), though these sequences were removed from search results.  334 

The following search parameters were used for Mascot and Sequest: trypsin was specified as the 335 

enzyme allowing for two mis-cleavages; carbamidomethyl (C) was fixed and acetylation (protein n-term), 336 

deamidated (NQ), pyro-Glu (n-term Q), and oxidation (M) were variable modifications; 10 ppm precursor 337 

mass tolerance and 0.02 Da fragment ion tolerance. Within Sequest, the peptide length was specified as a 338 

minimum of six and maximum of 144 amino acids. Resulting peptide spectral matches were validated 339 

using the percolator algorithm, based on q-values at a 1 % false discovery rate (FDR). The peptides that 340 

were greater than six amino acids long were grouped into proteins according to the law of parsimony and 341 

filtered to 1 % FDR and single peptide hits were allowed. Briefly, there may be more than one peptide 342 

spectral match for a given peptide, which are then grouped to peptide groups. Protein inference is when 343 

these peptide groups are assigned to proteins, but given similarity between some proteins (such as 344 

isoforms or highly homologous sequences), peptides can match to more than one protein. For this reason, 345 

protein families or protein groups are generated based on peptide overlap (and therefore sequence 346 
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overlap), which reduces inflation due to isoform identifications. For the described analyses, protein and 347 

peptide groups are used and are available for each T. truncatus search in Additional File Tables S2 – S5. 348 

Raw MS data and Mascot based search results for T. truncatus, as well as all fasta databases, have been 349 

deposited to the ProteomeXchange Consortium [23] via the PRIDE partner repository with the dataset 350 

identifier PXD008808 and 10.6019/PXD008808. 351 

 352 

Proteomic-based quality metric for annotation quality 353 

Evaluating proteomic results relies on qualifying how well a database explains the observed tandem mass 354 

spectra: high numbers of protein identifications and percent identified spectra indicate good proteomic 355 

performance. Another way of describing proteomic results is to plot the number of peptide identifications 356 

versus protein molecular weight. A larger protein has potentially more peptide identifications but due to 357 

solubilization and digestion effects (such as post-translational modifications and protein folding), larger 358 

proteins do not always yield more unique peptides. For this reason, there is a somewhat Gaussian 359 

distribution of peptide frequency around median protein molecular weight. This median can shift right 360 

when the molecular weight of predicted protein-coding sequences increases and/or the number of 361 

isoforms increases. 362 

When evaluating and comparing de novo genome assemblies and annotations, the specific 363 

question that proteomics can answer is the degree of database fragmentation and accuracy. If an 364 

annotation improves partial coding sequences to complete protein-coding sequences with isoforms, then 365 

there will be an increase in the molecular weight of identified proteins with more peptides assigned to 366 

these longer sequences. By simply improving partial sequences there would be a shift to higher protein 367 

molecular weight. One goal of the current study was to provide a more robust quality measure by 368 

incorporating unique peptide counts (which corresponds to protein coverage) with the change of median 369 

molecular weight of inferred proteins. The NP10 is a proposed metric that first stratifies the results by 370 

identifying the top decile (or 10th 10-quantile) of proteins based on the number of peptides per protein and 371 

then returns the median molecular weight of the resulting proteins (graphically demonstrated in 372 
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Additional File Figure S1). This metric is similar to simply calculating the median molecular weight of all 373 

inferred proteins, but by removing protein identifications with relatively few peptide assignments, it 374 

attempts to indicate accuracy of the improved/longer protein-coding sequences.  375 

 376 

 377 

Availability of supporting data 378 

The raw data and tissue specific search results along with all databases used are available at the 379 

ProteomeXchange Consortium [23] via the PRIDE partner repository with the dataset identifier 380 

PXD008808 and 10.6019/PXD008808. The proteomic data from Bekker-Jensen et al. [13] used for the 381 

human comparison can be found at ProteomeXchange Consortium [23] via the PRIDE partner repository 382 

with the dataset identifier PXD004452. Tabulated search results for combined analysis and for each tissue 383 

can be found in Additional File Supplemental Tables S1-S11. 384 

Additional File Figure S1. Graphical example of NP10 calculation. 385 

Additional File Table S1. Sample characteristics table. 386 

Additional File Table S2. Protein Identifications using Ttru_1.4. 387 

Additional File Table S3. Protein Identifications using NIST_Tur_tru v1. 388 

Additional File Table S4. Peptide Group Identifications using Ttru_1.4. 389 

Additional File Table S5. Peptide Group Identifications using NIST_Tur_tru v1. 390 

Additional File Table S6. Protein Identifications in blubber tissue using NIST_Tur_tru v1.  391 

Additional File Table S7. Protein Identifications in brain tissue using NIST_Tur_tru v1. 392 

Additional File Table S8. Protein Identifications in kidney tissue using NIST_Tur_tru v1. 393 

Additional File Table S9. Protein Identifications in liver tissue using NIST_Tur_tru v1. 394 

Additional File Table S10. Protein Identifications in muscle tissue using NIST_Tur_tru v1. 395 

Additional File Table S11. Protein Identifications in skin tissue using NIST_Tur_tru v1. 396 

 397 

 398 
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Declarations 399 
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BUSCO Benchmarking Universal Single-Copy Orthologs 401 

C  cysteine 402 

CEGMA Core Eukaryotic Genes Mapping Approach 403 

Da  Dalton 404 

FDR  false discovery rate 405 

kbp  kilo base pairs 406 

kDa  kilodaton 407 

M  methionine 408 

Mbp  mega base pairs 409 

MW  molecular weight 410 

N  asparagine 411 

NP10 proposed metric of the median molecular weight of proteins that had greater than or equal 412 

unique peptides identified to the 10th-decile of unique peptides per protein; notation 413 

derived from number of peptides in 10th-decile 414 

NIST  National Institute of Standards and Technology 415 

Q  glutamine 416 
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Figure Legends 451 

Figure 1. Overlap and unique protein identifications by T. truncatus tissue. Proteins unique to each 452 

tissue and shared by all tissues are shown along with the total number of proteins identified in each 453 

analysis. 454 

 455 

Figure 2. Descriptive statistics of identified proteins using different annotations. The NP10 molecular 456 

weight improved 21.3 % from 67.59 kDa to 81.99 kDa (indicated by the red dotted line) along with an 457 

improvement in median molecular weight of inferred proteins across genes with minor and major 458 

changes. (note: these axes have been truncated for illustration and do not show all data points.) 459 

 460 

Figure 3. Confirming improved annotation of former partial proteins. Proteins that were partial in 461 

the Ttru_1.4 annotation were improved in the NIST annotation, and there was mass spectrometric 462 

evidence to support the accuracy of these improvements corresponding to increased peptide 463 

identifications and median molecular weight (the latter indicated by the red dotted line; note: these axes 464 

have been truncated for illustration and do not show all data points.) 465 

 466 

Figure 4. Source of peptide identification differences using the two assemblies. There was strong 467 

overlap of identified peptides using the two assemblies with over 80 % overlap. The sources of the 468 

differences were largely comprised of deprecated proteins in Ttru_1.4 (41 % of the 5 657) and 469 

minor/major changes in NIST_Tur_tru_v1 (96 % of the 4 768). 470 

 471 

Figure 5. Similar trends with improved human assemblies. As the contiguity of the human genome 472 

has improved, there is a shift upward and to the right indicating annotations are more accurate (increased 473 

coverage) and complete (increased molecular weight). The NP10 improved 33 % and is indicated by the 474 

red dotted line (note: these axes have been truncated for illustration and do not show all data points). 475 

 476 
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