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ABSTRACT 21 

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. 22 

In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of 23 

endogenous germline genes and limit the expression of deleterious transcripts to maintain genome 24 

homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in 25 

the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We 26 

uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting 27 

germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we 28 

demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a 29 

small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. 30 

Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the 31 

germline and soma.  32 
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INTRODUCTION 33 

The conserved family of TRIM-NHL proteins have emerged as key regulatory points of gene 34 

expression to impact a variety of processes including stem cell self-renewal, developmental patterning 35 

and cellular differentiation in metazoans (Tocchini and Ciosk, 2015). TRIM-NHL proteins contain a N-36 

terminal tripartite motif (TRIM), composed of a zinc finger RING domain, one or two B-box zinc 37 

finger motifs (distinct from the RING domain), and a coiled-coil region, in association with six C-38 

terminal NHL motifs (Supplemental Fig. S1). This combination of domains enables TRIM-NHL 39 

proteins to modulate gene expression in versatile ways, ranging from the ubiquitination of protein 40 

targets (via the RING domain and associated B-box motifs) (Ikeda and Inoue, 2012) to regulating 41 

mRNA stability or translation via the NHL domain (Loedige, et al., 2013). However, the full repertoire 42 

of gene regulatory activities and the developmental specificity of such functions by TRIM-NHL 43 

proteins remains to be fully elucidated.  44 

How TRIM-NHL proteins regulate specific mRNAs is only beginning to become clear. The 45 

prevailing notion has been that TRIM-NHL proteins interact with mRNA via interactions with other 46 

proteins. For instance, the Drosophila TRIM-NHL protein Brat was long thought to recognize maternal 47 

mRNAs via an interaction with the RNA binding protein Pumilio (Sonoda and Wharton, 2001). 48 

However, TRIM-NHL proteins have recently been shown to directly bind to RNA via NHL motifs 49 

(Laver, et al., 2015; Loedige, et al., 2015; Loedige, et al., 2014). For some TRIM-NHL proteins, such 50 

as Brat, this interaction occurs with a reasonable degree of sequence specificity, with a preference for U 51 

rich motifs, and leads to the post-transcriptional and/or translational regulation of target transcripts 52 

(Laver, et al., 2015; Loedige, et al., 2015; Loedige, et al., 2014). In addition to binding and regulating 53 

RNA directly, several TRIM-NHL proteins have been implicated in miRNA-mediated regulation of 54 
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transcripts, adding another layer of complexity to their gene regulatory capacity (Hammell, et al., 2009; 55 

Schwamborn, et al., 2009; Neumuller, et al., 2008). 56 

NHL-2 is one of five members of the TRIM-NHL family in C. elegans (including NHL-1, 2, 3; 57 

LIN-41; NCL-1). Thus far, these paralogs have been shown to control pluripotency (LIN-41) 58 

(Tocchini, et al., 2014), oocyte growth and meiotic maturation (LIN-41) (Tsukamoto, et al., 2017; 59 

Spike, et al., 2014), and inhibit translation (NCL-1) (Yi, et al., 2015). In comparison, NHL-2 has been 60 

shown function the sex determination pathway (McJunkin and Ambros, 2017) and also acts as a co-61 

factor in the C. elegans miRNA pathway where it is required for proper developmental timing and cell 62 

fate progression (Karp and Ambros, 2012; Hammell, et al., 2009). In the miRNA pathway, NHL-2 does 63 

not impact the biogenesis of miRNAs but exerts a positive influence on RNA Induced Silencing 64 

Complex activity (RISC, including small RNA or miRNA bound to the Argonaute effector, along with 65 

accessory proteins) (Hammell, et al., 2009). NHL-2 associates with the miRNA specific Argonaute 66 

effectors, ALG-1/2, and other miRISC co-factors, including AIN-1/GW182 and the DEAD-box RNA 67 

helicase CGH-1/DDX6 (Hammell, et al., 2009). Furthermore, loss of nhl-2 does not broadly affect 68 

miRNA activity, but instead specifically influences miRISC activity associated with two miRNAs:  let-69 

7 and lsy-6 (Hammell, et al., 2009). Similarly, the NHL-2 ortholog TRIM32 in M. musculus and H. 70 

sapiens regulates a small number of miRNAs, including let-7a, while in D. melanogaster, Brat and 71 

Mei-P26 have also been shown to act broadly as miRNA co-factors (Loedige, et al., 2014; 72 

Schwamborn, et al., 2009; Neumuller, et al., 2008). Individual TRIM-NHL proteins exert positive or 73 

negative effects on the miRNA pathway, and thereby control developmental programs (Loedige, et al., 74 

2014; Schwamborn, et al., 2009; Neumuller, et al., 2008). Although the functions of NHL-2 in the 75 

soma are linked to miRNA function, what role, if any, NHL-2 plays in the germline remains unclear. 76 
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In addition to miRNAs, the small RNA regulatory repertoire in C. elegans includes endogenous 77 

small interfering RNAs (endo-siRNAs; 22G-RNAs, 26G-RNAs), and Piwi-interacting RNAs 78 

(piRNAs/21U-RNAs), which are part of an elaborate surveillance system to regulate homeostasis of the 79 

germline transcriptome (reviewed in (Billi, et al., 2014; Youngman and Claycomb, 2014)). The 22G-80 

RNA family of endo-siRNAs is the most functionally diverse class of germline small RNAs (named 81 

22G because they are generally 22 nucleotides in length, and possess a 5'-triphosphorylated guanosine 82 

residue) (Gu, et al., 2009). It has been proposed that 22G-RNAs are selectively loaded onto either the 83 

Argonaute CSR-1 or the WAGO sub-family of AGOs, where they subsequently go on to fulfill distinct 84 

gene-regulatory functions (de Albuquerque, et al., 2015; Phillips, et al., 2015; Phillips, et al., 2014; 85 

Phillips, et al., 2012; Claycomb, et al., 2009; Gu, et al., 2009). The synthesis of 22G-RNAs relies on a 86 

complex containing an RNA dependent RNA polymerase enzyme (RdRP; EGO-1 or RRF-1), in 87 

association with the DEAD-box RNA helicase DRH-3 and the dual Tudor domain protein EKL-1 (Gu, 88 

et al., 2009; Aoki, et al., 2007). Although it remains largely unclear how the 22G-RNAs are specified 89 

for their different AGO effectors, one notable feature of the two pathways is that the CSR-1 22G-RNAs 90 

are produced solely by the RdRP EGO-1, while the WAGO 22G-RNAs rely on both RRF-1 and EGO-91 

1 for their biogenesis (Phillips, et al., 2014; Phillips, et al., 2012; Claycomb, et al., 2009; Gu, et al., 92 

2009).  93 

The CSR-1 22G-RNAs are required for normal chromosome organization in the germline and 94 

embryos, likely due to genome-wide effects on chromatin and/or transcription (Wedeles, et al., 2013a). 95 

CSR-1 associates with genomic loci of its gene targets, and recent data point to a role for the CSR-1 96 

pathway in promoting the transcription of these germline genes trans-generationally (Cecere, et al., 97 

2014; Conine, et al., 2013; Seth, et al., 2013; Wedeles, et al., 2013b; Claycomb, et al., 2009), as well as 98 
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post-transcriptionally fine-tuning the expression of target genes in embryos via its slicer activity 99 

(Gerson-Gurwitz, et al., 2016). In contrast, the WAGO 22G-RNAs, namely those associated with 100 

WAGO-1 and HRDE-1, are required for silencing of endogenous pseudogenes, transposons, and 101 

protein-coding genes both at the transcriptional and post-transcriptional levels. These activities are 102 

largely downstream of the piRNA pathway, and function to recognize and silence foreign nucleic acid 103 

(Ashe, et al., 2012; Buckley, et al., 2012; Shirayama, et al., 2012; Gu, et al., 2009). Together, the CSR-104 

1 and WAGO pathways provide an epigenetic memory of self (CSR-1) from non-self (WAGOs) 105 

nucleic acid and are critical for maintaining genomic and transcriptional integrity of the germline 106 

(Wedeles, et al., 2014; Conine, et al., 2013; Seth, et al., 2013; Wedeles, et al., 2013b; Claycomb, et al., 107 

2009). 108 

Here we characterize the role of NHL-2 in the germline and provide evidence that, in addition 109 

to its role in the somatic microRNA pathway, NHL-2 is a biogenesis factor in the CSR-1 and WAGO 110 

germline 22G-RNA pathways. Like other 22G-RNA biogenesis factors and AGOs, including CSR-1 111 

and WAGO-1, NHL-2 localizes to P granules in the germline. Characterization of nhl-2(ok818) 112 

mutants reveals phenotypes consistent with loss of CSR-1 pathway activity, including: embryonic 113 

lethality, defects in oocyte chromosome organization, and aberrant accumulation of the repressive 114 

histone modification, H3K9me2 on germline autosome chromatin. We also found an unexpected role 115 

for NHL-2 in the nuclear RNAi pathway, and accompanying temperature-sensitive transgenerational 116 

fertility defect. Using an RNAi screen, we demonstrate that nhl-2 genetically interacts with the 22G-117 

RNA pathway components drh-3, ekl-1, cde-1 and csr-1, and physically associates with CSR-1, 118 

HRDE-1 and DRH-3. High throughput sequencing of small RNAs in nhl-2(ok818) mutants reveals a 119 

depletion of 22G-RNAs for a subset of CSR-1 and WAGO target genes. Moreover, alterations in the 120 
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distribution of 22G-RNAs across CSR-1 target genes suggest a mechanism of NHL-2 action in 22G-121 

RNA biogenesis, and implicate NHL-2 in distinct roles for germline versus somatic small RNA 122 

pathways. RNA binding assays demonstrate that NHL-2 is a bona fide RNA binding protein that 123 

specifically associates with U-rich sequences, and mRNA-seq experiments on nhl-2(ok818) mutants 124 

support the model that NHL-2 regulates a large number of somatic transcripts via this intrinsic RNA 125 

binding activity. Together, our results show that NHL-2 is a key factor in multiple facets of germline 126 

and somatic gene regulation.   127 

 128 

RESULTS 129 

NHL-2 is Required for Normal Germline Function and is Enriched in Germ Granules  130 

While nhl-2 mRNA is reported to be highly expressed in the C. elegans germline (Ortiz, et al., 131 

2014; Reinke, et al., 2004) its function in this tissue remains relatively unknown. To determine if NHL-132 

2 is required for fertility, we analyzed the brood size of wild-type and nhl-2(ok818) deletion null allele 133 

(Hammell, et al., 2009) animals at 20°C, 23°C and 25°C.  At all three temperatures, compared to wild-134 

type worms, nhl-2(ok818) displayed a significantly reduced brood size, and at 23°C and 25°C there was 135 

a significant increase in embryonic lethality (Fig. 1A, B).  This temperature-dependent fertility defect 136 

has been described for several strong loss of function or null alleles of germline genes, including 137 

factors involved in small RNA pathways (Phillips, et al., 2012; Gu, et al., 2009; Van Wolfswinkel, et 138 

al., 2009; Wang and Reinke, 2008) and is likely to reflect temperature-sensitive processes in this tissue. 139 

To determine if there were any gross morphological defects that would lead to infertility, we 140 

examined dissected one-day-old hermaphrodite germlines using DAPI staining with DIC and 141 

fluorescence microscopy. DIC microscopy revealed no overt morphological differences between nhl-142 
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2(ok818) and wild-type germlines (data not shown). However, when we examined the organization of 143 

diakinetic oocyte chromosomes in wild-type and nhl-2(ok818) animals via DAPI staining, we noted 144 

severe defects in nhl-2(ok818) mutants at all temperatures. While wild-type diakinetic oocytes 145 

displayed six discrete DAPI bodies, indicative of homologous chromosome pairs, nhl-2(ok818) worms 146 

possessed a range of chromosomal abnormalities including aggregation into disorganized clumps, and 147 

greater than six DAPI bodies (Fig. 1C, D). Together these data indicate that NHL-2 is required for 148 

normal reproductive capacity and germline chromosome organization. 149 

We next examined where and when NHL-2 is expressed in the germline. To do this, we raised 150 

antibodies against the N-terminus of NHL-2 and confirmed that the antibodies were specific for NHL-2 151 

by immunostaining nhl-2(ok818) mutant germlines (Supplemental Fig. 2A). We then co-stained wild-152 

type germlines for NHL-2 and CGH-1, a germline helicase with which NHL-2 was previously shown 153 

to interact (Hammell, et al., 2009). We found that NHL-2 co-localizes with CGH-1 in the gonad in both 154 

perinuclear germ granules, known as P granules in C. elegans, and in the cytoplasmic core of the 155 

syncytial germline (Fig. 1E).  P granules are cytoplasmic aggregations of mRNA and protein that 156 

contribute to germ cell fate, and many RNA regulatory pathways, including those involved in small 157 

RNA pathways, localize to these structures (Voronina, et al., 2011). We also observed that NHL-2 158 

localizes to P granules in early-stage embryos and was quickly lost from the somatic lineages after the 159 

4-cell stage (Supplemental Fig. 2B and data not shown), consistent with a previous study (Hyenne, et 160 

al., 2008). 161 

Given the interaction of NHL-2 and CGH-1 in the somatic miRNA pathway (Hammell, et al., 162 

2009), we next examined whether either factor is required for the proper localization of the other factor. 163 

