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Analysis of ‘big data’ frequently involves statistical
comparison of millions of competing hypotheses to dis-
cover hidden processes underlying observed patterns of
data, for example in the search for genetic determinants of
disease in genome-wide association studies (GWAS). Con-
trolling the family-wise error rate (FWER) is considered
the strongest protection against false positives, but makes
it difficult to reach the multiple testing-corrected signif-
icance threshold. Here I introduce the harmonic mean
p-value (HMP) which controls the FWER while greatly
improving statistical power by combining dependent tests
using generalized central limit theorem. I show that the
HMP easily combines information to detect statistically
significant signals among groups of individually nonsignif-
icant hypotheses in examples of a human GWAS for neu-
roticism and a joint human-pathogen GWAS for hepati-
tis C viral load. The HMP simultaneously tests all com-
binations of hypotheses, allowing the smallest groups of
hypotheses that retain significance to be sought. The
power of the HMP to detect significant hypothesis groups
is greater than the power of the Benjamini-Hochberg pro-
cedure to detect significant hypotheses, even though the
latter only controls the weaker false discovery rate (FDR).
The HMP has broad implications for the analysis of large
datasets because it enhances the potential for scientific dis-
covery.

Analysis of ‘big data’ has the potential to transform society,
not least through improving our understanding of the ways
in which genetics influences human traits such as health and
disease risk.1 However, large datasets present unique chal-
lenges. One such challenge now faces geneticists designing
future GWAS. To date, participants have typically been typed
at around 600,000 genetic variants spread across the 3.2 bil-
lion base-pair genome. With the rapidly decreasing costs of
DNA sequencing, direct whole genome sequencing (WGS)
may soon become routine, raising the possibility of detecting
associations at ever more variants.2, 3 However, this presents
a paradox because increasing the number of tests of associ-
ation requires more stringent p-value correction for multiple
testing, reducing the probability of detecting any individual
association. The idea that analysing more data may lead to
fewer discoveries is counter-intuitive, and suggests a flaw of
logic.

The problem of testing very many hypotheses while keep-
ing the appropriate false positive rate under control is a long-

standing issue in large-scale applications of statistics. The
family-wise error rate (FWER) is defined as the probability of
falsely rejecting a null in favour of an alternative hypothesis
in one or more of all tests performed. Controlling the FWER
when some subset of the alternative hypotheses tested might
be true is considered the strongest form of protection against
false positives.

However, the simple and widely-used Bonferroni method
for controlling the FWER tends to be conservative, especially
when the individual tests are positively correlated, as often
occurs when alternative hypotheses are compared against the
same data. In practice, the conservative nature of Bonferroni
correction exacerbates the stringent criterion of controlling
the FWER, jeopardizing sensitivity to detect true signals.

Alternatives to controlling the FWER have been proposed
based on arguments for less stringency. Controlling the false
discovery rate (FDR) guarantees that among the significant
tests, the proportion in which the null hypothesis is incor-
rectly rejected in favour of the alternative is limited.4 The
widely-used Benjamini-Hochberg procedure4 for controlling
the FDR shares with the Bonferroni method a robustness to
positive correlation between individual tests,5 but does not
share the consequent problem of becoming overly conserva-
tive. These advantages have increased the popularity of FDR
control, but necessitate the acceptance of a less rigorous stan-
dard of control than the FWER, which in practice can produce
large numbers of false positives.

Bayesian statistics experiences the same fundamental prob-
lem because the posterior odds of any individual hypothesis
test are inevitably decreased by increasing the number of al-
ternative hypotheses. However, model averaging using Bayes
factors allows alternative hypotheses to be combined, so that
comparing a group of alternatives against a common null may
rule out the null hypothesis collectively. In the case of GWAS,
even if no individual variant shows sufficiently strong evi-
dence of association in a region, the model-averaged signal
across that region may still achieve sufficiently strong pos-
terior odds.6, 7 Combining tests in this way makes an asset
of more data by creating the potential for more fine-grained
discovery when the signal is sufficiently strong without the
liability of requiring that all hypotheses are evaluated individ-
ually at the higher level of statistical stringency.

