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Abstract. Methods for inferring population structure from genetic information traditionally assume
samples are contemporary. Yet, the increasing availability of ancient DNA sequences begs revision of
this paradigm. We present Dystruct (Dynamic Structure), a framework and toolbox for inference of
shared ancestry from data that include ancient DNA. By explicitly modeling population history and
genetic drift as a time-series, Dystruct more accurately and realistically discovers shared ancestry from
ancient and contemporary samples. Formally, we use a normal approximation of drift, which allows a
novel, efficient algorithm for optimizing model parameters using stochastic variational inference. We
show that Dystruct outperforms the state of the art when individuals are sampled over time, as is
common in ancient DNA datasets. We further demonstrate the utility of our method on a dataset of
92 ancient samples alongside 1941 modern ones genotyped at 222755 loci. Our model tends to present
modern samples as the mixtures of ancestral populations they really are, rather than the artifactual
converse of presenting ancestral samples as mixtures of contemporary groups.
Keywords: population genetics, population structure, ancient DNA, time-series, variational inference,
Kalman filtering
Availability: Dystruct is implemented in C++, open-source, and available at
https://github.com/tyjo/dystruct.
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1 Introduction

The sequencing of the first ancient human genome [28], first Denisovan genome [29], and first
Neanthertal genome [12] — all in 2010 — opened the floodgates for population genetic studies
that include ancient DNA [19]. Ancient DNA grants a unique opportunity to investigate human
evolutionary history, because it can provide direct evidence of historical relationships between
populations around the world. Indeed, through combining ancient and modern samples, ancient
DNA has driven many notable discoveries in human population genetics over the past ten years
including the detection of introgression between anatomically modern humans and Neanderthals
[24], evidence for the genetic origin of Native Americans [26], and evidence pushing the date of
human divergence in Africa to over 250,000 years ago [30], among many others [2, 9, 19,33].

Nonetheless, incorporating new types of DNA into conventional analysis pipelines requires care-
ful examination of existing models and tools. Ancient DNA is a particularly challenging example:
individuals are sampled from multiple time points from populations where allele frequencies have
drifted over time. Hence, allele frequencies are correlated over time. The current state of the art for
historical inference from ancient DNA uses pairwise summary statistics calculated from genome-
wide data, called drift indices or F-statistics [21,22], not to be confused with Wright’s F-statistics,
that measure the amount of shared genetic drift between pairs of populations. Drift indices have
several desirable theoretical properties, such as unbiased estimators, and can be used to conduct hy-
pothesis tests of historical relationships and admixture between sampled populations [21]. Combined
with tree-building approaches from phylogenetics, drift indices can reconstruct complex population
phylogenies [18] including admixture events that are robust to difference in sample times. Comput-
ing drift indices, however, requires identifying populations a priori, a challenging task given that
multiple regions around the world experienced substantial population turnover. Thus, exploratory
tools that take an unsupervised approach to historical inference are required.

One of the most ubiquitous approaches to unsupervised ancestry inference is through the
Pritchard-Stephens-Donnelly (PSD) model [23], implemented in the popular software programs
structure and ADMIXTURE [1]. Under the PSD model, sampled individuals are modeled as mix-
tures of latent populations, where the genotype at each locus depends on the population of origin
of that locus, and allele frequencies in the latent populations. Individuals can be clustered based
on their mixture proportions, the proportion of sampled loci inherited from each population, which
are interpreted as estimates of global ancestry [1]. ADMIXTURE computes maximum likelihood
estimates of allele frequencies and ancestry proportions under the PSD model, while structure uses
MCMC to compute posterior expectations of ancestry assignment. A key assumption of the PSD
model is that populations are in Hardy-Weinberg equilibrium: the allele frequencies in each popu-
lation are fixed. For ancient DNA, this assumption is clearly violated. The robustness of the PSD
model to this violation remains under-explored.

In this paper, we develop a model-based method for inferring shared history between ancient
and modern samples – Dystruct (Dynamic Structure) – by extending the PSD model to time-series
data. To efficiently infer model parameters, we leverage the close connection between the PSD
model and another model from natural language processing: latent Dirichlet allocation (LDA) [6].
The connection between the PSD model and LDA has long been known [3, 5], and applications
of the statistical methodology surrounding LDA are beginning to enter the population genetics
literature [11,27]. Similar to the PSD model, LDA models documents as mixtures of latent topics,
where each topic specifies a probability distribution over words. LDA has been successfully extended
to a time-series model [5], where the word frequencies in topic distributions change over time in
a process analogous to genetic drift. Thus, these dynamic topic models provide a natural starting
point for models of population structure that incorporate genetic drift.
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Our contributions are three-fold. First, we developed an efficient inference algorithm capable of
parameter estimation under our time-series model. We extended the stochastic variational inference
algorithm for the PSD model developed by [11] to time series data using the variational Kalman
filtering technique developed by [5], and released software implementing our inference algorithm for
general use. Second, we show that our model can lead to new insights on ancient DNA datasets:
using simulations we demonstrate that Dystruct obtains more accurate ancestry estimates than
ADMIXTURE on ancient DNA datasets; we then apply our model to a dataset of 92 ancient and
1941 modern samples genotyped at 222755 loci. Third, and more generally, our model opens the
possibility for future model based approaches incorporating more complex demographic histories,
complementing existing approaches for analyzing ancient DNA.