First, the absence of NHL-2 does not appear to affect P granule formation, as the P granule markers 164 
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PGL-1, CAR-1 and CGH-1 localized normally in nhl-2(ok818) mutants (Supplemental Fig. S2A and 165 

data not shown). CGH-1 is essential for fertility and localization of several P granule components 166 

(Arnold, et al., 2014; Sengupta and Boag, 2012; Boag, et al., 2008; Audhya, et al., 2005; Boag, et al., 167 

2005), however in a cgh-1 loss of function mutant NHL-2 localized normally, while CAR-1 localized 168 

to “sheet-like” structures in the gonad core (Supplemental Fig. S2C).  These data suggest that although 169 

NHL-2 has similar germline localization pattern to CGH-1 and functions with CGH-1 in the soma, 170 

NHL-2 may contribute to germline gene regulation through different mechanisms. 171 

  172 

nhl-2 Genetically Interacts with the 22G-RNA Pathway 173 

To uncover any pathways in which NHL-2 may function to regulate germline development, we 174 

conducted a genome-wide RNAi screen for synthetic interactions (Davis, et al., 2017). Out of 11,511 175 

genes screened, we identified 42 genes, that when knocked down in the nhl-2(ok818) null background 176 

resulted in strong synthetic phenotypes, including sterility, embryonic lethality and larval arrest.  177 

Among the candidates are genes encoding factors required for biogenesis of the 22G-RNAs. These 178 

include the poly(U) polymerase CDE-1, along with the RdRP complex proteins EKL-1 (a dual Tudor 179 

domain protein) and DRH-3 (a Dicer related helicase), which have been shown to physically interact 180 

(Gu, et al., 2009).  CDE-1 was specifically implicated in the CSR-1 22G-RNA pathway, while DRH-3 181 

and EKL-1 function in both CSR-1 and WAGO 22G-RNA pathways.  182 

Notably, previous data demonstrated that CSR-1 pathway components display defects in 183 

diakinetic chromosome organization similar to nhl-2(ok818) mutants (Claycomb, et al., 2009; She, et 184 

al., 2009; Van Wolfswinkel, et al., 2009; Nakamura, et al., 2007). To more carefully assess the genetic 185 

interaction between nhl-2(ok818) and these 22G-RNA factors, we examined diakinetic oocyte defects 186 
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when we knocked down these genes in wild-type versus nhl-2(ok818) animals (Fig. 2A-E). Because of 187 

the link between cde-1 and csr-1, we also examined csr-1 in these assays.  Diakinetic oocyte 188 

chromosomal organization was binned into four categories in our assays: 1) normal morphology, where 189 

6 pairs of homologous chromosomes were evident, 2) >6 chromosomes, where univalent (unpaired) 190 

chromosomes were present, 3) aggregated chromosomes, where clumping of chromosomes was 191 

observed, 4) enhanced aggregation, where chromosomes were tightly clumped. Consistent with 192 

previous results, we observed chromosome anomalies when drh-3, csr-1, ekl-1 or cde-1 were knocked 193 

down in wild-type animals (Fig. 2A-E).  Importantly, knockdown of each 22G-RNA factor in nhl-194 

2(ok818) mutants resulted in significantly enhanced chromosomal aggregation (Fig. 2A-E) at both 195 

20°C and 25°C. Furthermore, and consistent with these results, we observed an increase in the 196 

embryonic lethality of nhl-2(ok818) animals depleted of CSR-1 pathway factors, pointing to a strong 197 

synthetic interaction (Supplemental Fig. S3).  198 

Another phenotype common among CSR-1 22G-RNA pathway co-factors is the abnormal 199 

accumulation of the repressive histone modification, Histone H3, Lysine 9 di-methylation (H3K9me2) 200 

on autosomes (She, et al., 2009). Normally, chromosomes that do not possess a pairing partner during 201 

meiosis (including the male X chromosome) are enriched for H3K9me2 and transcriptionally silenced 202 

in a process termed Meiotic Silencing of Unpaired Chromatin (MSUC). Loss of the CSR-1 pathway 203 

leads to aberrant accumulation of H3K9me2 on autosomes and results in homologous pairing defects.  204 

Given the synthetic interaction of nhl-2 with factors in the CSR-1 22G pathway, we examined if nhl-205 

2(ok818) mutants displayed altered H3K9me2 distribution. Using an antibody specific for H3K9me2, 206 

we immunostained germlines from wild-type males depleted for drh-3 or csr-1 by RNAi and compared 207 

them to nhl-2(ok818) males (Fig. 2F).  Consistent with previous reports, depletion of drh-3 or csr-1 in 208 
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wild-type males resulted in abnormal accumulation of H3K9me2 (Wang and Reinke, 2008). 209 

Interestingly, nhl-2(ok818) males also display abnormal H3K9me2 accumulation in a similar manner to 210 

that observed in drh-3(RNAi) and csr-1(RNAi) animals. We quantified the defects in H3K9me2 patterns 211 

as follows: 1) normal, where each germ cell displayed one strong H3K9me2 signal (as seen in wild-212 

type), 2) elevated, where germ cells displayed one or more H3K9me2 markings that were greater than 213 

that of wild-type germ cells, 3) dispersed, where H3K9me2 markings were distributed on various 214 

chromosomes within a germ cell (Fig. 2G). Abnormal autosomal H3K9me2 enrichment in nhl-215 

2(ok818) germ cells suggests that nhl-2(ok818) mutants have errors in MSUC and meiotic synapsis 216 

similar to drh-3 or csr-1, and are consistent with a role for NHL-2 in the CSR-1 pathway. 217 

 218 

NHL-2 is required for nuclear RNAi inheritance 219 

Multiple components of small RNA pathways have been shown to be required for nuclear 220 

RNAi and germline immortality (Spracklin, et al., 2017; Weiser, et al., 2017; Ashe, et al., 2012; 221 

Buckley, et al., 2012), therefore, we next examined if NHL-2 is required for these pathways. To 222 

examine nuclear RNAi, we focused on the polycistronic pre-mRNA that encodes the non-essential gene 223 

lir-1 and the essential gene let-26 (Bosher, et al., 1999). In wild-type animals, RNAi targeting lir-1 224 

results in the silencing of the polycistronic pre-mRNA by the nuclear RNAi pathway, resulting in let-26 225 

phenotypes of larval arrest and lethality (Fig. 3A) (Bosher, et al., 1999). Interestingly, nhl-2(ok818) 226 

animals were resistant to lir-1 RNAi and closely resembled nrde-2 and rde-4 nuclear RNAi mutants 227 

(Fig. 3B). Some RNAi factors, such as hrde-1, have a temperature-sensitive transgenerational mortal 228 

germline (Mrt) phenotypes (Spracklin, et al., 2017; Weiser, et al., 2017; Ashe, et al., 2012; Buckley, et 229 

al., 2012), therefore, we tested if nhl-2(ok818) also displays this phenotype. Consistent with the Mrt 230 
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phenotype, after 10-12 generations nhl-2(ok818) worms grown at 25oC became sterile (Fig. 3C) while 231 

wild-type worms remained fertile. We next examined if shifting nhl-2(ok818) worms grown at 25oC to 232 

20oC could rescue the decline in fertility in subsequent generations. As has been demonstrated for other 233 

Mrt mutants (Spracklin, et al., 2017; Ni, et al., 2016), when the F1 generation of nhl-2(ok818) worms 234 

were moved at the L1 stage to 20oC it took 3 generations for the brood size to recover to the normal 235 

nhl-2(ok818) level (Fig. 3D).  Similarly, embryonic lethality took a generation to recover to the nhl-236 

2(ok818) 20oC level (Fig. 3E). These findings are consistent the Mrt phenotype observed in mutants in 237 

the nuclear RNAi pathway and suggests the decreased brood size observed at 25oC is not simply the 238 

result of DNA damage. Together these data are consistent with NHL-2 participating in nuclear RNAi 239 

and multigenerational epigenetic inheritance pathways. 240 

 241 

NHL-2 Physically Interacts with CSR-1 and HRDE-1 Pathway Proteins 242 

Because NHL-2 had previously been shown to physically interact with miRNA Argonautes, we 243 

decided to test for any association with the 22G-RNA-associated AGOs CSR-1 and HRDE-1. We first 244 

performed co-Immunoprecipitation of endogenous NHL-2 and probed for CSR-1 by western blotting. 245 

Indeed, we found that CSR-1 associates with NHL-2 by co-IP in adult hermaphrodites (Fig. 4A). We 246 

then moved on to test for interactions with other members of the CSR-1 pathway by similar 247 

experiments, and found an interaction between NHL-2 and the RdRP complex helicase, DRH-3 (Gu, et 248 

al., 2009) (Fig. 4B). To test for additional protein interactions by a separate method, we incubated 249 

purified GST-tagged full-length NHL-2 with protein lysate and determined whether NHL-2 was able to 250 

interact with components of the 22G-RNA biogenesis machinery by western blotting. In these 251 

experiments, we observed that GST-NHL-2 associated with both CSR-1 and HRDE-1 from whole adult 252 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


13 
 

worm lysates, but not WAGO-1, or other components of the EGO-1, RRF-1 or EKL-1 (Fig. 4C, data 253 

not shown). These data indicate that NHL-2 associates with CSR-1 and HRDE-1 pathway proteins at 254 

multiple points of pathway activity (with DRH-3 of the RdRP complex and with AGO effectors of the 255 

RISC). 256 

The C-terminal RING domain of TRIM-NHL proteins is often associated with E3 ubiquitin 257 

ligase activity and proteasome-mediated protein turnover. To determine whether NHL-2 functions as 258 

an E3 ubiquitin ligase that targets proteins of the CSR-1 pathway for degradation, we examined CSR-1 259 

expression in wild-type and nhl-2(ok818) one-day-old adult animals. We observed comparable levels 260 

of both CSR-1 and DRH-3 protein in wild-type and nhl-2(ok818) animals (Supplemental Fig. S4A and 261 

data not shown for DRH-3), suggesting that the association of NHL-2 and CSR-1 is not related to 262 

potential E3 ubiquitin ligase activity by NHL-2.    263 

 264 

NHL-2 Is Required for Maintaining the Steady-State Levels of 22G-RNAs 265 

To explore the role of nhl-2 in the biogenesis or stability of the 22G-RNAs, we conducted small 266 

RNA high throughput-sequencing of wild-type and nhl-2(ok818) animals at 20°C and 25°C 267 

(Supplemental Table S1, S3). The overall size and first nucleotide distributions of small RNA species 268 

in nhl-2(ok818) mutants are consistent with the wild-type controls at both temperatures (Supplemental 269 

Fig. S5, S6). However, when we began to examine particular classes of small RNAs in each genotype 270 

and at the different temperatures, we observed some interesting differences.  271 

First, we observed overall changes in some small RNA populations in both wild-type and nhl-272 

2(ok818) mutants at the higher temperature. There was an overall decrease in 21U-RNAs at 25°C 273 

compared with 20ºC, for both wild-type and nhl-2(ok818) mutants (Supplemental Figs. S5, S4, S6). 274 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


14 
 

This may reflect the temperature-dependent nature of the production or stability of these small RNAs. 275 

Notably, many mutants in the piRNA and 26G-RNA pathways exhibit temperature sensitive fertility 276 

defects that appear to be consistent with an overall decline in these small RNA populations at higher 277 

temperatures. 21-23nt siRNA levels (which encompass the 22G-RNA category) increased slightly in 278 

both wild-type and nhl-2(ok818) mutants at 25°C compared to 20ºC, while miRNA levels were 279 

relatively unchanged in both strains between temperatures (Supplemental Figs. S5, S6, S7).  280 

Next, we compared wild-type and nhl-2(ok818) mutant small RNA populations at each 281 

temperature. We observed a consistent decrease in 22G-RNA and 26G-RNA populations in nhl-282 

2(ok818) mutants relative to wild-type at 25°C (Supplemental Figs. S5, S6, S7). Concomitant with the 283 

22G-RNA decreases, we observed an increase in the proportion of miRNAs in nhl-2(ok818) mutants. 284 

While it is possible that this change in miRNAs is biologically meaningful, it is more likely due to a 285 

“filling in” of the cloning space when small RNA populations are expressed as a proportion of the total 286 

reads, as previous reports observed little change in miRNA levels in nhl-2(ok818) mutants (Hammell, 287 

et al., 2009). Finally, we observed decreases in the 21U-RNA populations of nhl-2(ok818) mutants 288 

relative to wild-type at 20°C, which are not evident at 25°C. 289 

Because of their abundance and the link between NHL-2, CSR-1, and the RdRP complex that 290 

synthesizes 22G-RNAs (via an interaction between NHL-2 and DRH-3), we examined this class of 291 

small RNAs in greater depth (Fig.  5A, B, Supplemental Table S2). We observed that 573 and 724 292 

genes display a two-fold or greater depletion of 22G-RNAs in nhl-2(ok818) mutants relative to wild-293 

type at 20°C and 25°C respectively, with 381 genes in common between the two temperatures (the top-294 

right Venn-pie diagram in Figure 5A).   295 
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The genes depleted of 22G-RNAs in nhl-2(ok818) mutants at 20°C are enriched in WAGO-1 296 

and HRDE-1 target genes (Fig. 5A), comprising 36.5% (209/573; hypergeometric test q-value or q = 297 

9.6E-80) and 36.6% (210/573; q = 2.1E-83), respectively, with 66 genes shared between the two 298 

WAGOs (WAGO-1 targets are as defined in (Gu, et al., 2009), and HRDE-1 targets are as defined in 299 