However, there is no general method for combining ev-
idence across hypotheses by model averaging in classical
statistics. While some Bayesian arguments advocate sim-
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ply abandoning classical statistics,8 others show that p-values
from likelihood-based inference are mathematically closely
related to Bayesian quantities.9, 10 Pragmatically, the diffi-
culty of specifying prior information, a tendency for computa-
tionally slower methods, and inertia, mean that application of
Bayesian methods by practitioners still lags behind classical
approaches in many settings, including GWAS. Here I show
that competing hypothesis tests can be combined quickly and
easily through the harmonic mean p-value, improving statis-
tical power and the prospects for discovery using classical
statistics, and prompting a reevaluation of the issue of con-
trolling false positive rates in analyses of big data.

Results
The harmonic mean p-value
For observed data X consider L mutually exclusive alterna-
tive hypotheses Mi, i = 1 . . . L, all with the same nested
null hypothesis M

0

. Suppose each alternative has been tested
against the null to produce a p-value, pi. The main result of
this paper is that the weighted harmonic mean p-value of any
subset R of the p-values,

�
pR =

P

i2R wi
P

i2R wi/pi
, (1)

(i) combines the evidence in favour of the group of alterna-
tive hypotheses R against the common null, (ii) is an approx-
imately well-calibrated p-value for small values, and (iii) the
following test controls the strong-sense family-wise error rate
(FWER) at level approximately ↵ for ↵  0.05, no matter
how many subsets are tested:

If �
pR  ↵wR: Reject M

0

in favour of MR

Otherwise: Do not reject M
0

for MR
(2)

where alternative hypothesis Mi has weight wi,
PL

i=1

wi =

1 and wR =

P

i2R wi.
Generalized central limit theorem (e.g. ref11) can be used

to obtain a p-value that becomes exact for large groups of hy-
potheses because 1/�pR tends towards a Landau distribution,12

which has probability density function

fLandau(x |µ,�) =

1

⇡

Z 1

0

e�
1
� t(x�µ)� 2

⇡ t log t
sin(2t) dt

This allows tables of significance thresholds to be computed
for interpretation of the HMP (Table 1), and computation of a
better-calibrated p-value using the HMP as a test statistic:

p�
p

=

Z 1

1/
�
p
fLandau

⇣

x | logL+ 0.423,
⇡

2

⌘

dx. (3)

Table 1 shows that direct interpretation of the HMP �
p tends

to be anti-conservative but very closely approximates p�
p

for
small values and small groups of alternative hypotheses.

Use of the HMP has several helpful properties that arise
from generalized central limit theorem (see Supplementary
Methods). It is

1. Robust to positive dependency between the individual p-
values.

2. Insensitive to the exact number of tests.
3. Robust to the distribution of weights w.
4. Most influenced by the smallest p-values.

The HMP outperforms Bonferroni and Simes13 correc-
tion. This latter point means that whenever the Benjamini-
Hochberg procedure,4 which controls only the FDR, finds sig-
nificant hypotheses, the HMP will find significant hypotheses
or groups of hypotheses. The HMP complements Fisher’s
method for combining independent p-values,14 because the
HMP is more appropriate when (i) rejecting the null implies
that only one alternative hypothesis may be true, and not all
of them (ii) the p-values might be positively correlated, and
cannot be assumed independent.

In the next section the theory giving rise to the HMP is
explained. Readers most interested in application of the HMP
can skip to the following sections.

Model-averaged mean maximum likelihood
A classical analogue of the Bayes factor is the maximized
likelihood ratio, which measures the evidence for the alter-
native hypothesis against the null:

Ri =

sup{Pr(X|✓) : ✓ 2 ⇥Mi}
sup{Pr(X|✓) : ✓ 2 ⇥M0}

.

In a likelihood ratio test (LRT), the p-value is calculated as
the probability of obtaining an Ri as or more extreme if the
null hypothesis were true:

pi = Pr(ri � Ri|✓ 2 ⇥M0).