2 Methods

2.1 Preliminaries

Suppose we have genotypes of D individuals across L independent loci. Each individual d is a
vector of L binomial observations, x = (xd1, ..., xdL) for xdl ∈ {0, 1, 2}, where xdl is the number of
non-reference alleles at locus l. Each individual is assumed to have been alive during one of a finite
set of time points g[1], g[2], . . . , g[T ]. g[t] is measured as number of generations since the earliest
time of interest. Each individual d is time stamped by td ∈ {1, 2, . . . , T}, where g[td] gives the time
in generations when individual d was alive. We further define ∆g[t] = g[t] − g[t − 1], the time in
generations between time point t and time point t− 1.

Under the PSD model, each individual is a mixture from K latent populations. Let θd =
(θd1, ..., θdK) be the ancestry porportions for individual d: θd is the vector of probabilities that a
locus in individual d originated in population k. Thus,

∑
k θdk = 1. Let βkl[t] be the frequency of

non-reference allele l in population k at time point t. The generative model for genotypes in each
individual is:

θd ∼ Dirichlet(α1, α2, ...αk) (1)

xdl
∣∣θd, β1:K,l[td] ∼ Binomial

(
2,
∑
k

θdkβkl[td]

)
(2)

This follows the recharacterization of the original PSD model by [1] and [11]. In words, to
generate an individual, we first draw mixture proportions θd from a Dirichlet distribution with
prior parameter α. Then we draw genotypes from a binomial distribution, where the probability is
a linear combination of the allele frequencies in the latent populations at time point td (see Fig. 1).

To extend the model to time series data, we allow the allele frequencies to change at each time
point using a normal approximation to genetic drift [7]:

βkl[t]|βkl[t− 1] ∼ Normal

(
βkl[t− 1],

∆g[t]

12Nk

)
(3)

Nk is the effective population size in population k. Initial allele frequencies βkl[0] and Nk are
parameters of the model. Initial allele frequencies βkl[0] are estimated from data, while Nk are
treated as known and fixed.

The state space model here is slightly different than normal approximation to the Wright-
Fisher model for genetic drift. Under the Wright-Fisher model, changes in allele frequencies form
a Markov Chain where alleles in future generations are chosen by sampling individuals from the
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Fig. 1. Graphical model depicting Dystruct’s generative model. D individuals are genotyped at L loci from K
populations (boxes), and time stamped with time point td. Each genotype in each individual, xdl, is a binomial
observation that depends on: i) ancestry proportions, θd, and; ii) allele frequencies βkl[td] at time point td. Allele
frequencies βkl[t] drift over time.

previous generation with replacement. The total number of individuals with a particular allele in
a diploid population, say A, one generation in the future is a Binomial(2Nk, p) random variable,
where Nk is the population size, and p is the fraction of A alleles in the previous generation.
Modeling allele frequencies rather than counts, the variance in allele frequencies ∆g[t] generations

in the future, given the current allele frequency βkl[t− 1], is ∆gtβkl[t−1](1−βkl[t−1])
2Nk

. We approximate
the variance by averaging over the interval (0, 1):∫ 1

0

∆g[t]βkl[t− 1](1− βkl[t− 1])

2Nk
dβkl[t− 1] =

∆g[t]

12Nk
(4)

In practice, through simulations, we found that we were able to obtain accurate estimates despite
this approximation. In this context, effective population size is not the parameter of interest, and
we instead focus on ancestry estimates.

2.2 Posterior Inference

We take a Bayesian approach by inferring ancestry proportions through the posterior distribution
p(θ1:D,β1:K,1:L|x1:D,1:L). Direct posterior inference is intractable because the normal distribution
is not a conjugate prior for the binomial. Following [5], we derive a variational inference algorithm
that approximates the true posterior. We hereby summarize the variational inference approach for
completion.

Variational inference methods [4,15,34] approximate the true posterior by specifying a computa-
tionally tractable family of approximate posterior distributions indexed by variational parameters,
φ. These parameters are then optimized to minimize the Kullback-Leibler (KL) divergence between
the true posterior and its variational approximation. The key to variational inference algorithms
relies on the observation that, given some distribution of latent parameters q(z), the log likelihood
of the observations x can be decomposed into two terms:

log pη(x) =

∫
log pη(x)qφ(z) dz =

∫
log

(
pη(x, z)

pη(z|x)

qφ(z)

qφ(z)

)
qφ(z) dz (5)

= Eq
[
log

(
pη(x, z)

qφ(z)

)]
+ Eq

[
log

(
qφ(z)

pη(z|x)

)]
= L(η,φ;x) + KL

(
qφ(z)

∣∣∣∣pη(z|x)
)

(6)
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where η are the model parameters and φ are the variational parameters. The term on the right
is the KL divergence between the true posterior and the variational approximation. Because KL
divergence is non-negative, the L term in (6) is a lower bound on the log likelihood, called the evi-
dence lower bound (ELBO). In practice, L is maximized with respect to the variational parameters
φ, minimizing the KL divergence between the true and approximate posterior. When maximized
with respect to model parameters η, approximate maximum likelihood estimates are obtained.