(Shirayama, et al., 2012). Consistent with this result, 74.5% (427/573; q = 1.6E-296) of these genes 300 

were depleted of 22G-RNAs in a mutant strain that carries mutations in twelve wago (12-fold wago 301 

mutant including mutations in hrde-1 and wago-1 (Gu, et al., 2009)). Notably, 33% (189/573; q = 3.7E-302 

5) of these genes are CSR-1 targets, with only 17 of these genes overlapping with HRDE-1 or WAGO-303 

1 targets (CSR-1 targets are as defined in (Tu, et al., 2015)).  304 

Similar to the results at 20°C, 29.3% of the 724 genes depleted of 22G-RNAs in nhl-2(ok818) 305 

mutants at 25°C are CSR-1 target genes (212/724; q = 3.7E-2), while 33.7% and 37.2% are WAGO-1 306 

and HRDE-1 targets (244/724 and 269/724; q = 2.1E-85 and 4.7E-110; with 139 genes in common). 307 

Nearly 78% (563/724, q < 1E-300) of the genes depleted of 22G-RNAs in nhl-2(ok818) mutants at 308 

25°C overlap with genes depleted of small RNAs in the 12-fold wago mutant. Finally, the majority of 309 

genes depleted of 22G-RNAs in nhl-2(ok818) mutants at either temperature significantly overlap with 310 

genes depleted of 22G-RNAs in RdRP complex mutants, ekl-1(tm1599), ego-1(om97), and drh-311 

3(ne4253) (all q-values < 7.3E-195) (Fig. 5A). The overlap between genes depleted of 22G-RNAs in 312 

nhl-2(ok818) mutants and the three well characterized germline small RNA pathways, coupled with the 313 

overlapping phenotypes of nhl-2(ok818) and ago mutants point to a role for NHL-2 in germline small 314 

RNA pathways overall.  315 

The glp-4(bn2) small RNA data set reveals the complete repertoire of germline genes targeted 316 

by 22G-RNAs (Tu, et al., 2015; Gu, et al., 2009), as these mutants do not possess significant germline 317 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


16 
 

tissue, and 5,971 genes show a two-fold or greater depletion of small RNAs. Consistent with the role of 318 

NHL-2 in fertility and germ cell development (Fig. 1, 2), 83.8% (480/573, q = 2.6E-166) and 83.4% 319 

(604/724 q = 3.9E-209) of the genes depleted of 22G-RNAs in nhl-2(ok818) mutants at 20°C and 25°C, 320 

respectively, are also depleted of 22G-RNAs in glp-4(bn2) mutants (Fig. 5A).  These data indicate that 321 

the genes depleted of 22G-RNAs in nhl-2(ok818) mutants are targeted by 22G-RNAs in the germline. 322 

Further comparison with the male- and female-specific gonad gene expression data indicated that 323 

58.4% (423/724; q-value = 0.0128) and 61.6% (353/573; q-value = 1E-4) of the genes depleted of 22G-324 

RNAs in nhl-2(ok818) mutants at 25°C and 20°C respectively overlap with genes generally expressed 325 

in the gonad (meaning that they are expressed in both the spermatogenic or oogenic gonads) (Fig. 5B). 326 

We observed a subtle, but statistically significant enrichment for oogenic genes in the nhl-2(ok818) 327 

depleted gene sets (16.4%, 119/724 genes at 25°C, q = 2.2E-11, 22.5%, 129/573 genes at 20°C, q-value 328 

= 2.7E-24). This observation may simply be reflective of the developmental stage from which the 329 

samples were prepared (young adults undergoing oogenesis), but is also consistent with oogenesis 330 

defects we observed in nhl-2(ok818) mutants.  331 

 332 

NHL-2 Is Required for 22G-RNA Coverage at the 5´ Portion of CSR-1 Target Genes 333 

The decrease in steady-state levels for a subset of 22G-RNAs in nhl-2(ok818) mutants could 334 

indicate a defect in 22G-RNA synthesis or stability. Given the link between NHL-2 and the RdRP 335 

complex, we hypothesized that NHL-2 could affect 22G-RNA synthesis to a greater extent than 336 

turnover. Thus, we performed a metagene analysis to examine the distribution of 22G-RNAs across the 337 

gene body (Fig. 5C-E, Supplemental Fig. S8). In wild-type worms, 22G-RNAs are distributed across 338 

the entire length of WAGO target genes and are present in greater abundance than CSR-1 22G-RNAs. 339 
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Conversely, CSR-1 target genes generally have fewer 22G-RNAs targeting them overall, with a slight 340 

bias in small RNA coverage toward the 5´ end. In nhl-2(ok818) mutants at 25°C relative to wild-type, 341 

we noted that the distribution of 22G-RNAs at WAGO targets was generally unchanged over the entire 342 

locus.   343 

For CSR-1 target genes, the distribution of 22G-RNAs in nhl-2(ok818) mutants was distinct 344 

from that in wild-type worms. At both 20°C and 25°C, there was a significant decrease in the 345 

abundance of 22G-RNAs over the 5´ half of the gene in nhl-2(ok818) mutants relative to wild-type 346 

controls (at 20°C, there was a 33.6% reduction in 22G-RNAs, t-test p-value = 1.4E-79; at 25°C, there 347 

was a 15.5% reduction in 22G-RNAs, t-test p-value = 1.77E-9). Examined a different way, the centroid 348 

of the 22G-RNA distribution for the group of CSR-1 target genes shifts by 5.77% of the metagene 349 

length towards the 3´ end in nhl-2(ok818) mutants relative to the wild-type at 25°C (Wilcoxon rank-350 

sum test p-value = 3.67E-29; Fig. 5C, Supplemental Fig. S8). These data suggest that NHL-2 may 351 

influence the activity and/or processivity of the RdRP complex.  352 

Because our small RNA results indicated a possible role for NHL-2 in RdRP complex 353 

processivity or activity, and we had observed genetic and physical interactions between NHL-2 and the 354 

RdRP complex via DRH-3, we asked whether NHL-2 was required for the formation or stability of the 355 

RdRP complex. Therefore, we tested whether the CSR-1 RdRP complex, as measured by an 356 

association between the key components DRH-3 and EGO-1, could properly form in the absence of 357 

NHL-2. To answer this question, we immunoprecipitated DRH-3 and probed for EGO-1 and EKL-1, 358 

three key components of the CSR-1 RdRP complex, and found that the association between DRH-3, 359 

EGO-1, and EKL-1 was maintained in the absence of NHL-2 (Supplemental Fig.  S4). Thus, NHL-2 is 360 

not required for the formation or maintenance of the RdRP complex, and may play a different role in 361 
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the biogenesis of 22G-RNAs, possibly in the handoff of newly synthesized 22G-RNAs to CSR-1 362 

(because of its physical association with both CSR-1 and DRH-3), aiding the assembled RdRP complex 363 

in moving along the RNA template, or in the selection of particular mRNAs as templates for 22G-RNA 364 

synthesis. 365 

 366 

The NHL Domain of NHL-2 Binds RNA 367 

We went on to explore a role for NHL-2 in directly interacting with mRNA transcripts. The 368 

NHL domain of the TRIM-NHL protein Brat from D. melanogaster was recently shown to be a 369 

sequence-specific RNA binding protein, which suggests other NHL domain proteins may also bind 370 

directly to RNA (Loedige, et al., 2014).  To determine whether the C-terminal NHL domain of NHL-2 371 

binds RNA, we first generated a structural homology model based on the crystal structure of Brat 372 

(Edwards, et al., 2003).  This modeling of the NHL domain revealed the canonical six-bladed 373 

"propeller" characteristic of this domain. It also showed that much of the surface of the protein was 374 

positively charged and therefore would likely interact with negatively charged RNA molecules (Fig. 375 

6A).  To explore if the NHL domain of NHL-2 binds to RNA we performed the RNAcompete in vitro 376 

binding assay (Ray, et al., 2013; Ray, et al., 2009). We expressed and purified a GST-tagged NHL 377 

domain of NHL-2 and incubated it with a complex pool of 240,000 30-41mer RNAs. RNAs that co-378 

purified with the GST-tagged NHL domain were identified by microarrays and revealed a strong 379 

binding preference for U-enriched RNAs, with a core consensus of UUUU, and preference for U 380 

residues 5' and 3' to the core (Fig. 6B). We next examined the binding affinity of the NHL domain for a 381 

5'-Fluorescein labelled 17mer poly-U RNA oligonucleotide using fluorescence anisotropy. In these 382 

experiments, GST-tagged NHL domain at a range of concentrations was mixed with poly-U RNA 383 
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oligonucleotide and allowed to reach equilibrium. These experiments yielded an equilibrium 384 

dissociation constant of KD = 0.41 ± 0.02 µM, and were consistent with a one-site binding model (Fig. 385 

6C).  These data strongly suggest that NHL-2 is a bona fide RNA-binding protein with an ability to 386 

bind U rich sequences. 387 

 388 

Steady State mRNA Levels are Altered Independent of Small RNA Levels in nhl-2(ok818) 389 

Mutants 390 

Because of its link to multiple small RNA pathways and its capacity to bind RNA, we asked 391 

whether NHL-2 plays a role in transcript regulation. To test this, we performed mRNA-seq in wild-type 392 

(N2) and nhl-2(ok818) adult animals at both 20°C and 25°C, with three biological replicates each (Fig. 393 

7A, Supplemental Table S3). At 20°C, we observed less extensive changes in steady-state mRNA 394 

levels in nhl-2(ok818) mutants, with 1,014 genes increased and 1,630 genes decreased by two-fold or 395 

greater. This is in contrast to 25°C, where we identified 3,554 genes with two-fold or greater increases 396 

in steady-state mRNA levels, and 4,370 genes with two-fold or greater decreased steady-state mRNA 397 

levels in nhl-2(ok818) mutants relative to wild-type (Fig. 7A). There was a significant overlap of genes 398 

up-regulated in nhl-2(ok818) between the two temperatures (643 genes; q-value = 6.2E-249). Similarly, 399 

there was a significant overlap between down-regulated genes at both temperatures (1,326 genes; q-400 

value < 1E-300). We then went on to examine the genes with altered expression in more detail. 401 

Based on the previously described role for NHL-2 with let-7 and lsy-6 in the miRNA pathway, 402 

we first asked whether predicted targets of these particular miRNAs were de-repressed upon loss of 403 

nhl-2 (Fig. 7B). Although several lines of data previously suggested that NHL-2 functioned with 404 

miRISC in the translational regulation of targets, no genome-wide transcriptome data in nhl-2(ok818) 405 
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mutants were available to test the possibility that NHL-2 and miRISC could impact targets via mRNA 406 

stability or turnover. Using TargetScan (Worm Release 6.2, June 2012), we identified 162 predicted 407 

targets of lsy-6, and 126 predicted targets of the let-7 family of miRNAs. Only 33 of the 162 predicted 408 

lsy-6 target mRNAs and 29 of the 126 let-7 family predicted targets were up-regulated in nhl-2(ok818) 409 

mutants at 25°C. Examining the data the other way around, we asked if the genes up-regulated in nhl-410 

2(ok818) mutants were enriched for let-7 or lsy-6 predicted targets and found no correlation (data not 411 

shown). Overall, these data indicate that miRNA target genes are not regulated by NHL-2 at the level 412 

of transcript abundance or stability, and instead, NHL-2 is likely to exert a predominantly translational 413 

mode of regulation on these genes. 414 

We next asked whether the genes with altered 22G-RNA levels in nhl-2(ok818) mutants were 415 

differentially expressed (Fig. 7C, Supplemental Fig. S7). First, we overlapped the sets of genes 416 

depleted of 22G-RNAs in nhl-2(ok818) mutants at either temperature and were surprised to find only 417 

modest effects overall. Of the 573 genes depleted of 22G-RNAs at 20°C, 78 displayed increased 418 

steady-state mRNA levels (13.6%; 78/573 genes; q-value = 3.3E-14) and 11 had decreased steady-state 419 

mRNA levels (1.9%; 11/573: not significant). At 25°C, 724 genes showed depleted 22G-RNA levels, 420 

and of these 210 were up-regulated (29%; 210/724, q-value = 1.8E-13), while 81 were down-regulated 421 

(11.2%; 81/724: not significant). Thus, overall, genes displaying altered 22G-RNA levels were not 422 

extensively affected at the mRNA level by the loss of nhl-2, and the fraction that were affected at the 423 

mRNA level tended to be repressed by NHL-2 under wild-type conditions. Overall, these data are 424 

consistent with a role for NHL-2 in the biogenesis, but not necessarily the effector steps, of a subset of 425 

22G-RNAs. These data could also point to a role for NHL-2 in regulating the translation of this subset 426 
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of germline small RNA target genes for which the 22G-RNA levels are altered in nhl-2(ok818) 427 

mutants, perhaps in a manner similar to the miRNA pathway. 428 

Next, we examined the steady state levels by evaluating the levels of CSR-1 or WAGO pathway 429 

target genes in nhl-2(ok818) mutants, independent of any changes in 22G-RNA levels. In accordance 430 

with the opposing roles of the WAGO and CSR-1 pathways in germline gene regulation, we anticipated 431 

that the WAGO targets with decreased 22G-RNAs would display increased mRNA levels, while the 432 