For nested hypotheses (⇥M0 2 ⇥Mi ), Wilks’ theorem15 ap-
proximates the null distribution of Ri as LogGamma(↵ =

⌫/2,� = 1) when there are ⌫ degrees of freedom.
The idea motivating this paper was to develop a classical

analogue to the model-averaged Bayes factor by deriving the

|R| ↵ = 0.05 ↵ = 0.01 ↵ = 0.001
10 0.040 0.0094 0.00099

100 0.036 0.0092 0.00099
1 000 0.034 0.0090 0.00099

10 000 0.031 0.0088 0.00098
100 000 0.029 0.0086 0.00098

1 000 000 0.027 0.0084 0.00098
10 000 000 0.026 0.0083 0.00098

100 000 000 0.024 0.0081 0.00098
1 000 000 000 0.023 0.0080 0.00097

Table 1: Significance thresholds ↵|R| for the HMP �
pR for varying

numbers of alternative hypotheses |R| and false positive rates ↵.
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null distribution for the mean maximized likelihood ratio,

¯R =

L
X

i=1

wi Ri, (4)

where the weights could take into account prior infor-
mation and the power of each test. Formally this means the
model is treated as a random effect. Choice of weights is
considered further in the Supplementary Methods.

The distribution of ¯R cannot be approximated by central
limit theorem because the LogGamma distribution is heavy
tailed, with undefined variance. Instead generalized cen-
tral limit theorem can be used,11 which states that for equal
weights (wi = 1/L) and independent and identically dis-
tributed Ris,

R
1

+ · · ·+RL
d�! aL + bL R� (5)

where � = 1 is the heavy-tail index of the
LogGamma(⌫/2, 1) distribution, aL and bL are con-
stants and R� is a Stable distribution with tail index �. When
⌫ = 2, the specific form of the Stable distribution is the
Landau. The assumptions of equal weights, independence
and identical degrees of freedom can be relaxed. Full
details of the Stable distribution approximation are in the
Supplementary Methods.

Notably, when ⌫ = 2 and the assumptions of Wilks’ theo-
rem are met, the p-value equals the inverse maximized likeli-
hood ratio:

pi = Pr (ri � Ri|✓ 2 ⇥M0)

= Pr

�

�2

⌫=2

� 2 logRi

�

= R�1

i ,

so the mean maximized likelihood ratio equals the inverse
HMP:

¯R = 1/
�
p. (6)

Under these conditions, interpreting ¯R and the HMP are ex-
actly equivalent. This equivalence motivates use of the HMP
more generally because

1. The HMP will capture similar information to ¯R regard-
less of the degrees of freedom.

2. The Landau distribution gives an excellent approxima-
tion for ¯R with ⌫ = 2, and so for 1/�p.

3. Combining pis rather than Ris automatically accounts
for differences in degrees of freedom.

Further, the HMP is approximately well calibrated because
the LogGamma cumulative distribution function is regularly
varying, meaning that the model-averaged p-value (Equation
3) is approximated by (e.g. ref16)

p�
p

= Pr

 

L
X

i=1

wi ri � 1/
�
p

!

⇡
 

L
X

i=1

w�
i

!

Pr

⇣

ri � 1/
�
p
⌘

,
�
p ! 0

=

�
p. (7)

Directly interpreting the HMP using Equation 2 constitutes
a multilevel test in the sense that any significant subset of hy-
potheses implies the HMP of the superset will also be signifi-
cant because

If �
pR  ↵wR

Then �
p =

✓

wR
�
p
�1

R + wR0
�
p
�1

R0

◆�1

 w�1

R
�
pR  ↵. (8)

This means that (i) the HMP is a closed testing procedure17

that controls the strong-sense FWER, (ii) the HMP is more
powerful than Bonferroni and Simes correction because the
HMP is always smaller than the p-values for those tests, and
therefore (iii) the HMP will produce significant results when-
ever the Simes-based Benjamini-Hochberg (BH) procedure
does, even though BH only controls the less-stringent FDR.
However, these results are only exact when the false positive
rate ↵ is arbitrarily small. In practice, the exact significance
threshold varies by the number of hypotheses combined (Ta-
ble 1).