The posterior distribution in our model is given by

p(β1:K,1:L,θ1:D|x1:D,1:L) ∝
D∏
d=1

p(θd)
L∏
l=1

p(xdl|βkl[td],θd)
T∏
t=1

K∏
k=1

p(βkl[t]|βkl[t− 1]) (7)

which we approximate by the variational posterior

q(β1:K,1:L,θ1:D) =

D∏
d=1

q(θd
∣∣θ̂d) K∏

k=1

L∏
l=1

q(βkl[1], ..., βkl[T ]
∣∣β̂kl[1], ..., β̂kl[T ]) (8)

q(θd; θ̂d) specifies a Dirichlet(θ̂d) distribution. In the next section we elaborate on the form of
q(βkl[1], ..., βkl[T ]; β̂kl[1], ..., β̂kl[T ]).

2.3 Variational Kalman Filtering

Successful variational inference algorithms depend on formulating an approximate posterior close in
form to the true posterior, and such that the expectations that make up the ELBO are tractable.
Variational approximations commonly rely on the mean-field assumption, that posits the vari-
ational posterior as the product of independent distributions for each latent variable. However,
this assumption is invalid for our model, as it ignores the dependence of allele frequencies over
time. [5] introduced variational Kalman filtering as a technique to construct variational approxi-
mations to state space models with intractable posterior distributions. Variational Kalman filtering
uses variational parameters β̂kl[t] that are pseudo-observations from the state space model:

β̂kl[t]|βkl[t] ∼ Normal(βkl[t], ν
2) (9)

ν is an additional variational parameter. Given the pseudo-observations, standard Kalman filtering
and smoothing equations can be used to calculate marginal means, m̃kl[t], and marginal variances,
ṽkl[t], of the latent variables βkl[1 : T ] given the pseudo-observations β̂kl[1 : T ]. The variational
approximation takes the form

βkl[t]|β̂kl[1 : T ] ∼ Normal(m̃kl[t], ṽkl[t]) (10)

The ELBO is maximized with respect to the pseudo-observations.

2.4 Stochastic Variational Inference

Variational inference algorithms in the setting above often rely on optimizing parameters through
coordinate ascent: each parameter is updated iteratively while the others remain fixed. Coordinate
ascent can be computationally expensive, especially as the size of the data becomes large. For this
reason, stochastic variational inference [4,14] is a popular alternative. Briefly, stochastic variational
inference distinguishes global variational parameters, such as θ̂d, whose coordinate ascent update
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requires iterating through the entire dataset, with local parameters, β̂kl, whose update only depends
on a subset of the data.

We optimize variational parameters using stochastic variational inference (Algorithm 1 - see
Appendix), along with a conjugate gradient algorithm for the local parameters β̂kl which do not
have a closed form update, using a surrogate lower bound on the ELBO [11,35]. We first subsample a
particular locus l, update the pseudo-outputs for that locus, then update the variational parameters
θ̂d by taking a weighted average of the previous parameter estimates with the estimates obtained
by looking at locus l. This process continues until the θ̂d converge. See Appendix for details.

Estimates of ancestry proportions are computed by taking the posterior expectation of θd :

Eq[θdk] = θ̂dk∑
s θ̂ds

We further optimized our implementation, obtaining an order of magnitude speed up over a
naive implementation. This improvement makes Dystruct feasible to use on realistic size datasets
(see Section 3.3).

2.5 Simulated Data

We designed simulations to test the ability of our method to assign ancient samples into popula-
tions under two historical scenarios (Fig. 2). In each scenario, we simulated K populations at 10000
independent loci according to the Wright-Fisher model for genetic drift. We drew initial allele fre-
quencies from a Uniform(0.2, 0.8) distribution, and simulated discrete generations by drawing 2Nk

individuals randomly with replacement from the previous generation. When then drew individuals
at specific time points with genotypes and ancestry proportions specified by the generative model
based on the allele frequencies at that time point. Note that we are not simulating data under the
normal approximation.

Population 1

Population 3

Time

Admixed Admixed Admixed

Population 2

(a) Baseline simulations

Population 1

Population 3

Time

Admixed

Population 2

Ancient Samples

Population 4

(b) Admixed simulations

Fig. 2. Simulation scenarios explored with Dystruct. (a) Baseline simulation scenario. Three populations were sim-
ulated that admixed at three time points. Individuals were sampled from the admixed populations. (b) Admixed
simulation scenario. Ancient individuals were sampled from four unadmixed populations that merged to form a
modern admixed population. Modern samples were from the admixed population.