CSR-1 targets with decreased 22G-RNAs would display decreased mRNA levels in nhl-2(ok818) 433 

mutants. We observed that a statistically significant subset of WAGO-1 target genes (18%; 141/1718 434 

genes; q-value = 9.9E-8) were de-repressed at 20°C, and 291 out of 1718 WAGO-1 target genes were 435 

de-repressed at 25°C (16.9%; q = 0.6790).  HRDE-1 target genes also tended to be up-regulated in nhl-436 

2(ok818) mutants at both temperatures (141/1661; 8.5% q-value = 9.9E-9 at 20oC, 335/1661; 20.2%, q-437 

value = 9.9E-2 at 25oC). These results are consistent with a cooperative role for NHL-2 in the 438 

repression of WAGO target genes, albeit in a small RNA-independent manner. 439 

Unexpectedly, CSR-1 target mRNAs were significantly up-regulated nhl-2(ok818) mutants, and 440 

this effect occurred specifically at 25oC (2,025/4932; 41%, q-value < 1E-300).  Similarly, when 441 

examined the behavior of total set of genes targeted by germline small RNAs using the glp-4(bn2) 442 

mutant, we found a strong overlap between genes depleted of small RNAs in the glp-4(bn2) mutant and 443 

genes up-regulated in nhl-2(ok818) mutants specifically at 25°C (60%; 2155/3554, q-value < 1E-300) 444 

(Fig. 7C). These results are consistent with a small RNA-independent role for NHL-2 in the repression 445 

of CSR-1 22G-RNA targets, and this activity is antagonistic to the action of CSR-1. Moreover, the 446 

functions of NHL-2 in regulating germline small RNA pathway target genes, especially those of the 447 

CSR-1 pathway, appear to be particularly important at high temperature (25°C) or perhaps other 448 
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stressful conditions. Overall, the changes in steady-state mRNA levels for germline 22G-RNA pathway 449 

target genes point to a role for NHL-2 in regulating transcripts via its intrinsic RNA binding capacity. 450 

 451 

Loss of nhl-2(ok818) Impacts Genes Involved in Gametogenesis, Signaling, and Chromosome 452 

Organization 453 

In an attempt to link alterations in gene expression to changes in phenotype for nhl-2(ok818) 454 

mutants, we next compared the nhl-2(ok818) transcriptome data to spermatogenic versus oogenic 455 

gonad transcriptomes (Ortiz, et al., 2014) (Fig. 7D). First, we found that a large fraction of genes that 456 

were mis-expressed in nhl-2(ok818) mutants at both temperatures were represented in total gonad 457 

transcriptomes (20oC up-regulated genes 41.1%, 417/1014, q-value = 1; 20oC down-regulated genes 458 

69.4%, 1131/1630, q-value = 7.2E-46; 25oC up-regulated genes 75.9%, 2696/3554, q-value = 5.0E-459 

216; 25oC down-regulated genes 56.8%, 2482/4370, q-value = 3.1E-9), indicating that most of the mis-460 

regulated transcripts are expressed in the germline. Next, we found that genes up-regulated in nhl-461 

2(ok818) mutants at 25oC were significantly enriched for gender neutral and oogenesis-associated 462 

transcripts (46.1%, 1637/3554; 25.2%, 894/3554; hypergeometric test q-values = 3.8E-100, and 2.8E-463 

259, respectively), while, for those genes up-regulated at 20oC, only oogenesis-associated transcripts 464 

were enriched (14%, 142/1014; hypergeometric test q-value = 9.2E-8). Interestingly, down-regulated 465 

genes in nhl-2(ok818) mutants at both 20oC and 25oC were enriched for spermatogenesis-associated 466 

transcripts (47%, 766/1630; 35.6%, 1556/4370; hypergeometric test q-value = 1.8E-265 and <1E-300, 467 

respectively). These data point to an overall misregulation of the germline transcriptome that leads to 468 

defects gametogenesis and decreased fertility. 469 
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Given that NHL-2 and CGH-1 have been shown to physically interact, we next compared the 470 

CGH-1 RNA-IP/microarray data with the nhl-2(ok818) transcriptome data (Fig. 7D).  In the germline, 471 

CGH-1 is required to protect specific maternal mRNAs (which overlap with those enriched in the 472 

oogenesis and gender neutral transcriptomes) from degradation, and is also involved in translational 473 

regulation of some transcripts(Boag, et al., 2008). We observed a small, but significant, enrichment 474 

between CGH-1-associated and up-regulated transcripts in nhl-2(ok818) mutants at 25oC, (12.9%, 475 

458/3554; hypergeometric test q-values = 4.2E-76). These data suggest an antagonistic role between 476 

NHL-2 and CGH-1 in the regulation of the stability of these transcripts. To determine if there was any 477 

interaction with NHL-2 and other described germline RNP complexes we examined mRNA targets of 478 

the cytoplasmic poly(A) polyermase GLD-2 targets and the RNA-binding proteins OMA-1 and LIN-479 

41, all three critical for post-transcriptional regulation of the oocyte-to-embryo transitions (Tsukamoto, 480 

et al., 2017). Similar to CGH-1-associated transcripts, GLD-2 target mRNAs (16.5%, 588/3554, q-481 

value = 1.0E-207) and OMA-1 (20.4%, 725/3554, q-value = 7E-67) and LIN-41-enriched transcripts 482 

(13%, 462;3554, q-value = 8E-80) had a small but significant enrichment compared to up-regulated 483 

transcripts in nhl-2(ok818) mutants at 25oC. This is consistent with the strong overlap between genes 484 

expressed during oogenesis and those upregulated in nhl-2(ok818) mutants at 25oC. These data suggest 485 

that NHL-2 does not regulate the majority of mRNAs found in the key pathways governing the oocyte-486 

to-embryo transitions, however, we cannot rule out any translational effects of NHL-2 in this context.  487 

When we performed Gene Ontology (GO) analysis, we found that the genes that are down-488 

regulated in nhl-2(ok818) mutants at 20°C and 25°C shared consistent sets of GO terms, and are 489 

strongly enriched in cuticle/collagen proteins, kinases and phosphatases, and spermatogenesis proteins 490 

(FDR = 6.1E-20 protein kinase, core, 7.9E-25 phosphatase activity, and 1.5E-31 major sperm protein, 491 
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respectively). Genes that are up-regulated in nhl-2(ok818) mutants at 20°C are weakly enriched in 492 

signaling molecules and oxidative metabolism (FDR = 1.4E-12 signal peptide, and 2.8E-3 oxidation 493 

reduction, respectively), and differ from the GO terms observed for the genes up-regulated at 25°C, 494 

which were enriched for cell cycle, kinetochore, RNA-binding and DNA replication and damage repair 495 

(FDR = 5.5E-35 cell cycle, 3.7E-12 kinetochore, 1.1E-16 RNA binding, and 3.7E-14 DNA replication 496 

and 9.6E-10 damage repair GO terms. In addition to analyzing the complete sets of up-regulated or 497 

down-regulated genes in the nhl-2(ok818) mutants, we also performed GO analysis on sets of 498 

transcripts that were expressed in the gonad, and observed comparable results (data not shown). 499 

Collectively, our data point to a role for NHL-2 in regulating the stability of a large fraction of 500 

gonad/germline transcripts that are involved in spermatogenesis, cellular signaling cascades, cuticle 501 

formation, and kinase/phosphatase activities, and chromosome organization. NHL-2 impacts these 502 

mRNAs both positively and negatively, and likely utilizes the intrinsic RNA binding properties of its 503 

NHL domain, perhaps in association with other protein binding partners, to do so.  504 

  505 

DISCUSSION 506 

TRIM-NHL proteins have been shown to play a variety of crucial roles in the context of the 507 

proliferation versus differentiation decision in metazoans. With modular and varied domains, TRIM-508 

NHL proteins can function as E3 ligases as well as sequence-specific RNA binding proteins 509 

(Schwamborn, et al., 2009; Kudryashova, et al., 2005). TRIM-NHL proteins also engage the miRNA 510 

pathway, whereby, remarkably, their functions relate to only a few miRNAs, and impact the efficacy of 511 

the RISC both positively and negatively. With their intrinsic RNA binding activity, TRIM-NHL 512 
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proteins could regulate RNA directly or function at various steps and in virtually any small RNA 513 

pathway. 514 

NHL-2 is one of five TRIM-NHL proteins in C. elegans (paralogs include NHL-1, -3, LIN-41, 515 

and NCL-1). NHL-2 has been shown to modulate miRISC via two specific miRNAs, let-7 and lys-6, 516 

which act in the soma to regulate developmental timing and cell fate transitions in multiple tissues. 517 

Recently it was also shown that NHL-2 is also required for sex determination, although the mechanism 518 

is unclear (McJunkin and Ambros, 2017). In spite of these intriguing roles for NHL-2 in the embryo 519 

and soma, little is known about its functions in germline development. Here, we set out to explore a 520 

role for NHL-2 in the germline and in germ cell development. We found that NHL-2 is required for 521 

proper germline chromatin organization and wild-type levels of fertility at high temperatures and for 522 

the somatic nuclear RNAi pathway. We also identified the AGOs CSR-1 and HRDE-1 and the RdRP 523 

component DRH-3 as genetic and physical interactors of NHL-2. High throughput sequencing of small 524 

RNA populations in nhl-2(ok818) mutants revealed an additional role for NHL-2 in the WAGO-1, and 525 

HRDE-1 22G-RNA pathways, but as previous data suggested, little biologically meaningful 526 

perturbation in the overall miRNA population. Binding assays confirm that NHL-2 is a bona fide RNA 527 

binding protein, and examination of the mRNA transcriptome by mRNA-seq points to NHL-2 as a 528 

post-transcriptional regulator of a substantial set of mRNAs involved in signaling, phosphorylation and 529 

transcription independent of its small RNA activities. Together, our data, implicate NHL-2 as a 530 

regulator of mRNA stability for a significant portion of the genome, a likely translational regulator of 531 

miRNA targets, and a biogenesis factor and/or possible translational regulator of targets in the CSR-1 532 

and WAGO 22G-RNA pathways.  533 
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We first identified a link between NHL-2 and the CSR-1 pathway by genetic and phenotypic 534 

studies, in which loss of CSR-1 pathway factors enhanced the aggregation of diakinetic oocyte 535 

chromosomes in nhl-2(ok818) mutants. Loss of nhl-2 also led to increased levels of H3K9me2 in 536 

pachytene germline nuclei and a spreading of this heterochromatin modification onto autosomes, where 537 

it is not normally observed. This phenotype is consistent with loss of CSR-1 pathway members, 538 

providing another phenotypic link between NHL-2 and the CSR-1 pathway. At this time, we do not 539 

entirely understand why this phenotype emerges in nhl-2 or csr-1 pathway mutants. It is possible that 540 

CSR-1 is not properly recruited to its target genes, due to mis-regulation of CSR-1 target transcripts in 541 

nhl-2(ok818) mutants. This, in turn, could disrupt the formation or maintenance of euchromatin at these 542 

loci and allow for the mis-direction of chromatin modifiers throughout the genome, as observed in csr-543 

1 mutants (Christopher Wedeles and Julie Claycomb, unpublished results). This leads to the aberrant 544 

accumulation of histone modifications throughout the genome, which could impact chromosome 545 

structure. Future ChIP-seq studies for histone modifications and CSR-1 recruitment in nhl-2(ok818) 546 

mutants will enable us to address this possibility. Alternatively, and based on the GO analysis, this 547 

chromosome organization defect could result indirectly from alterations in the levels of key transcripts 548 

associated with chromosome organization and metabolism, as has been proposed for CSR-1 (Gerson-549 

Gurwitz, et al., 2016). 550 

It was somewhat surprising to observe little correlation between the genes depleted of 22G-551 

RNAs and genes with altered mRNA levels in nhl-2(ok818) mutants. Based on the known regulatory 552 

functions of these pathways we expected there would be a slight decrease in the level of CSR-1 target 553 

genes for which the 22G-RNAs were depleted, and an increase in the set of genes targeted by WAGO-1 554 

or HRDE-1 for which the 22G-RNAs were depleted. Instead, we observed little change in the steady-555 
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state levels of transcripts with depleted 22G-RNAs, indicating that NHL-2 is involved in the translation 556 

of these genes, or that there is a different role for NHL-2 with regard to these genes in the 22G-RNA 557 

pathways.   558 

The lack of correlation between mRNAs with altered levels and changes in 22G-RNAs raises 559 

another possibility: that NHL-2 is mainly involved mainly in the biogenesis of a subset of the 22G-560 

RNAs. This model seems plausible for several reasons. First, DRH-3 and NHL-2 physically interact by 561 

co-IP. Second, our metagene analysis of the distribution of 22G-RNAs along the length of target 562 

mRNA transcripts is similar to the pattern observed for drh-3(ne4253) mutants, in which the 22G-563 

RNAs are reduced along the length of the gene body, with most significant decreases present at the 5ʹ 564 

end of the transcript. This pattern is consistent with a role for NHL-2 in the processivity or activity of 565 

the RdRP complex on a subset of CSR-1 targets (Fig. 8). The RNA binding activity of NHL-2 points to 566 

a model whereby NHL-2 could help to identify particular mRNAs as candidates for 22G-RNA 567 

synthesis. Furthermore, because NHL-2 also associates with CSR-1 and HRDE-1 as well as DRH-3, it 568 

could also act as a chaperone required efficient handoff of 22G-RNAs from the RdRP complex to the 569 