So Equation 2 is formally a shortcut procedure that math-
ematically guarantees either superior power over Bonferroni
and Simes or strong sense control of the FWER depending on
whether ↵ or ↵|R| is employed, respectively. Use of the lat-
ter threshold is exact up to the order of the Stable distribution
approximation, and equivalent to applying a weighted Bon-
ferroni correction to Equation 3. I recommend the use of this
more exact test, available in the R package harmonicmeanp,
and upon which all subsequent analyses in the main text are
based. Analyses based on direct interpretation of the HMP
are also presented in the Supplement, and reveal the practical
differences between the approaches to be small for ↵ = 0.05.

HMP enables adaptive multiple testing correc-
tion by combining p-values
That the Bonferroni method for controlling the FWER can
be overly stringent, especially when the tests are non-
independent, has long been recognized. In Bonferroni cor-
rection, a p-value is deemed significant if p  ↵/L, which
becomes more stringent as the number of tests L increases.
Since human GWAS began routinely testing millions of vari-
ants by statistically imputing untyped variants, a new conven-
tion was adopted in which a p-value is deemed significant if
p  5⇥10

�8, a rule that implies the effective number of tests
is no more than L = 10

6. Several lines of argument were used
to justify this ad hoc threshold,19, 20 most applicable only to
human GWAS.

In contrast, the HMP affords strong control of the FWER
while avoiding both ad hoc rules and the undue stringency
of Bonferroni correction, an advantage that increases when
tests are non-independent. To show how the HMP can re-
cover significant associations among groups of tests that are
individually non-significant, I reanalysed a GWAS of neuroti-
cism,18 defined as a tendency towards intense or frequent neg-
ative emotions and thoughts.21 Genotypes were imputed for
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Figure 1: Results of a GWAS of neuroticism in 170 911 people.18 This Manhattan plot shows the significance of association between
neuroticism and L = 6524 432 variants (dark and light grey points) and overlapping regions of length 10, 100, 1 000 and 10 000 kb (blue,
cyan, green and yellow bars), entire chromosomes (orange bars) and the whole genome (red bar). Significance is defined as the � log10

adjusted p-value, where the p-value for region R is defined by Equation 3, and adjusted by a factor w�1
R to enable direct comparison to the

threshold ↵ = 0.05 (black dashed line). The ad hoc threshold of ↵ = (5⇥ 10

�8
)L is shown for comparison (grey dotted line).

L = 6524 432 variants across 170 911 individuals. I used the
HMP to perform model-averaged tests of association between
neuroticism and variants within contiguous regions of 10, 100
and 1000 kilobases (kb), 10 megabases (Mb), entire chromo-
somes and the whole genome, assuming equal weights across
variants.

Figure 1 shows the p-value from Equation 3 for each re-
gion R adjusted by a factor w�1

R to enable direct compari-
son to the significance threshold ↵ = 0.05. Similar results
were obtained from direct interpretation of the HMP (Figure
S1). Model averaging tends to make significant and near-
significant adjusted p-values more significant. For example,
for every variant significant after Bonferroni correction, the
model-averaged p-value for the corresponding chromosome
was found to be at least as significant.

Model-averaging increases significance more when com-
bining a group of comparably significant p-values, e.g. the top
hits in chromosome 9. The least improvement is seen when
one p-value is much more significant than the others, e.g. the
top hit in chromosome 3. This behaviour is predicted by the
tendency of harmonic means to be dominated by the smallest
values. In the extreme case that one p-value dominates the
significance of all others, the HMP test becomes equivalent to
Bonferroni correction. This implies that Bonferroni correc-
tion might not be improved upon for ‘needle-in-a-haystack’
problems. Conversely, dependency among tests actually im-
proves the sensitivity of the HMP because one significant test
may be accompanied by other correlated tests that collectively
reduce the harmonic mean p-value.