One concern is that our model assumes allele frequencies are away from 0 or 1, while the allele
frequencies in the Wright-Fisher model are guaranteed to fix given sufficient time. We allowed allele
frequencies to fix in our simulations to test our model’s robustness to violating this assumption,
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though most allele frequencies do not reach fixation. We fixed effective population to Nk = 2500
for all k = 1, ...,K. To generalize our results across different effective population sizes, we measured
time in coalescent units (1 coalescent unit = 2Nk generations). We denote the total simulation time
in coalescent units by τ . Each simulation was run across τ ∈ {0.02, 0.04, 0.08, 0.16}.

In the baseline simulation scenario (Fig. 2a), we sampled 40 individuals from K = 3 populations
at 3 evenly spaced time points. We drew ancestry proportions from a Dirichlet(13 , 1

3 , 1
3) distribution,

ensuring that the majority of any one individual’s genome originated in a single population, with
smaller ancestry proportions from the remaining populations.

In the admixed scenario (Fig. 2b) we performed simulations that try to better mimic available
real data. We assumed a modern population resulted from the instantaneous admixture of K = 4
ancestral populations. Ancient individuals were sampled pre-admixture and modern individuals
were sampled post-admixture. We included two additional features found in current datasets. Such
datasets comprise a small number of ancient samples when compared with modern samples. We
therefore simulated 508 samples where 23 of the samples were ancient and the remaining 485 were
modern, reflecting the ∼1:21 balance of samples in Section 2.6. All ancient samples occurred before
time τ

2 . One of the four ancient populations was observed in the oldest ancient sample only, but
appeared in modern populations, reflecting the possibility that an ancient population may only be
sampled once.

We repeated each simulation scenario 10 times for a total of 80 simulations, and compared
the ability of our model to infer the parameter θd with that of ADMIXTURE (v1.3.0). Since ef-
fective population size is a fixed parameter in Dystruct, we tested Dystruct on several effective
population sizes. We ran Dystruct with Nk = 1000, 2500, 5000, 10000 for all simulation scenarios.
For each simulation, we computed the root-mean-square error (RMSE) between the true ances-
try proportions, and parameters inferred by Dystruct and ADMIXTURE: RMSE(θtrue,θinf ) =√

1
DK

∑D
d=1

∑K
k=1(θ

true
dk − θ

inf
dk )2

2.6 Real Data

[13] analyze a hybrid dataset of modern humans from the Human Origins dataset [17,21], 69 newly
sequenced ancient Europeans, along with 25 previously published ancient samples [10,32], to study
population turnover in Europe. Ancient samples included several Holocene hunter gatherers (∼5000-
6000 years old), Neolithic farmers (∼5000-8000 years old), Copper/Bronze age individuals (∼3100-
5300 years old), and an Iron Age individual (∼2900 years old). In addition, the data include three
Pleistocene hunter-gatherers — ∼45000 year old Ust-Ishim [8], ∼30000 year old Kostenki14 [31],
and ∼240000 year old MA1 [26] — the Tyrolean Iceman [16], the hunter-gatherers LaBrana1 [20]
and Loschbour [17], and the Neolithic farmer Stuttgart [17].

We analyzed the publicly available dataset from https://reich.hms.harvard.edu/datasets.
After removing related individuals identified in [13], and removing samples from outside the scope of
their paper, we were left with a dataset consisting of 92 ancient samples and 1941 modern samples
genotyped at 354212 loci. Again following [13], we pruned this original dataset for linkage dise-
quilibrium in in PLINK [25] (v1.07) using --indep-pairwise 200 25 0.5, leaving 222755 SNPs. Each
reported ancient sample includes confidence intervals for radiocarbon date estimates. To convert
radiocarbon dates to generation time required by Dystruct, we assumed a 25 year generation time,
and took the midpoint of the radiocarbon dates as point estimates divided by 25 for ancient sam-
ples. We further grouped time points for samples together if they were within the 95 % confidence
interval for radiocarbon date estimates, and were part of the same culture. We assigned the year
2015 to modern samples. The final dataset spanned 1800 generations.
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We then ran ADMIXTURE and Dystruct on the full data with effective population size of 7500
from K = 2 to K = 16 – the best supported K in [13] – and compared the results. Here we report
the results for K = 11 because they have the clearest historical interpretation.

3 Results

3.1 Simulated Data

When simulating data according to the baseline scenario, Dystruct consistently matches up with
ADMIXTURE or significantly outperforms it (Fig. 3a). When interpreting the order of magnitude
of these accuracy results, it is important to note that ancestry vectors sum to 1, so a 0.01 decrease
in RMSE improves relative accuracy of these vectors by order of K%. ADMIXTURE performs
much worse as the simulated coalescent time increases, from RMSE of 0.032 for τ = 0.02 to RMSE
of 0.082 at τ = 0.16. Dystruct is less susceptible to this increase in error. Intuitively, the more
coalescent time is considered, the more the drift, and hence, the more important it is to model its
dynamics.