Argonaute (Fig. 8). 570 

This potential role for NHL-2 with the RdRP complex is noteworthy for several reasons. First, 571 

because TRIM/NHL proteins have thus far only been implicated in the effector step of miRNA 572 

pathways, this is the first indication that NHL-2 (and thus TRIM/NHL proteins) could also be involved 573 

in the biogenesis of endo-siRNAs. Second, we still have relatively little insight into the factors that 574 

route particular transcripts into the 22G-RNA pathways, and NHL-2 provides an attractive candidate 575 

for one such factor. Third, the role for NHL-2 in biogenesis of a subset of germline 22G-RNAs and the 576 

effector steps of somatic miRNAs demonstrate differential roles for this intriguing protein in the 577 
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germline versus soma, and points to differences in protein binding partners in each of these tissues that 578 

should be examined further.  579 

Notably, many of the up-regulated genes in nhl-2(ok818) mutants were the targets of 22G-580 

RNAs, yet these genes did not display alterations in the levels of 22G-RNAs. These data point to a role 581 

for NHL-2 in regulating transcript stability, in cooperation with the WAGOs, and in opposition to 582 

CSR-1, and suggest a combinatorial regulatory mechanism that engages both small RNA pathways and 583 

bona fide RBPs such as NHL-2. The fact that nhl-2(ok818) mutants display temperature dependent 584 

fertility defects is consistent with several small RNA pathway factors, including both the 585 

piRNA/WAGO and the CSR-1 pathways and points to NHL-2 as a co-factor and/or co-regulator 586 

required for optimal pathway activity under stressful conditions. Although NHL-2 was not identified 587 

previously as a factor in the piRNA or 22G-RNA pathways, our results exemplify the power of 588 

synthetic genetic screens to identify accessory factors involved in the optimal function these pathways.  589 

In light of our data, we propose that NHL-2 acts as a hub of gene regulation, where it works 590 

cooperatively with core factors in a diverse set of pathways that are central to both somatic and 591 

germline gene regulation (Fig.8). NHL-2 localizes to several ribonucleoprotein structures involved in 592 

RNA regulation, including P granules in the germline, CGH-1 granules in the gonad core, and 593 

cytoplasmic P bodies in the soma, placing it in key cellular positions to regulate multiple facets of gene 594 

expression and RNA metabolism throughout development. For instance, P granules and related Mutator 595 

Foci (to which NHL-2 does not appear to localize) are thought to be important sites for the synthesis of 596 

22G-RNAs and 22G-RNA-mediated gene regulation, as RdRP components and Argonautes, including 597 

CSR-1, WAGO-1, and HRDE-1 also localize to these sites (Phillips, et al., 2012; Claycomb, et al., 598 

2009). CGH-1 granules of the gonad core have a complex interplay with P granules and are enriched 599 
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for translational regulators, including CGH-1 and IFET-1. The localization of NHL-2 to both P and 600 

CGH-1 granules in the germline supports the observation that NHL-2 and CGH-1 regulate the stability 601 

of a shared set of germline/oogenesis transcripts, and opens the possibility that NHL-2 and CGH-1 602 

could regulate the translation of a shared set of targets. The intrinsic RNA binding capacity of NHL-2 603 

via its NHL domain also makes it plausible that NHL-2 could regulate its own set of target mRNAs, 604 

independent of small RNA pathways or CGH-1. In fact, we observed that a large number of non-605 

gonadal transcripts are regulated, both positively and negatively, in an NHL-2-dependent manner, and 606 

these transcripts are a separate group from those targeted by 22G-RNAs or CGH-1.   Ultimately, 607 

quantitative proteomic studies, ribosome profiling in nhl-2(ok818) mutants, and NHL-2 RNA-IP or 608 

CLIP-seq experiments will enable us to identify the full repertoire of mechanisms of NHL-2 regulation.  609 

 610 

CONCLUSIONS 611 

 In conclusion, we characterized the roles of NHL-2 in the germline and showed it localizes to P 612 

granules and impacts a subset of 22G-RNAs in both the CSR-1 and WAGO/HRDE pathways. This 613 

germline role in small RNA biogenesis is distinct from its role in the miRNA pathway in the soma, and 614 

implicates NHL-2 in RdRP activity in the germline. Interestingly, also NHL-2 was required for the 615 

nuclear RNAi pathway, suggesting that NHL-2 is a promiscuous co-factor of multiple distinct, but 616 

related small RNA pathways. NHL-2 displays intrinsic RNA binding ability via its NHL domain and 617 

thus is capable of binding and regulating the stability or translation of a large number of germline 618 

transcripts in a small RNA-independent manner. NHL-2 may exemplify a new class of co-factor that is 619 

required for optimal activity of small RNA pathways (both miRNA and 22G-RNA pathways). 620 

Although this type of co-factor appears to be extremely important for the fidelity and robustness of 621 
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developmental gene expression programs, additional examples of such co-factors are not likely to be 622 

identified by forward genetic screens, but may be revealed through similar screens in sensitized 623 

backgrounds. Overall, our study highlights the complex roles of the TRIM-NHL protein NHL-2 and 624 

lays the foundation for deeper mechanistic insights into how these versatile and conserved proteins act 625 

to regulate gene expression in various tissues. 626 

  627 

EXPERIMENTAL PROCEDURES 628 

Worm Strains 629 

 Strains used in this study were Bristol N2 as the wild-type, PRB310 (nhl-2(ok818)), YY186 (nrde-630 

2(gg091)) and WM49 (rde-4(ne301)). Some strains were obtained from the C. elegans Genetics Centre 631 

(CGC, USA) and cultured under standard conditions (Brenner, 1974). 632 

  633 

RNAi 634 

RNAi was performed using the feeding method (Timmons and Fire, 1998). Each bacterial feeding 635 

clone was grown overnight in 2xTY media with 100µg/ml ampicillin and seeded onto NGM plates with 636 

100µg/ml ampicillin and 4mM IPTG. Approximately 10 synchronized L1 animals of each strain were 637 

then pipetted onto each plate. 638 

  639 

Brood Size Assay, Transgenerational and Mortal germline assays                                                                           640 

Brood size assays were performed on animals fed E. coli OP50 or bacteria expressing RNAi clones. 641 

Synchronized populations of each strain were grown at 20°C and 25°C until the fourth larval stage (L4) 642 

and then individual L4 animals were then placed onto pre-seeded NGM plates and returned to their 643 
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respective temperatures. Animals were then transferred to new plates every 12 hours and plates were 644 

scored for progeny after 48 hours. This process was repeated until animals failed to lay new progeny. 645 

Total progeny included viable progeny and unhatched embryos, while embryonic lethality was scored 646 

separately as unhatched embryos.  For transgenerational brood size analysis and Mrt assays, wild-type 647 

and homozygote nhl-2(ok818) worms were grown at 20°C for at least 5 generations and then shifted to 648 

25°C as L1. In the transgenerational assay, F1 and subsequent generations were grown at either 25°C 649 

or 20°C for successive generations and total brood size and embryonic lethality scored. For the Mrt 650 

assay animals were maintained at 25°C and six L2/3 animals were transferred at each generation to 651 

individual plates and counting all progeny. 652 

 653 

Nuclear RNAi assay 654 

The lir-1 RNAi clone was obtained from the ORFome RNAi library and sequence to confirm the 655 

identity.  Synchronised L1 worms were plated on lir-1 or control RNAi plates and grown at 25oC for 72 656 

h and then inspected for arrested or dead worms.  657 

 658 

Gonad Dissection and Immunostaining 659 

One-day-old adults were anesthetized (0.01% tetramisole) and gonads dissected, snap frozen in liquid 660 

nitrogen and processed as described in (Navarro et al., 2001). Rabbit anti-NHL-2 antibodies was raised 661 

to the peptide RHESPATSTNNTQNS (GL Biochem, China). Anti-NHL-2 and anti-CGH-1 primary 662 

antibodies were incubated overnight at 4oC and secondary antibodies for 2 hours at 20oC.  Slides were 663 

washed twice in PBS/ 0.1% Tween-20 for 10 minutes at 20oC and mounted for imaging using Dako 664 

Fluorescent Mounting Media (Dako, Denmark).  Fluorescent images were acquired using an inverted 665 
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Olympus IX81 x 2-UCB microscope (Olympus, Tokyo, Japan) attached to an X-cite series 120Q 666 

fluorescent light box. 667 

 668 

Immunoprecipitation and GST Pull-down Assay  669 

Full-length NHL-2 coding sequence was cloned into modified pDEST-Magic vector pTH6838, 670 

resulting in an N-terminally-tagged NHL-2 expression construct. Escherichia coli C41 cells (Lucigen) 671 

were transformed using NHL-2 expression construct or empty plasmid for tag-only control 672 

experiments. Protein expression was induced by adding IPTG (1mM final) to overnight log phase cell 673 

culture at 37oC, and continued for 3.5-4 hours. Cell lysates were prepared by sonication, and the added 674 

to GST resin for binding. After washing off non-specific binders, tagged NHL-2 or GST protein was 675 

eluted off the resin using 250 mM NaCl, 50 mM Tris-HCl (pH 8.8), 30 mM reduced glutathione, 10 676 

mM BME and 20% Glycerol. Protein concentration and purity were estimated by SDS-PAGE using 677 

standard procedure. Details for NHL-2 expression and purification processes can be found elsewhere 678 

(Ray, et al., 2017; Ray, et al., 2013). 679 

 680 

C. elegans lysate was prepared from gravid wild-type adults in 100 mM NaCl, 50 mM Sodium 681 

phosphate (pH 7.5), 0.05% triton and a combination of protease (Roche) and phosphatase inhibitors. 682 

For each binding experiment, 5 mg of worm lysate was pre-cleared using 25 ul of GST resin. 8 ug of 683 

GST-tagged NHL-2 or 4 ug of GST protein was added to pre-cleared lysate containing fresh 25 ul of 684 

GST resin in 1 ml final reaction volume. The mixture was incubated at 4oC for 3 hours. Proteins 685 

unbound to the resin were removed by washing the resin 5 times with 50 ul 100 mM NaCl, 50 mM 686 

sodium phosphate, 0.05% triton buffer. Bound proteins were eluted by adding 50 ul of 1X SDS gel 687 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


33 
 

loading buffer to the resin followed by heating the samples at 70oC for 1 min. Candidate NHL-2 688 

binding partners were separated on SDS- PAGE and probed by western blots using published C. 689 

elegans antibodies. Tubulin was used for loading controls between GST-NHL-2 and tag only 690 

experiments.     691 

 692 

Protein Expression, RNAcomplete and Fluorescence Anisotropy 693 

RNA pool generation, RNAcompete pulldown assays and microarray hybridizations were performed as 694 

previously described (Ray, et al., 2017; Ray, et al., 2013; Ray, et al., 2009).  Briefly, NHL domain of 695 

NHL-2 (residues 625-1032) was expressed as a GST-tagged fusion protein using the pGEX vector 696 

(pTH6838) (GE Healthcare).  GST-NHL-2 (20 pmoles) and RNA pool (1.5 nmoles) were incubated in 697 

1 mL of Binding Buffer (20 mM HEPES pH 7.8, 80 mM KCl, 20 mM NaCl, 10% glycerol, 2 mM 698 

DTT, 0.1 µg/µL BSA) containing 20 µL glutathione sepharose 4B (GE Healthcare) beads (pre-washed 699 

3 times in Binding Buffer) for 30 minutes at 4°C, and subsequently washed four times for two minutes 700 

with Binding Buffer at 4°C. One-sided Z-scores were calculated for the motifs as described previously 701 

(Ray, et al., 2013).  702 

For fluorescence anisotropy assays, Escherichia coli BL21(DE3) expresing GST-NHL-2 (729-703 

1032) were grown to an OD600 = 0.6-0.8 at 37oC and induced with the addition of 0.5 mM IPTG for 16 704 

hr at 23oC. Cells were resuspended in lysis buffer (100 mM Tris.Cl pH 7.0, 5 mM EDTA, 5 mM DTT 705 

supplemented with 1 x ‘cOmplete’ Protease Inhibitor Cocktail (Roche), passed through a French press 706 

4 times at 16,000-18,000 psi. and the lysate clarified by centrifugation at 8,000 g for 30 minutes. The 707 

GST-NHL-2 fusion protein was purified using a 5 mL GSTrap FF based on the manufactures 708 

specification (GE healthcare). Alterations to the protocol included washing the column 5 x volumes of 709 
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binding buffer (1 x PBS pH 7.3) containing an additional 2 M NaCl to remove any DNA and RNA 710 

bound to NHL-2, followed by 5 column volumes of binding buffer. To elute the bound protein, the 711 

column was washed with elution buffer (1x PBS, 10mM reduced glutathione pH 8.0) and eluted 712 

fractions run on a SDS-PAGE gel to determine which fractions GST-NHL-2 eluted in, these fractions 713 

were then pooled and concentrated to be then further purified using size exclusion on the HiLoad 16/60 714 

Superdex 200.  The NHL domain purity was >95% by SDS-PAGE and was quantitated by OD280 using 715 

an extinction coefficient of 61935 M-1cm-1 (Pace et al., 1995). 716 

 To examine the RNA-binding ability of the NHL domain, a 12-point serial dilution (0-52.81 717 

µM) of GST and GST-NHL-2 NHL domain was incubated with 1 nM 5'-Fluorescein labelled 17 mer 718 

poly-U single-stranded RNA (Dharmacon GE, USA) in assay buffer (50 mM NaCl, 20 mM NaPO4, 2 719 

mM MgCl2, 1 mM DTT, 10% glycerol pH 7.4) for 15 min at room temperature in 96-well non-binding 720 

black plates (Greiner Bio-One). Fluorescence anisotropy was measured in triplicate using PHERAstar 721 