In some cases, the HMP found significant regions where
none of the individual variants were significant. For example,
no variants on chromosome 12 were significant by Bonfer-

roni correction nor by the ad hoc genome-wide significance
threshold of 5 ⇥ 10

�8. However, the HMP found significant
10Mb regions spanning several peaks of non-significant in-
dividual p-values. One of those, variant rs7973260, which
showed an individual p-value for association with neuroticism
of 2.4 ⇥ 10

�7, had been reported as also associated with de-
pressive symptoms (p = 1.8⇥ 10

�9). Such cross-association
or ‘quasi-replication’, in which a variant is near-significant
for the trait-of-interest and significant for a related trait, can
be regarded as providing additional support for the variant’s
involvement in the trait-of-interest.18

In chromosome 3, individual variants were found to be sig-
nificant by the ad hoc threshold of 5⇥ 10

�8, but neither Bon-
ferroni correction nor the HMP agreed those variants or re-
gions were significant at a FWER of ↵ = 0.05. Indeed the
HMP found chromosome 3 non-significant as a whole. Vari-
ant rs35688236, which had the smallest p-value on chromo-
some 3 of 2.4 ⇥ 10

�8, had not validated when tested in a
quasi-replication exercise that involved testing variants asso-
ciated with neuroticism for association with subjective well-
being or depressive symptoms.18

These observations illustrate that the HMP adaptively com-
bines information among groups of similarly significant tests
where possible, while leaving lone significant tests subject to
Bonferroni-like stringency, providing a general approach to
combining p-values that does not require specific knowledge
of the dependency structure between tests.
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Figure 2: Joint human-pathogen GWAS reanalysis of viral load in 410 HCV genotype 3a-infected white Europeans.22 All pairs of human
nucleotide variants and viral amino acid variants were tested for association. Interactions between human and virus variants’ effects on
viral load were not constrained to be additive. A. Significance of 330 320 340 tests plotted by position of both the human and viral variant.
B. Significance of 399 420 human variants model-averaged using the HMP over every possible interaction with 827 viral variants and vice
versa. The significance thresholds controlling the FWER at ↵ = 0.05 are indicated (black dashed lines): ↵/(LHLP ), ↵/LH and ↵/LP .

HMP allows large-scale testing for higher-order
interactions without punitive thresholds

Scientific discovery is currently hindered by avoidance of
large-scale exploratory hypothesis testing for fear of attract-
ing multiple testing correction thresholds that render signals
found by more limited testing no longer significant. A good
example is the approach to testing for pairwise or higher-
order interactions between variants in GWAS. The Bonferroni
threshold for testing all pairwise interactions invites a thresh-
old (L + 1)/2 times more stringent than the threshold for
testing variants individually, and strictly speaking this must
be applied to every test, even though this is highly conserva-
tive because of the dependency between tests. The alternative
of controlling the FDR risks a high probability of falsely de-
tecting artefacts among any genuine associations discovered.
Therefore interactions are not usually tested for.

To show how model-averaging using the HMP greatly al-
leviates this problem, I reanalysed human and pathogen ge-
netic variants from a GWAS of pre-treatment viral load in
hepatitis C virus (HCV)-infected patients.22 Jointly analysing
the influence of human and pathogen variation on infection
is an area of great interest, but requires a Bonferroni thresh-
old of ↵/(LH LP ) when there are LH and LP variants in
the human and pathogen genomes respectively, compared to

↵/(LH+LP ) if testing the human and pathogen variants sep-
arately. In this example, LH = 399 420 and LP = 827.

In the original study, a known association with viral load
was replicated at human chromosome 19 variant rs12979860
in IFNL4 (p = 5.9⇥ 10

�10), below the Bonferroni threshold
of 1.3 ⇥ 10

�7. The most significant pairwise interaction I
found, assuming equal weights, involved the adjacent variant,
rs8099917, with p = 2.2 ⇥ 10

�10. However, this did not
meet the more stringent Bonferroni threshold of 1.5 ⇥ 10

�10

(Figure 2A). If the original study’s authors had performed and
reported all 330 million tests, they could have been compelled
to declare the marginal association in IFNL4 non-significant,
despite what intuitively appears like a clear signal.