0.02 0.04 0.08 0.16
Total Time (Coalescent Units)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RM
SE

ADMIXTURE
Dystruct (Nk=1000)
Dystruct (Nk=2500)
Dystruct (Nk=5000)
Dystruct (Nk=10000)

(a) RMSE for baseline simulations

0.02 0.04 0.08 0.16
Total Time (Coalescent Units)

0.00

0.02

0.04

0.06

0.08

0.10
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0.14

RM
SE

ADMIXTURE
Dystruct (Nk=1000)
Dystruct (Nk=2500)
Dystruct (Nk=5000)
Dystruct (Nk=10000)

(b) RMSE for admixed simulations

Fig. 3. RMSE for the (a) baseline and (b) admixed simulation scenarios. Dystruct outperforms ADMIXTURE across
several population size parameters for both scenarios. Ancestry vectors sum to 1, so a 0.01 improvement in RMSE
corresponds to a 1% performance improvement.

The admixed simulation scenario demonstrates a substantial advantage to Dystruct on ancient
samples across population parameters (Fig. 3b). This suggests that a promising use case for our
model is investigating hypotheses of historical admixture. Nonetheless a near zero RMSE for Dys-
truct is potentially misleading because ancient samples are not admixed.

Dystruct also performs well on the modern samples. Dystruct outperforms ADMIXTURE for
τ = 0.02, 0.04 by a factor of 2. At τ = 0.08, RMSE for ADMIXTURE and Dystruct are similar,
while ADMIXTURE has a slight advantage at τ = 0.16.

3.2 Real Data

Dystruct shows good concordance with ADMIXTURE on modern data with known global popu-
lations (Fig. 5a). In particular, African populations (Dark Blue; eg. Bantu, Mbuti, Yoruba), Asian
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(a) RMSE for ancient samples
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(b) RMSE for modern samples

Fig. 4. RMSE for ancestry estimates for (a) ancient samples and (b) modern samples for the admixed simulation
scenario. Dystruct significantly outperforms ADMIXTURE when ancient samples are unadmixed (minimum RMSE
= 0.00083). On modern samples, the error remains low for both Dystruct and ADMIXTURE.

populations (Red; e.g. Han, Japanese, Korean), Native American populations (Dark Pink; eg. Mixe,
Mayan, Zapotec), and Oceanian populations (Yellow; eg. Papuan) all form similar genetic clusters,
among many other examples.

Dystruct and ADMIXTURE differ on the ancient samples. In Dystruct, most ancient samples
are “pure,” containing ancestry components from a single population, and modern day populations
appear as mixtures of ancient populations. This is evident in the entropy across samples (Fig. 6).
On ancient samples, Dystruct has lower entropy than ADMIXTURE, while the opposite is true
for modern samples. This is most apparent in the different ancestry assignments for the oldest
samples: the Pleistocene hunter gatherers. MA1, Kostenki14, and Ust-Ishim differ substantially in
their representation between Dystruct and ADMIXTURE. These are the samples where genetic
drift is most prominent. ADMIXTURE analysis describes MA1, Kostenki14, and Ust-Ishim as
mixtures of several modern day populations. In contrast, Dystruct describes modern populations
as mixtures of components derived from MA1, Kostenki14, and Ust-Ishim.

Most interestingly, the later ancient samples appear as mixtures of earlier samples in Dystruct,
but not in ADMIXTURE. Late Neolithic, Bronze Age, and Iron Age samples appear as admixed be-
tween Yamnaya steppe herders (Orange), hunter-gatherers (Brown), and early Neotlithic (Green).
Additionally, we see substantial shared ancestry between these groups and modern European pop-
ulations. Both findings are consistent with [13], who found evidence supporting migration out of
Yamnaya steppe herders into Eastern and Western Europe ∼4500 years ago, and supporting a
model of European populations as a mixture of these groups. Kostenki14 shares ancestry with the
Yamnaya group, suggesting a possible source for Yamnaya steppe ancestry.

3.3 Running Time

Despite the added complexity, additional model parameters, and large dataset, Dystruct ran on the
real data in approximately 6 days using 2 cores of a 2.9 GHz Intel Core i5 processor. ADMIXTURE
ran in approximately 2 days using 2 cores. Using 1 core, Dystruct ran in approximately 30 minutes
per replicate on the baseline scenario, and approximately 120 minutes per replicate on the admixed
scenario. ADMIXTURE ran in less than a minute on these scenarios. The advantages of stochastic
variational inference are more apparent for larger datasets.
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(a) Ancestry proportions inferred by Dystruct and ADMIXTURE across all samples.ADMIXTURE and Dystruct
agree on several major population clusters, but differ on modern day ancestry estimates from ancient samples.
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(b) Ancestry estimates for 92 ancient samples. The three leftmost samples are the Pleistocene hunter-gatherers. In
Dystruct, late Neolithic samples and beyond present as a mixture of hunter-gatherers, Yamnaya steppe herders,
and early Neolithic samples, matching supported historical migrations of steppe herders into Eastern and Western
Europe.