FS (BMG) with FP 488-520-520 nm filters. Data were corrected for anisotropy of RNA alone samples, 722 

and then fitted to a one-site binding model using the Equation, A = (Amax [L])/(KD+[L]), where A is the 723 

corrected fluorescence anisotropy; Amax is maximum binding fluorescence anisotropy signal, [L] is the 724 

NHL concentration, and KD is the dissociation equilibrium constant. Amax and KD were used as fitting 725 

parameters and nonlinear regression was performed using SigmaPlot 13.0. 726 

  727 

Small RNA Cloning and Data Analysis 728 

Total RNA was collected from wild-type and nhl-2(ok818) mutants that were grown to gravid 729 

adulthood at either 20°C or 25°C on OP50 E. coli. We isolated small RNAs and prepared libraries for 730 

Illumina sequencing using a previously described cloning strategy (Tu, et al., 2015; Gu, et al., 2009). 731 
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The only minor modification to these protocols was that we used 0.1X the normal amount of Tobacco 732 

Acid Pyrophosphatase (enabling us to capture a greater proportion of miRNAs, while still sufficiently 733 

recovering 22G-RNAs). Small RNA analysis was conducted using custom Shell and Perl (5.10.0) 734 

scripts (Tu, et al., 2015). The reference genome of C. elegans and genomic annotations were 735 

downloaded from WormBase (Release WS230) (Yook, et al., 2012). The snoRNAs annotated in 736 

GenBank were also included in the category of non-coding RNAs (ncRNAs). The sequences of pre-737 

miRNAs and mature miRNAs were fetched from miRBase (Release 19). After removing the barcodes 738 

from small RNA-seq reads for each sample, the insert size were extracted by allowing at most one 739 

mismatch in the first 6 nt of the 3´ linker (CTGTAG). We first excluded the reads that could be aligned 740 

to the ncRNAs, and then aligned the remaining reads to the genome using Bowtie (Langmead, et al., 741 

2009) without mismatches. Small RNA abundance were normalized to the sequencing depth (the sum 742 

of genome-mapping and junction-mapping reads but those known ncRNAs) as reads per million (rpm). 743 

We used the same lists of CSR-1 targets, WAGO-1 targets, etc. as in (Tu, et al., 2015), and the same 744 

criteria to define the genes depleted of 22G-RNAs in nhl-2(ok818) mutants, i.e., at least 2-fold 745 

depletion in mutants than wild-type and at least 10 rpm reads in wild-type. The significance of the 746 

overlap between gene sets was calculated by hypergeometric test. The miRNA targets were predicted 747 

using TargetScan (Lewis, et al., 2005). 748 

 749 

mRNA-Seq 750 

Total RNA was extracted from triplicate samples of wild-type and nhl-2(ok818) mutants that were 751 

grown to gravid adulthood at either 20°C or 25°C on OP50 E. coli. mRNA-seq libraries were generated 752 

and sequenced at the Donnelly Sequencing Centre (University of Toronto) using the Illumina Tru-Seq 753 
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Stranded mRNA Library Construction Kit and the HiSeq2500 sequencer. The mRNA-seq reads were 754 

mapped to the reference genome by Tophat (Trapnell, et al., 2009) with default parameters. For each 755 

gene, we counted the number of the 22G-RNA reads that are antisense to the corresponding gene 756 

transcript. With the counts, edgeR was used to integrate the three replicates of nhl-2 mutants versus the 757 

three replicates of wild-type. Then, a gene is called to be depleted of 22G-RNAs in nhl-2 mutants if the 758 

corresponding FDR and fold-change (FC) by edgeR satisfy FDR < 0.05 and FC < ½, and the gene has 759 

at least 10 reads per million (rpm) antisense 22G-RNAs reads in at least one of three replicates of wild-760 

type. 761 

 762 

ACCESSION NUMBERS 763 

All small RNA and mRNA Illumina sequencing data have been submitted to the NCBI’s Sequence 764 

Read Archive (SRA), and are included under project accession number SRP115391. 765 

 766 

AUTHOR CONTRIBUTIONS 767 

GMD, JMC, and PRB conceived of and designed all experiments. GMD analyzed brood sizes, 768 

performed germline imaging and phenotype quantification, characterized the NHL-2 antibody, and 769 

performed NHL-2 co-IP experiments with assistance from JWTA. RNC, MJC, and JAW performed 770 

and analyzed the anisotropy RNA-binding experiments. DR performed the RNAcompete assay. MAF 771 

isolated small RNA and mRNA fractions for Illumina sequencing and cloned the small RNA Illumina 772 

libraries. MZW performed DRH-3 co-IP experiments in Fig. S6. ST and ZW performed bioinformatics 773 

analysis. JMC and PRB wrote the manuscript with input from all authors.  774 

 775 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


37 
 

ACKNOWLEDGMENTS 776 

Strains were provided by the Caenorhabditis Genetics Center, which is funded by the National 777 

Institutes of Health Office of Research Infrastructure Programs (P40 OD010440). We thank Inga 778 

Loedige for generously providing the GST-NHL-2 NHL domain construct used for fluorescence 779 

anisotropy. We thank Christopher Wedeles for critical reading of the manuscript. G.M.D was supported 780 

by a Monash University PhD scholarship. Q.M and TRH were funded by CIHR (grant MOP-125894), 781 

J.M.C. was funded by the Canada Research Chairs program, the CIHR (grants MOP-274660 and CAP- 782 

262134), and the University of Toronto Department of Molecular Genetics and Connaught Fund. S. T. 783 

and Z.W. were partly funded by the NIH grant HD078253. P.R.B. was funded by the National Health 784 

and Medical Research Council of Australia (NHMRC) (grant number 0606575). 785 

 786 

SUPPLEMENTAL INFORMATION 787 

Supplemental Information includes seven Supplemental Figures and three Supplemental Tables. 788 

Figure S1. Comparison of representative TRIM-NHL proteins, Related to Figure 1. 789 

Figure S2. The NHL-2 antibody is specific, Related to Figures 1, 2. 790 

Figure S3. Synthetic brood size reduction and embryonic lethality between nhl-2(ok818) and the CSR-1 791 

pathway, Related to Figure 2. 792 

Figure S4. Length and first nucleotide distribution of small RNAs in wild-type and nhl-2(ok818) 793 

mutants at 20°C. 794 

Figure S5. Length and first nucleotide distribution of small RNAs in wild-type and nhl-2(ok818) 795 

mutants at 25°C.  796 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


38 
 

Figure S6. Comparison of abundance (in rpm) for different categories of small RNAs in wild-type and 797 

nhl-2(ok818) mutants at 20°C vs. 25°C.   798 

Figure S7. The distribution of 22G-RNAs is reduced at the ´5-end of CSR-1 targets in nhl-2(ok818) 799 

relative wild-type control at 25°C. Related to Figure 4.  800 

Figure S8.  The RdRP complex is intact in nhl-2(ok818) mutants, Related to Figures 2, 4. 801 

Table S1: Small RNA sequencing statistics of four samples in nhl-2(ok818) mutants and wild-type 802 

animals at 25°C or 20°C, Related to Figures 4, 6. 803 

Table S2: Genes altered in small RNA and mRNA sequencing datasets generated and investigated in 804 

this paper, Related to Figures 4, 6. 805 

Table S3: Master table of small RNA and mRNA-seq data used in this study. 806 

  807 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


39 
 

REFERENCES 808 

Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K., and Tabara, H. (2007). In vitro analyses of the 809 

production and activity of secondary small interfering RNAs in C. elegans. EMBO J 26, 5007-19. 810 

Arnold, A., Rahman, M.M., Lee, M.C., Muehlhaeusser, S., Katic, I., Gaidatzis, D., Hess, D., Scheckel, 811 

C., Wright, J.E., Stetak, A., et al. (2014). Functional characterization of C. elegans Y-box-binding 812 

proteins reveals tissue-specific functions and a critical role in the formation of polysomes. Nucleic 813 

acids research 42, 13353-69. 814 

Ashe, A., Sapetschnig, A., Weick, E.M., Mitchell, J., Bagijn, M.P., Cording, A.C., Doebley, A.L., 815 

Goldstein, L.D., Lehrbach, N.J., Le Pen, J., et al. (2012). piRNAs can trigger a multigenerational 816 

epigenetic memory in the germline of C. elegans. Cell 150, 88-99. 817 

Audhya, A., Hyndman, F., McLeod, I.X., Maddox, A.S., Yates, J.R., 3rd, Desai, A., and Oegema, K. 818 

(2005). A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for 819 

embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol 171, 267-79. 820 

Billi, A.C., Fischer, S.E., and Kim, J.K. (2014). Endogenous RNAi pathways in C. elegans. 821 

WormBook, 1-49. 822 

Boag, P.R., Atalay, A., Robida, S., Reinke, V., and Blackwell, T.K. (2008). Protection of specific 823 

maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans 824 

oogenesis. J Cell Biol 182, 543-57. 825 

Boag, P.R., Nakamura, A., and Blackwell, T.K. (2005). A conserved RNA-protein complex component 826 

involved in physiological germline apoptosis regulation in C. elegans. Development 132, 4975-86. 827 

Bosher, J.M., Dufourcq, P., Sookhareea, S., and Labouesse, M. (1999). RNA interference can target 828 

pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon. Genetics 153, 1245-829 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


40 
 

56. 830 

Buckley, B.A., Burkhart, K.B., Gu, S.G., Spracklin, G., Kershner, A., Fritz, H., Kimble, J., Fire, A., 831 

and Kennedy, S. (2012). A nuclear Argonaute promotes multigenerational epigenetic inheritance and 832 

germline immortality. Nature 489, 447-51. 833 

Cecere, G., Hoersch, S., O'Keeffe, S., Sachidanandam, R., and Grishok, A. (2014). Global effects of 834 

the CSR-1 RNA interference pathway on the transcriptional landscape. Nature structural & molecular 835 

biology 21, 358-65. 836 

Claycomb, J.M., Batista, P.J., Pang, K.M., Gu, W., Vasale, J.J., van Wolfswinkel, J.C., Chaves, D.A., 837 

Shirayama, M., Mitani, S., Ketting, R.F., et al. (2009). The Argonaute CSR-1 and its 22G-RNA 838 

cofactors are required for holocentric chromosome segregation. Cell 139, 123-34. 839 

Conine, C.C., Moresco, J.J., Gu, W., Shirayama, M., Conte, D., Jr., Yates, J.R., 3rd, and Mello, C.C. 840 

(2013). Argonautes promote male fertility and provide a paternal memory of germline gene expression 841 

in C. elegans. Cell 155, 1532-44. 842 

Davis, G.M., Low, W.Y., Anderson, J.W.T., and Boag, P.R. (2017). Exploring Potential Germline-843 

Associated Roles of the TRIM-NHL Protein NHL-2 Through RNAi Screening. G3 7, 3251-3256. 844 

de Albuquerque, B.F., Placentino, M., and Ketting, R.F. (2015). Maternal piRNAs Are Essential for 845 

Germline Development following De Novo Establishment of Endo-siRNAs in Caenorhabditis elegans. 846 

Dev Cell 34, 448-56. 847 

Edwards, T.A., Wilkinson, B.D., Wharton, R.P., and Aggarwal, A.K. (2003). Model of the brain tumor-848 

Pumilio translation repressor complex. Genes Dev 17, 2508-13. 849 

Gerson-Gurwitz, A., Wang, S., Sathe, S., Green, R., Yeo, G.W., Oegema, K., and Desai, A. (2016). A 850 

Small RNA-Catalytic Argonaute Pathway Tunes Germline Transcript Levels to Ensure Embryonic 851 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


41 
 

Divisions. Cell 165, 396-409. 852 

Gu, W., Shirayama, M., Conte, D., Jr., Vasale, J., Batista, P.J., Claycomb, J.M., Moresco, J.J., 853 

Youngman, E.M., Keys, J., Stoltz, M.J., et al. (2009). Distinct argonaute-mediated 22G-RNA pathways 854 

direct genome surveillance in the C. elegans germline. Mol Cell 36, 231-44. 855 

Hammell, C.M., Lubin, I., Boag, P.R., Blackwell, T.K., and Ambros, V. (2009). nhl-2 Modulates 856 

microRNA activity in Caenorhabditis elegans. Cell 136, 926-38. 857 

Hyenne, V., Desrosiers, M., and Labbe, J.C. (2008). C. elegans Brat homologs regulate PAR protein-858 

dependent polarity and asymmetric cell division. Dev Biol 321, 368-78. 859 

Ikeda, K., and Inoue, S. (2012). TRIM proteins as RING finger E3 ubiquitin ligases. Advances in 860 

experimental medicine and biology 770, 27-37. 861 

Karp, X., and Ambros, V. (2012). Dauer larva quiescence alters the circuitry of microRNA pathways 862 

regulating cell fate progression in C. elegans. Development 139, 2177-86. 863 

Kudryashova, E., Kudryashov, D., Kramerova, I., and Spencer, M.J. (2005). Trim32 is a ubiquitin 864 

ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and 865 

ubiquitinates actin. Journal of molecular biology 354, 413-24. 866 

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient 867 

alignment of short DNA sequences to the human genome. Genome biology 10, R25. 868 