Model averaging using the HMP reduces this disincentive
to perform additional related tests. Figure 2B shows that de-
spite no significant pairwise tests involving rs8099917, model
averaging recovered a combined p-value of 3.7⇥10

�8, below
the multiple testing threshold of 1.3 ⇥ 10

�7. Additionally,
two viral variants produced statistically significant model-
averaged p-values of 5.5 ⇥ 10

�5 and 4.8 ⇥ 10

�5 at polypro-
tein positions 10 and 2 061 in the capsid and NS5a zinc finger
domain (GenBank AQW44528), below the multiple testing
threshold of 6.0⇥ 10

�5.
These results show how model-averaging using the HMP

can enhance scientific discovery by (i) encouraging tests for
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Figure 3: In the joint human-HCV GWAS, the approximate posterior
probability of association with rs8099917 was 54.4% in total, with
the most probable interactions involving three polyprotein positions.

higher order interactions when they otherwise would not be
attempted and (ii) recovering lost signals of marginal associ-
ations after performing an ‘excessive’ number of tests.

Untangling the signals driving significant model-
averaged p-values

When more than one alternative hypothesis is found to be sig-
nificant, either individually or as part of a group, it is desir-
able to quantify the relative strength of evidence in favour of
the competing alternatives. This is particularly true when dis-
entangling the contributions of a group of individually non-
significant alternatives that are significant only in combina-
tion.

Sellke, Bayarri and Berger9 proposed a conversion from p-
values into Bayes factors which, when combined with prior
information and test power through the model weights, pro-
duces posterior model probabilities and credible sets of al-
ternative hypotheses. The Supplementary Methods detail
how the Bayes factors are approximately proportional to the
weighted inverse p-value. This linearity mirrors the HMP it-
self, whose inverse is an arithmetic mean of the inverse p-
values.

After conditioning on rejection of the null hypothesis by
normalizing the approximate model probabilities to sum to
100%, the probability that the association involved human
variant rs8099917 was 54.4%. This signal was driven primar-
ily by the three viral variants with the highest probability of
interacting with rs8099917 in their effect on pre-treatment vi-
ral load: position 10 in the capsid (10.9%), position 669 in the
E2 envelope (8.7%) and position 2061 in the NS5a zinc finger
domain (11.4%) (Figure 3). Even though the model-averaged
p-value for the envelope variant was not itself significant, this
revealed a plausible interaction between it and the most sig-
nificant human variant rs8099917.

Discussion
The HMP provides a way to calculate model-averaged p-
values, providing a powerful and general method for com-
bining tests while controlling the strong-sense FWER. It pro-
vides an alternative to both the overly conservative Bonfer-
roni control of the FWER, and the lower stringency of FDR
control. The HMP allows the incorporation of prior informa-
tion through model weights, and is robust to positive depen-
dency between the p-values. The HMP is approximately well-
calibrated for small values, while a null distribution, derived
from generalized central limit theorem, is easily computed.
When the HMP is not significant, neither is any subset of the
constituent tests.

The HMP is more appropriate for combining p-values than
Fisher’s method when the alternative hypotheses are mutu-
ally exclusive, as in model comparison. When the alterna-
tive hypotheses all have the same nested null hypothesis, the
HMP is interpreted in terms of a model-averaged likelihood
ratio test. However, the HMP can be used more generally to
combine tests that are not necessarily mutually exclusive, but
which may have positive dependency. It can be used alone
or in combination, for example with Fisher’s method to com-
bine model-averaged p-values between groups of independent
data.

The theory underlying the HMP provides a fundamentally
different way to think about controlling the FWER through
multiple testing correction. The Bonferroni threshold in-
creases linearly with the number of tests, whereas the HMP
is the reciprocal of the mean inverse p-value. To maintain sig-
nificance with Bonferroni correction, the minimum p-value
must decrease linearly as the number of tests increases. This
strongly penalizes exploratory analyses. In contrast, when the
false positive rate ↵ is small, to maintain significance with the
HMP requires only that the mean inverse p-value remains con-
stant as the number of tests increases. This does not penalize
exploratory analyses so long as the ‘quality’ of the additional
hypotheses tested, measured by the inverse p-value, does not
decline.

Through example applications to GWAS, I have shown that
the HMP combines tests adaptively, producing Bonferroni-
like adjusted p-values for ‘needle-in-a-haystack’ problems
when one test dominates, but able to capitalize on numerous
strongly significant tests to produce smaller adjusted p-values
when warranted. I have shown how model averaging using the
HMP encourages exploratory analysis and can recover signals
of significance among groups of individually non-significant
tests, properties that have the potential to enhance the scien-
tific discovery process.
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