Fig. 5. Ancestry proportions inferred across (a) all samples and (b) ancient samples only. Colors correspond be-
tween (a) and (b). Dystruct estimates ancestry for modern populations as combinations of ancient samples, while
ADMIXTURE estimates ancestry for ancient samples as combinations of modern populations.
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Fig. 6. Cumulative density function for entropy across ancient and modern samples. Dystruct has a lower entropy
for ancient samples, while ADMIXTURE has a lower entropy for modern samples.

Dystruct’s main computational consideration is the number of time points. During each iteration
the parameters of a single locus are updated, then used to update ancestry estimates across all
individuals. Estimates for ancestry parameters, θ̂d, can be computed in closed form in O(DK);
however, the update for the parameters β̂kl is approximated numerically. Computing the gradient
of the β̂kl at a locus takes O(T 2+D) time because the marginal means m̃kl[t] must be differentiated
with respect to each pseudo-output. The gradient must be re-evaluated until the estimates for β̂kl
converge.

4 Discussion

We have presented Dystruct, a model and inference procedure to understand population structure
and admixture from ancient DNA. The novelty of the model is its explicit temporal semantics.
This formalization of allele frequency dynamics facilitates perception of modern and more recent
populations as evolved from more ancient ones or combinations thereof. We derived an efficient
inference algorithm for the model parameters using stochastic variational inference, and released
software for use by the broader community. We established the performance of our model on several
simulation scenarios, and further demonstrated its utility for gaining insight from the analysis of
real data.

Our model outperforms the current standard modeling across a variety simulation scenarios.
Encouragingly, our simulations show that Dystruct does a better job recovering population structure
in the presence of genetic drift, an effect that hinders existing tools. Our model accurately detects
when modern populations are mixtures of pure ancestral samples, while ADMIXTURE does not,
and therefore is useful for testing hypotheses of historical admixture between ancient and modern
populations.

We note the advantage of Dystruct increases with genetic drift and thus with coalescent time
elapsed. This means that in practical situations, where samples are dated in years, Dystruct is
most important when the effective population sizes are small. From statistical inference perspective,
effective population size can be thought of as a regularizer that penalizes the difference between
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allele frequencies at each time point. Thus, as effective population size increases, alleles frequencies
drift more slowly and become closer across time points, and estimates more closely match that of
ADMIXTURE.

Our results on real data match known population clusters on modern populations, and lead to
new interpretations of the ancient dataset. Interestingly, the PSD model tends to describe the oldest
ancient samples as mixtures of modern populations, while in Dystruct several modern populations
appeared as mixtures of these ancient samples. This makes sense in light of the standard goal of
maximizing overall variance explained, a quantity dominated by the majority of the samples, which
are modern. In contrast, temporal semantics implicitly assume admixture occurs forward in time,
putting the focus on ancient populations. Dystruct can thus provide additional insight into such
populations from ancient DNA.

There are several limitations to our approach. First, we model populations as independently
evolving over time. This ignores historical relationships such as population splits. One potential
side effect is that Dystruct may only capture one branch of a population phylogeny at a time.
Second, across all simulations and for real data we constrained the effective population size across
all populations to be the same. Thus, the parameters converge to one of at least K symmetric modes
— population labels are exchangeable — and it is unclear how allowing different effective population
sizes for different populations changes the log likelihood with respect to the parameter space. Future
work should investigate this issue in more detail. Nonetheless, as we have demonstrated this is not
a serious limitation to achieving reasonable estimates. Our results hold across a range of effective
population sizes provided to Dystruct. Third, there is no clear procedure for choosing the correct
number of populations K. We have deferred this issue to future work, but pose that this does not
prevent a severe limitation: the current state of the art uses runs across multiple values of K, and
interprets the results for each K.

More generally, we have presented a time-series model for population history with several
promising extensions. Our method complements existing approaches, and can lead to new insights
on ancient DNA datasets. Our work represents a first step toward statistical models capable of
detecting complex population histories.
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A Stochastic Variational Inference

In this section we derive the inference algorithm for stochastic variational inference under the
Dystruct model. We first derive the traditional coordinate ascent updates, then show how we can
modify these updates for stochastic optimization. Finally, we extend the algorithm for missing data.
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A.1 Computing The ELBO

The ELBO is given by

L = Eq[log p(β1:K,1:L,θ1:D,x1:D,1:L)]− Eq[log q(β1:K,1:L,θ1:D)] (11)

=
T∑
t=1

K∑
k=1

L∑
l=1

Eq[log p(βkl[t]
∣∣βkl[t− 1])] (12)