Laver, J.D., Li, X., Ray, D., Cook, K.B., Hahn, N.A., Nabeel-Shah, S., Kekis, M., Luo, H., Marsolais, 869 

A.J., Fung, K.Y., et al. (2015). Brain tumor is a sequence-specific RNA-binding protein that directs 870 

maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome biology 16, 871 

94. 872 

Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by 873 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


42 
 

adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. 874 

Loedige, I., Gaidatzis, D., Sack, R., Meister, G., and Filipowicz, W. (2013). The mammalian TRIM-875 

NHL protein TRIM71/LIN-41 is a repressor of mRNA function. Nucleic acids research 41, 518-32. 876 

Loedige, I., Jakob, L., Treiber, T., Ray, D., Stotz, M., Treiber, N., Hennig, J., Cook, K.B., Morris, Q., 877 

Hughes, T.R., et al. (2015). The Crystal Structure of the NHL Domain in Complex with RNA Reveals 878 

the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation. Cell reports 13, 1206-20. 879 

Loedige, I., Stotz, M., Qamar, S., Kramer, K., Hennig, J., Schubert, T., Loffler, P., Langst, G., Merkl, 880 

R., Urlaub, H., et al. (2014). The NHL domain of BRAT is an RNA-binding domain that directly 881 

contacts the hunchback mRNA for regulation. Genes Dev 28, 749-64. 882 

McJunkin, K., and Ambros, V. (2017). A microRNA family exerts maternal control on sex 883 

determination in C. elegans. Genes Dev 31, 422-437. 884 

Nakamura, M., Ando, R., Nakazawa, T., Yudazono, T., Tsutsumi, N., Hatanaka, N., Ohgake, T., 885 

Hanaoka, F., and Eki, T. (2007). Dicer-related drh-3 gene functions in germ-line development by 886 

maintenance of chromosomal integrity in Caenorhabditis elegans. Genes to cells : devoted to molecular 887 

& cellular mechanisms 12, 997-1010. 888 

Neumuller, R.A., Betschinger, J., Fischer, A., Bushati, N., Poernbacher, I., Mechtler, K., Cohen, S.M., 889 

and Knoblich, J.A. (2008). Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian 890 

stem cell lineage. Nature 454, 241-5. 891 

Ni, J.Z., Kalinava, N., Chen, E., Huang, A., Trinh, T., and Gu, S.G. (2016). A transgenerational role of 892 

the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. 893 

elegans. Epigenetics Chromatin 9, 3. 894 

Ortiz, M.A., Noble, D., Sorokin, E.P., and Kimble, J. (2014). A new dataset of spermatogenic vs. 895 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


43 
 

oogenic transcriptomes in the nematode Caenorhabditis elegans. G3 4, 1765-72. 896 

Phillips, C.M., Brown, K.C., Montgomery, B.E., Ruvkun, G., and Montgomery, T.A. (2015). piRNAs 897 

and piRNA-Dependent siRNAs Protect Conserved and Essential C. elegans Genes from Misrouting 898 

into the RNAi Pathway. Dev Cell 34, 457-65. 899 

Phillips, C.M., Montgomery, B.E., Breen, P.C., Roovers, E.F., Rim, Y.S., Ohsumi, T.K., Newman, 900 

M.A., van Wolfswinkel, J.C., Ketting, R.F., Ruvkun, G., et al. (2014). MUT-14 and SMUT-1 DEAD 901 

box RNA helicases have overlapping roles in germline RNAi and endogenous siRNA formation. Curr 902 

Biol 24, 839-44. 903 

Phillips, C.M., Montgomery, T.A., Breen, P.C., and Ruvkun, G. (2012). MUT-16 promotes formation 904 

of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes Dev 26, 905 

1433-44. 906 

Ray, D., Ha, K.C.H., Nie, K., Zheng, H., Hughes, T.R., and Morris, Q.D. (2017). RNAcompete 907 

methodology and application to determine sequence preferences of unconventional RNA-binding 908 

proteins. Methods 118-119, 3-15. 909 

Ray, D., Kazan, H., Chan, E.T., Pena Castillo, L., Chaudhry, S., Talukder, S., Blencowe, B.J., Morris, 910 

Q., and Hughes, T.R. (2009). Rapid and systematic analysis of the RNA recognition specificities of 911 

RNA-binding proteins. Nat Biotechnol 27, 667-70. 912 

Ray, D., Kazan, H., Cook, K.B., Weirauch, M.T., Najafabadi, H.S., Li, X., Gueroussov, S., Albu, M., 913 

Zheng, H., Yang, A., et al. (2013). A compendium of RNA-binding motifs for decoding gene 914 

regulation. Nature 499, 172-7. 915 

Reinke, V., Gil, I.S., Ward, S., and Kazmer, K. (2004). Genome-wide germline-enriched and sex-916 

biased expression profiles in Caenorhabditis elegans. Development 131, 311-23. 917 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


44 
 

Schwamborn, J.C., Berezikov, E., and Knoblich, J.A. (2009). The TRIM-NHL protein TRIM32 918 

activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136, 913-25. 919 

Sengupta, M.S., and Boag, P.R. (2012). Germ granules and the control of mRNA translation. IUBMB 920 

life 64, 586-94. 921 

Seth, M., Shirayama, M., Gu, W., Ishidate, T., Conte, D., Jr., and Mello, C.C. (2013). The C. elegans 922 

CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev 923 

Cell 27, 656-63. 924 

She, X., Xu, X., Fedotov, A., Kelly, W.G., and Maine, E.M. (2009). Regulation of heterochromatin 925 

assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small 926 

RNA-mediated pathway. PLoS Genet 5, e1000624. 927 

Shirayama, M., Seth, M., Lee, H.C., Gu, W., Ishidate, T., Conte, D., Jr., and Mello, C.C. (2012). 928 

piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65-77. 929 

Sonoda, J., and Wharton, R.P. (2001). Drosophila Brain Tumor is a translational repressor. Genes Dev 930 

15, 762-73. 931 

Spike, C.A., Coetzee, D., Eichten, C., Wang, X., Hansen, D., and Greenstein, D. (2014). The TRIM-932 

NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-933 

metaphase transition and growth of Caenorhabditis elegans oocytes. Genetics 198, 1535-58. 934 

Spracklin, G., Fields, B., Wan, G., Becker, D., Wallig, A., Shukla, A., and Kennedy, S. (2017). The 935 

RNAi Inheritance Machinery of Caenorhabditis elegans. Genetics 206, 1403-1416. 936 

Timmons, L., and Fire, A. (1998). Specific interference by ingested dsRNA. Nature 395, 854. 937 

Tocchini, C., and Ciosk, R. (2015). TRIM-NHL proteins in development and disease. Semin Cell Dev 938 

Biol 47-48, 52-9. 939 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


45 
 

Tocchini, C., Keusch, J.J., Miller, S.B., Finger, S., Gut, H., Stadler, M.B., and Ciosk, R. (2014). The 940 

TRIM-NHL protein LIN-41 controls the onset of developmental plasticity in Caenorhabditis elegans. 941 

PLoS Genet 10, e1004533. 942 

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-943 

Seq. Bioinformatics 25, 1105-11. 944 

Tsukamoto, T., Gearhart, M.D., Spike, C.A., Huelgas-Morales, G., Mews, M., Boag, P.R., Beilharz, 945 

T.H., and Greenstein, D. (2017). LIN-41 and OMA Ribonucleoprotein Complexes Mediate a 946 

Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-947 

to-Embryo Transition in Caenorhabditis elegans. Genetics 206, 2007-2039. 948 

Tu, S., Wu, M.Z., Wang, J., Cutter, A.D., Weng, Z., and Claycomb, J.M. (2015). Comparative 949 

functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes. Nucleic 950 

acids research 43, 208-24. 951 

Van Wolfswinkel, J.C., Claycomb, J.M., Batista, P.J., Mello, C.C., Berezikov, E., and Ketting, R.F. 952 

(2009). CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 953 

139, 135-48. 954 

Voronina, E., Seydoux, G., Sassone-Corsi, P., and Nagamori, I. (2011). RNA Granules in Germ Cells. 955 

Cold Spring Harb Perspect Biol. 956 

Wang, G., and Reinke, V. (2008). A C. elegans Piwi, PRG-1, regulates 21U-RNAs during 957 

spermatogenesis. Curr Biol 18, 861-7. 958 

Wedeles, C.J., Wu, M.Z., and Claycomb, J.M. (2013a). A multitasking Argonaute: exploring the many 959 

facets of C. elegans CSR-1. Chromosome research : an international journal on the molecular, 960 

supramolecular and evolutionary aspects of chromosome biology 21, 573-86. 961 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


46 
 

Wedeles, C.J., Wu, M.Z., and Claycomb, J.M. (2013b). Protection of germline gene expression by the 962 

C. elegans Argonaute CSR-1. Dev Cell 27, 664-71. 963 

Wedeles, C.J., Wu, M.Z., and Claycomb, J.M. (2014). Silent no more: Endogenous small RNA 964 

pathways promote gene expression. Worm 3, e28641. 965 

Weiser, N.E., Yang, D.X., Feng, S., Kalinava, N., Brown, K.C., Khanikar, J., Freeberg, M.A., Snyder, 966 

M.J., Csankovszki, G., Chan, R.C., et al. (2017). MORC-1 Integrates Nuclear RNAi and 967 

Transgenerational Chromatin Architecture to Promote Germline Immortality. Dev Cell 41, 408-423 e7. 968 

Yi, Y.H., Ma, T.H., Lee, L.W., Chiou, P.T., Chen, P.H., Lee, C.M., Chu, Y.D., Yu, H., Hsiung, K.C., 969 

Tsai, Y.T., et al. (2015). A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA 970 

Pool in Caenorhabditis elegans. PLoS Genet 11, e1005580. 971 

Yook, K., Harris, T.W., Bieri, T., Cabunoc, A., Chan, J., Chen, W.J., Davis, P., de la Cruz, N., Duong, 972 

A., Fang, R., et al. (2012). WormBase 2012: more genomes, more data, new website. Nucleic acids 973 

research 40, D735-41. 974 

Youngman, E.M., and Claycomb, J.M. (2014). From early lessons to new frontiers: the worm as a 975 

treasure trove of small RNA biology. Frontiers in genetics 5, 416. 976 

  977 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


47 
 

Figure 1. NHL-2 is required for fertility and is enriched in germline granules. (A) Average brood 978 

size and (B) embryonic lethality of nhl-2(ok818) mutants compared to wild-type at 20°C, 23°C and 979 

25°C. Embryonic lethality is significantly different to wild-type animals at higher temperatures but not 980 

significantly different to wild-type at 20°C. Brood size is significantly lower across 20°C, 23°C and 981 

25°C when compared to wild-type animals. ***=P values <0.001, * error bars represent standard error 982 

of mean. (n=5) (C) Representative images of DAPI stained diakinetic oocytes showing abnormal 983 

chromosome morphology in nhl-2(ok818) when compared to wild-type animals. nhl-2(ok818) 984 

chromosomes show aggregation or greater than six chromosomal bodies. Scale bar 5µm, n=20 (D) 985 

Quantification of chromosomal defects in diakinetic oocytes in wild-type and nhl-2(ok818) animals at 986 

25°C.  (E) NHL-2 co-localizes with CGH-1 in P-granules (top panels, Surface) and gonadal core CGH-987 

1 granules (bottom panels, Core). DAPI (blue), NHL-2 (red), CGH-1 (green). Scale bar 10µm.  988 

Immunostaining with affinity purified NHL-2 antibody was reduced to background in nhl-2(ok818) 989 

germlines (Fig. S2A). 990 

  991 

Figure 2. NHL-2 genetically interacts with the CSR-1 22G-RNA pathway. (A) Representative 992 

images of DAPI stained oocyte diakinetic chromosomes showing abnormal chromosome morphology 993 

when drh-3, csr-1, ekl-1 and cde-1 were knocked down by RNAi in wild-type and nhl-2(ok818) 994 

animals. Scale bar 5µm, n=90 oocytes. (B, C, D & E) Chromosomes from each phenotype were binned 995 

in one of four categories: normal, oocytes with >6 chromosomal bodies, aggregated chromosomes, and 996 

enhanced aggregation (where aggregation exceeded that observed in wild-type animals). (F) Pachytene 997 

region of dissected adult male germlines stained with DAPI (red) and H3K9me2 (green) in wild-type 998 

males treated with drh-3(RNAi), csr-1(RNAi) and nhl-2(ok818) mutants. Negative control wild-type 999 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260240doi: bioRxiv preprint 

https://doi.org/10.1101/260240
http://creativecommons.org/licenses/by/4.0/


48 
 

male presented on the far left (WT XO) showing one strong signal of H3K9me2 (yellow arrowheads). 1000 

drh-3(RNAi), csr-1(RNAi) and nhl-2(ok818) mutants display abnormal accumulation or distribution of 1001 

H3K9me2. Scale bar 50µm, n=30 germlines. (G) Quantification of H3K9me2 distribution in germ cells 1002 

from each phenotype scored as normal, elevated, or dispersed from each phenotype. nhl-2(ok818) 1003 

mutants display similar amounts of germ cells with abnormal H3K9me2 markings.  1004 

 1005 

Figure 3. Analysis of nuclear RNAi pathways in nhl-2(ok818) mutants. (A) The nuclear RNAi 1006 

pathway silence somatic targets.	dsRNA targeting the lir-1 mRNA leads to the generation of 22G small 1007 