+
D∑
d=1

Eq[log p(θd)] (13)

+

D∑
d=1

L∑
l=1

Eq[log p(xdl|td,θd,β1:K,l)] (14)

−
K∑
k=1

L∑
l=1

Eq[log q(βkl
∣∣β̂kl)] (15)

−
D∑
d=1

Eq[log q(θd
∣∣θ̂d)] (16)

The ELBO as written does not have a closed form due to the log sum terms that appear in
(14): Eq[log p(xdl

∣∣td,θd,β1:K,l)] = Eq[log Binomial(2,
∑

k βkl[td]θdk)]:

xdl Eq

[
log

(∑
k

θdkβkl[td]

)]
+ (2− xdl)Eq

[
log

(
1−

∑
k

θdkβkl[td]

)]
(17)

Following [11], we optimize a surrogate lower bound by introducing auxiliary variational parameters
φdl = (φdl[1], ..., φdl[K]) and ζdl = (ζdl[1], ..., ζdl[K]) whose vector components sums to 1. An
application of Jensen’s inequality shows

log

(∑
k

θdkβkl[td]

)
≥
∑
k

φdl[k] log

(
θdkβkl[td]

φdl[k]

)
(18)

log

(
1−

∑
k

θdkβkl[td]

)
≥
∑
k

ζdl[td] log

(
θdk(1− βkl[td])

ζdl[k]

)
(19)

so we still maintain a lower bound on the log likelihood. The auxiliary parameters are optimized
to provide a tight lower bound. Fixing all other parameters, the constrained optimization problem
can be solved using an application of Lagrange multipliers

φdl[k] ∝ exp{Eq[log θdk] + Eq[log βkl[td]]} (20)

ζdl[k] ∝ exp{Eq[log θdk] + Eq[log(1− βkl[td])]} (21)

The first term in both equations is an expectation of a sufficient statistic, and therefore has a closed
form: Eq[log θdk] = Ψ(θ̂dk) − Ψ(

∑
k θ̂dk); Ψ is the Digamma function. The two expectations in the

second terms can be approximated by taking second order Taylor expansions around the marginal
means of βkl[td] and m̃kl[t] :

Eq[log βkl[td]] ≈ log m̃kl[td]−
ṽkl[td]

2m̃kl[td]2
(22)

Eq[log(1− βkl[td])] ≈ log(1− m̃kl[td]) (23)
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A.2 Optimizing Ancestry Proportions

Note that the q(θd
∣∣θ̂d) satisfy the mean field assumption - the θd in the variational posterior are

independent. Therefore they have optimal coordinate ascent updates of the form

q∗(θd) ∝ exp{Eq[log p(θd
∣∣βkl[td],xd,1:L)]} (24)

where we have used several conditional independencies to simplify the complete conditional of θd.
Using the surrogate lower bound in the ELBO gives the optimal update

θ̂dk = αk +
L∑
l=1

xdlφdl[k] + (2− xdl)ζdl[k] (25)

matching the expression in [11].

A.3 Optimizing allele frequencies

In variational Kalman filtering, the variational distribution for each βkl[t] is given by

βkl[t] ∼ Normal(m̃kl[t], ṽkl[t]) (26)

where the mean and variance are the marginal means and posteriors given by the Kalman filtering
and smoothing equations. Following the notation in [5], the forward (filtered) means and variances
are given by

mkl[t] =
ν2

vkl[t− 1] + σ2k[t] + ν2
mkl[t− 1] +

(
1− ν2

vkl[t− 1] + σ2k[t] + ν2

)
β̂kl[t] (27)

vkl[t] =

(
ν2

vkl[t− 1] + σ2k[t] + ν2

)
(vkl[t− 1] + σ2k[t]) (28)

where σ2k[t] := ∆g[t]
12Nk

. The initial conditions are mkl[0] = βkl[0]. The marginal (smoothed) means
and variances are

m̃kl[t] =

(
σ2k[t]

vkl[t] + σ2k[t]

)
mkl[t] +

(
1−

σ2k[t]

vkl[t] + σ2k[t]

)
m̃kl[t+ 1] (29)

ṽkl[t] = vkl[t] +

(
vkl[t]

vkl[t] + σ2k[t]

)2

(ṽkl[t+ 1]− vkl[t]− σ2k[t+ 1]) (30)

with initial conditions m̃kl[T ] = mkl[T ] and ṽkl[T ] = vkl[T ]. The variational parameters β̂kl[t] are
optimized with respect to the ELBO, hence we need the partial derivatives of the marginal means
m̃kl[t] with respect to β̂kl[t]. These can be obtained using the forward-backward recurrence as in [5].
We will show the recurrence for initial frequencies βkl[0], which are not maximized in [5], and note
that the other partial derivations can be obtained similarly. The recurrence is

∂mkl[t]

∂βkl[0]
=

(
ν2

vkl[t− 1] + σ2k[t] + ν2

)
∂mkl[t− 1]

βkl[0]
(31)

∂m̃kl[t]

βkl[0]
=

(
σ2k[t]

vkl[t] + σ2k[t]

)
∂mkl[t]

∂βkl[0]
+

(
1−

σ2k[t]

vkl[t] + σ2k[t]

)
∂m̃kl[t+ 1]

βkl[0]
(32)
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We optimize the β̂kl with respect to a single locus in a single population at time using a conjugate
gradient algorithm, constraining the parameters to lie in the interval (0, 1). The terms in the ELBO
with respect to locus l in population k are

L∗ =
T∑
t=1

Eq[log p(βkl[t]
∣∣βkl[t− 1])]− Eq[log q(βkl[t]

∣∣m̃kl[t], ṽkl[t])] (33)

+
T∑
t=1

∑
d:td=t

Eq[log p(xdl
∣∣td, βkl[td],θd)]

≥ −T
2

log 2π − 1

2

T∑
t=1

log σ2k[t]−
1

2

T∑
t=1

1

σ2k[t]
Eq[(βkl[t]− βkl[t− 1])2] (34)

+
T

2
log 2π +

T

2
+

1

2

T∑
t=1

log ṽkl[t]

+

T∑
t=1

∑
d:td=t

xdlφdl[k]

(
log m̃kl[t]−

ṽkl[t]

2m̃kl[t]2

)
+ (2− xdl)ζdl[k] log(1− m̃kl[t])

=
T

2
− 1

2

T∑
t=1

(log σ2k[t]− log ṽkl[t])−
1

2

T∑
t=1

1

σ2k[t]
(m̃kl[t]− m̃kl[t− 1])2 − ṽkl[t]

σ2k[t]
− ṽkl[t− 1]

σ2k[t− 1]
(35)

+
T∑
t=1

∑
d:td=t

xdlφdl[k]

(
log m̃kl[t]−

ṽ[kl][t]

2m̃kl[t]2

)
+ (2− xdl)ζdl[k] log(1− m̃kl[t])

where we define ṽkl[0] = 0, σ2k[0] = 1, and mkl[0] = m̃kl[0] = βkl[0] for notational convenience.
Taking partial derivatives with respect to the pseudo-outputs gives us

∂L∗

∂β̂kl[s]
= −

T∑
t=1

1

σ2k[t]
(m̃kl[t]− m̃kl[t− 1])

(
∂m̃kl[t]

∂β̂kl[s]
− ∂m̃kl[t− 1]

∂β̂kl[s]

)
(36)

+
∂m̃kl[t]

∂β̂kl[s]

∑
d:td=t

xdlφdl[k]

(
1

m̃kl[t]
+

ṽk[t]

m̃kl[t]3

)
+ (2− xdl)ζdl[k]

1

(m̃kl[t]− 1)

The full algorithm iterates between optimizing the local parameters β̂kl, φdl[k], and ζdl[k] for
each locus in each individual in each population using (20), (21), and (36), then updating global
parameters θ̂d according to (25) until convergence.

A.4 Inference Algorithm

We can perform stochastic variational inference through a slight modification to the coordinate
ascent algorithm presented above [4,14]. Stochastic variational inference computes noisy estimates
of the optimal global parameters by stochastically subsampling data points, and using the optimal
local parameters to update the global parameters. The optimal global parameters are a weighted
average of the previous global parameters, with the newly computed global parameters. Following
[11], the n+ 1 stochastic variational inference update for the global parameters θ̂d is

θ̂n+1
dk = (1− εn)θ̂ndk + αk + εnL (xdlφdl[k] + (2− xdl)ζdl[k]) (37)
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where εn is the step size for iteration n and L is the number of loci. Provided the step size meets
certain criteria the algorithm is guaranteed to converge. See [14] or [4] for more details. We picked a
step size of εn = (1 +n)−0.5 for the first 10000 iterations, and εn = (n−7825)−0.6 for the remaining
iterations.

Algorithm 1 Dystruct inference algorithm
1: Input: Genotypes x1:D,1:L; Sample Times td; Population Size Nk = N for all populations.
2: while θ̂d have not converged do
3: Pick l ∼ Uniform(1, L)
4: while φdl and ζdl have not converged do
5: Update auxiliary parameters φdl and ζdl for d = 1, 2, ..., D according to (20) and (21).
6: Update allele frequency parameters β̂kl for k = 1, 2, ...,K using the numerical optimization routine described

in section A.3.
7: end while
8: Update global parameters θ̂d for d = 1, 2, ..., D according to (37)
9: end while

A.5 Extensions to missing data

The above algorithm only holds for complete data. A small modification is required for missing
data, where not every sample has an observed genotype at every locus. Rather than a single global
step size εt, we maintain a step size for every individual εnd

where nd is the number of iterations for
individual d. When a locus is subsampled, we only update global ancestry estimates for individuals
with observed genotypes at that locus, and the step size for those individuals. We further replace
the parameter L with Ld, the number of loci for each observed in each individual.
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