RNAs in the cytoplasm and the nuclear RNAi pathway uses these 22G RNAs to target the endogenous 1008 

lir-1/let-26 locus for silencing. (B) nhl-2(ok818) worms are resistant to lir-1 RNAi. Percent larval arrest 1009 

represents mean of two biological replicates ± SD; n> 100. (C) nhl-2(ok818) worms display a mortal 1010 

germline phenotype at 25°C. Error bars indicate mean ± SD, n=6.  (D) Analysis of transgenerational 1011 

broad size and embryonic lethality (E) of wild-type and nhl-2(ok818) worms. ****=P values <0.0001, 1012 

***=P values <0.0004, *=P values <0.0418. Error bars indicate mean ± SD, n=37.  1013 

 1014 

Figure 4. NHL-2 interacts physically with the components of the 22G-RNA pathway. (A) Western 1015 

blot using anti-CSR-1 showing no variance between CSR-1 levels in wild-type animals (WT) and nhl-1016 

2(ok818) mutants when equal amounts of protein are loaded. Tubulin is shown as a loading control 1017 

(bottom). CSR-1 co-immunoprecipitates with NHL-2. NHL-2 was immunoprecipitated from one-day-1018 

old adult hermaphrodite extracts and CSR-1 was detected by Western blot. (B) DRH-3 co-1019 

immunoprecipitates with NHL-2. NHL-2 was immunoprecipitated from one-day-old adult 1020 

hermaphrodite extracts and DRH-3 was detected by Western blot. (C) GST-pulldown of NHL-2.  GST-1021 
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NHL-2 was able to pulldown CSR-1 and HRDE-1, but not WAGO-1.  SDS-PAGE gel of purified 1022 

GST-NHL-2 is shown in Supplemental Figure S8B. (D) Western blot using anti-CSR-1 showing no 1023 

variance between CSR-1 levels in wild-type animals (WT) and nhl-2(ok818) mutants when equal 1024 

amounts of protein are loaded. Tubulin is shown as a loading control (bottom).  1025 

 1026 

Figure 5.  Comparison of small RNAs in nhl-2(ok818) mutants to other small RNA and mRNA 1027 

profiles. (A) Venn-pie diagrams show comparisons between sets of genes that are the targets of 22G-1028 

RNAs. For mutant strains, genes are two-fold or greater depleted of 22G-RNAs in mutants relative to 1029 

appropriate wild-type controls, with a minimum of ten rpm. For Argonaute IPs, genes are two-fold or 1030 

greater enriched for 22G-RNAs in the IP relative to a total small RNA input sample, with a minimum 1031 

of ten rpm. Numbers shown in bold demonstrate statistically significant overlap. (B) Venn-pie 1032 

diagrams show comparisons between 22G-RNA gene targets (as in (A), left/rows), and mRNA 1033 

transcriptome data (bottom/columns) from Total gonads (the union of entire male and female gonad 1034 

transcriptomes), male gonads (Spermatogenesis), female gonads (Oogenesis), and gender neutral genes 1035 

(Ortiz, et al., 2014)c(the overlap between genes expressed in both male and female gonads). Numbers 1036 

shown in bold demonstrate statistically significant overlap. (C-E) Distribution of 22G-RNA reads in 1037 

nhl-2(ok818) mutants along the scaled gene bodies are shown for CSR-1 target genes (C), WAGO-1 1038 

target genes (D), and HRDE-1 target genes (D) in nhl-2(ok818) and wild-type animals.  1039 

 1040 

Figure 6. The NHL domain of NHL-2 binds RNA. (A) Side and top view of the homology-based 1041 

structure prediction of the NHL-2 NHL domain and its six β-propellers marked blue.  Electrostatic 1042 

surface representation of the NHL-2 NHL domain showing negative regions in blue and positive in red 1043 
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is shown below. The six blades of the β propeller of the NHL domain are numbered (I–VI). (B) 1044 

Identification of RNA-binding motif of purified GST-NHL-2-NHL domain by RNAcompete. The top 1045 

five high-scoring 7-mers, and the scatter plots, displaying Z scores and motifs for the two halves of the 1046 

RNA pool (set A and set B) are shown. Sequence logos were derived by aligning the top ten high-1047 

scoring 7-mers.  (C) Quantitative assessment of RNA-binding of GST-NHL-2 NHL domain and GST. 1048 

The fluorescence anisotropy of reactions contained 1 nM fluorescently-labeled 17mer poly-U single-1049 

stranded RNA and increasing concentrations of GST-NHL-2 NHL domain (closed circles) or GST 1050 

alone (open circles).   1051 

 1052 

Figure 7. Analysis of the 22G-RNAs targeting the nhl-2(ok818) mRNA transcriptome. (A) Venn-1053 

pie diagrams indicate the number of genes enriched in or depleted of 22G-RNAs in nhl-2(ok818) 1054 

mutants relative to wild-type worms at 20°C and 25°C, as determined using EdgeR. Numbers in bold 1055 

demonstrate statistically significant overlap. Each row corresponds to a gene set, with its label on the 1056 

right. Each Venn-pie diagram indicates the overlap between the gene set of its row and the gene set 1057 

whose label is in its column. (B) Venn-pie diagrams show comparisons between the predicted targets of 1058 

the miRNAs let-7 and lsy-6 (determined using TargetScan6), and genes that are mis-regulated in nhl-1059 

2(ok818) mutants. (C) Venn-pie diagrams show comparisons between the genes depleted of 22G-1060 

RNAs in nhl-2(ok818) mutants and the genes enriched in 22G-RNAs in CSR-1, WAGO-1, or HRDE-1 1061 

IP samples with nhl-2(ok818) mRNA-seq data. (D) Venn-pie diagrams show comparisons between nhl-1062 

2(ok818) mRNA-seq data and genes depleted of 22G-RNAs in glp-4(bn2) mutants (which have very 1063 

few germ cells) or germline expressed gene mRNA-seq data (Ortiz et al., 2014) (as in Figure 4B). 1064 

 1065 
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Figure 8. Model: NHL-2 acts as a hub of gene regulatory activity. (A) NHL-2 interacts with the 1066 

miRNA pathway in the soma, where it may regulate the translation of let-7 and lsy-6 targets. The NHL 1067 

RNA binding domain of NHL-2 may help to reinforce target selection of miRISC in this pathway. (B) 1068 

In the germline, NHL-2 interacts with the 22G-RNA pathway, specifically via genetic and physical 1069 

interactions with the RdRP helicase DRH-3. In this capacity, NHL-2 could impact the processivity or 1070 

reloading of the RdRP complex on mRNA templates, and/or could aid in target mRNA selection via its 1071 

RNA binding capacity. Owing to its genetic and physical interaction with CSR-1, NHL-2 could also be 1072 

involved in the handoff of 22G-RNAs from the RdRP complex to Argonaute. If NHL-2 mediates gene 1073 

regulation via 22G-RNAs, it is likely to be at the level of translation. (C) The intrinsic RNA binding 1074 

capacity of NHL-2 could enable it to regulate a large number of transcripts in the soma and germline, 1075 

both positively and negatively. This activity could be influenced by additional binding partners, and we 1076 

speculate that it may occur in P bodies (soma) and P granules (germline) based on the localization 1077 

pattern of NHL-2.   1078 
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Supplemental figures 1079 

Figure S1. Comparison of representative TRIM-NHL proteins. 1080 

(A) Domain organization of selected TRIM-NHL family proteins.  The TRIM-NHL family of proteins 1081 

are conserved among metazoans, however, they often display variable domain organization.  Canonical 1082 

TRIM-NHL proteins have a three zinc-binding domains (a RING finger, one or two B-box motifs) and 1083 

a coiled-coil domain in the N-terminal half of the proteins, and a series of NHL repeats at the C-1084 

terminal end of the protein. Examples shown are from: Drosophila melanogaster (BRAT and Mei-1085 

P26), C. elegans (NCL-1 and NHL-2) and Homo sapiens TRIM32.  1086 

 1087 

Figure S2. The NHL-2 antibody is specific. 1088 

(A) NHL-2 and CGH-1 staining of dissected nhl-2(ok818) hermaphrodite germlines demonstrates that 1089 

the NHL-2 antibody is specific and that CGH-1 localizes properly in the absence of nhl-2. Scale bar 50 1090 

µm. (B) NHL-2 and CGH-1 co-staining of wild-type embryos show that NHL-2 is enriched in the germ 1091 

cell lineage (P lineage, posterior/right), where it is found in the cytoplasm and in P granules 1092 

(arrowheads). Scale bar 10 µm. (C) NHL-2 and CAR-1 co-staining of temperature sensitive mutant 1093 

cgh-1(tn691) grown at the restrictive temperature shows that NHL-2 does not co-localize with CAR-1 1094 

in the solid sheet in the gonad core. Arrowheads point to the CAR-1 solid sheets. Scale bar 10 µm.  1095 

 1096 

Figure S3. Synthetic brood size reduction and embryonic lethality between nhl-2(ok818) and the 1097 

CSR-1 pathway. (A) Knockdown of CSR-1 pathway genes in nhl-2(ok818) mutants results in 1098 

synthetically reductions in brood size that are significantly different than knockdown in wild-type 1099 

animals. (B) Average embryonic lethality of unhatched embryos from the same brood size assay. 1100 
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Knockdown of CSR-1 pathway genes in nhl-2(ok818) mutants results in significantly higher embryonic 1101 

lethality compared to knockdown in wild-type animals. ***=P values<0.001, error bars represent 1102 

standard error of mean. n=5. 1103 

 1104 

Figure S4. The RdRP complex is intact in nhl-2(ok818) mutants. (A) Western blot using anti-CSR-1105 

1 showing no variance between CSR-1 levels in wild-type animals (WT) and nhl-2(ok818) mutants 1106 

when equal amounts of protein are loaded. Tubulin is shown as a loading control (bottom) (B) SDS-1107 

PAGE gel of purified GST-NHL-2 and GST used in GST Pull-down experiments.  Arrow heads 1108 

indicate the positions of GST-NHL-2 and GST (C) An IP of DRH-3 also precipitates the RdRP 1109 

complex components EKL-1 and EGO-1 in wild-type and nhl-2(ok818) mutants at 25°C. Western blots 1110 

are probed with anti-EGO-1 (top), anti-DRH-3 (center), anti-EKL-1 (bottom). Sizes are marked, and a 1111 

mock IP (beads only) is shown as a negative control. All antibodies are as used in (Claycomb et al., 1112 

2009, Gu et al., 2009).  (D) A darker exposure of the DRH-3 and mock IP lanes.  1113 

 1114 

 1115 

Figure S5. Analysis of small RNA populations in nhl-2(ok818) mutants and wild-type animals at 1116 

20°C. (A) Length and first nucleotide distribution of small RNAs in wild-type and nhl-2(ok818) 1117 

mutants at 20°C. Small RNA abundance is measured in reads per million (rpm) for all small RNAs that 1118 

are mapped to the genome or exon-exon junctions. (B) Proportions of reads which were aligned to 1119 

21U-RNAs (piRNAs), miRNAs, sense (S) mRNAs, antisense (AS) mRNAs, pseudogenes, 1120 

RepeatMasker annotated repeat elements (RMSK), and the unannotated portion of the genome, with 1121 
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the first nucleotide distribution of small RNAs in each category (Note that all classes except for 1122 

miRNAs and piRNAs include 22G-RNAs and 26G-RNAs).  1123 

 1124 

Figure S6. Analysis of small RNA populations in nhl-2(ok818) mutants and wild-type animals at 1125 

25°C. (A) Length and first nucleotide distribution of small RNAs in wild-type and nhl-2(ok818) 1126 

mutants at 25°C. Small RNA abundance is measured in reads per million (rpm) for all small RNAs that 1127 

are mapped to the genome or exon-exon junctions. (B) Proportions of reads which were aligned to 1128 

21U-RNAs (piRNAs), miRNAs, sense (S) mRNAs, antisense (AS) mRNAs, pseudogenes, 1129 

RepeatMasker annotated repeat elements, and the unannotated portion of the genome, with the first 1130 

nucleotide distribution of small RNAs in each category (Note that all classes except for miRNAs and 1131 

piRNAs include 22G-RNAs and 26G-RNAs).  1132 

 1133 

Figure S7. Comparison of abundance (in ppm) for different categories of small RNAs in wild-1134 

type (green) and nhl-2(ok818) mutants (blue) at 20°C vs. 25°C.  Biological replicates are indicated 1135 

as 1, 2 and 3. 1136 

 1137 

Figure S8. The distribution of 22G-RNAs is reduced at the 5´-end of CSR-1 targets in nhl-1138 

2(ok818) relative wild-type control. Along the scaled gene body, the coordinates of the centroids of 1139 

the areas under the 22G-RNA density curves (Fig. 4C-E) were calculated and compared. The centroid 1140 

positions for 4,392 CSR-1 target genes between mutants and wild-type controls were compared in 1141 

boxplot with Wilcoxon rand sum test p-values (A) and scatter plots (B,C) with t-test p-values.  1142 

 1143 
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Supplemental Tables 1144 

Table S1: Small RNA sequencing statistics of four samples in nhl-2(ok818) mutants and wild-type 1145 

animals at 25°C or 20°C. 1146 

Table S2: Genes altered in small RNA sequencing datasets generated and investigated in this paper. 1147 

Table S3: Master table of small RNA and mRNA-seq data used in this study. 1148 
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