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Abstract

Agent-based models have become important tools in ecology, particularly in the study of infectious disease dynamics.
Simulations of near-continuous movement paths guided by empirical data offer new avenues of investigation into disease
transmission. Here, we simulate the spatiotemporal transmission dynamics of anthrax, the acute disease caused by
the bacterium Bacillus anthracis, a pathogen transmitted primarily via environmental reservoirs. We explore how
calculations of the probabilities of contact between a host and infectious reservoirs are affected by the scale and method of
analysis. At both the landscape and individual scales, empirical movement tracks offer previously unattainable estimates
of impacts of movement decisions on contact rate metrics. However, the analytical method selected for the calculation of
the probability of contact has notable impacts on the resulting estimates, with convex polygons virtually canceling out
variation, and unions of local convex hulls (LoCoH methods) and space-time prisms reflecting reasonable variation, but
differing in the magnitude of their estimates. The explicit consideration of behavioral states along movement pathways
also impacts evaluations of exposure risk, though its effects differ across methods of analysis. Ultimately, simulations
demonstrate that the incorporation of movement data into pathogen transmission analyses helps clarify the role of
movement processes underlying the observed dynamics of infectious disease.

Keywords: Agent-based Model, Infectious Disease, Environmental Transmission, Contact Rate, Animal Movement,
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Introduction

Though epidemic dynamics are often simplified using
rates averaged at the population scale [1], the transmis-
sion process underlying disease spread is highly dependent
on various forms of heterogeneity [2]. The influence of
such heterogeneity has been recognized in both human [3]
and wildlife [4] populations, but the diversity of underlying
causes of individual variance often makes precise measure-
ment of contributing factors difficult. The impact of any
one individual on the subsequent dynamics of an epidemic
arises from a complex combination of host and pathogen
characteristics, as well as the environment in which trans-
mission occurs [3]. A variety of methods, often applied
during or after an epidemic, have demonstrated this varia-
tion in natural systems [5, 6]. However, predicting a priori
which forms of heterogeneity will result in individuals who
contribute disproportionately more secondary infections
than the average infected individual (i.e., superspreaders;
see [3] for details) represents a notable challenge in disease
ecology [7].

One fundamental driver of heterogeneity in disease trans-
mission is the variance in movement behaviors among host
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individuals [8, 9]. Until recently, however, the tools avail-
able to observe empirical movement trajectories did not
offer fine enough resolution to describe individual hetero-
geneity beyond differences in space-use at landscape scales.
With advancements and innovations in bio-logging tech-
nologies, researchers have gained the ability to identify
specific behavioral states in movement tracks and resolve
general distributions that give rise to heterogeneity among
individuals [10]. Even so, the consideration of heteroge-
neous movements remains relatively underexplored as a
major contributor to the unique dynamics that charac-
terize epidemic expansion or fade-out (i.e., when the in-
troduction of a disease fails to propagate widely) [9]. As
movement data becomes more readily available in disease
research and the methods for analyzing such data continue
to develop, the incorporation of this form of heterogene-
ity in disease models will be vital for accurately reflecting
spatiotemporal disease spread.

Agent-based models (ABMs) represent a direct means
of incorporating individual heterogeneity into disease mod-
els [11]. ABMs refer to computational simulation models
consisting of interacting components (i.e., agents and their
environment) that follow a set of explicit rules. These gen-
eral rules enable the agents to move independently as they
seek to fulfill specific objectives and can respond to var-
ious stimuli in their surroundings, whether this comes in
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the form of environmental changes or interactions with
other agents. Rather than imposing certain expectations
on the output of the model, this bottom-up approach al-
lows for the natural emergence of patterns at broader levels
of analysis [12, 13]. The flexibility of this framework has
led to broad applications of ABMs even within the eco-
logical literature, including to questions in environmental
resource management [14, 15], examinations of evolution-
ary dynamics [16, 17, 18, 19], and considerations of indi-
vidual animal behaviors [20, 21]. Unlike compartmental
models (the traditional means of modeling epidemic dy-
namics), which assume homogeneous mixing within com-
partments, ABMs offer a framework in which heterogene-
ity can emerge as it does in natural systems.

ABMs have also increasingly been used to explore dis-
ease dynamics, with individual agents often transitioning
between the infectious stages normally indicative of a com-
partmental SIR model (e.g., susceptible, infectious, and
recovered [22]). The general rule set of an ABM typically
gives rise to stochasticity, and thus heterogeneity, in be-
haviors such as movement. This makes ABMs ideal tools
for exploring the role of individual movement decisions in
the propagation of disease as a stochastic process. In the
few cases that have utilized ABMs to explore disease sys-
tems, individual movement dynamics are often simplified
to diffusion processes [23, 24] or highly generalized jumps
between patches [25, 26, 27]. Though other models have
implemented more complex mechanistic movement rules to
govern agent trajectories (e.g., [28, 29, 30, 31, 32]), exam-
ples of such ABMs remain fairly limited in disease ecology,
and their applicability is frequently constrained by the spe-
cific nature of pathogen transmission in the focal disease
system.

Here we develop an ABM for herbivore movement on
an anthrax-endemic landscape, parameterized with empir-
ical movement data. As anthrax is transmitted primar-
ily through environmental reservoirs [33, 34, 35], we use
the output of the model to estimate the probability of
contact between agents and fixed environmental reservoirs
(anthrax spores deposited at carcass sites), an important
epidemiological rate that is highly dependent on the het-
erogeneity in individual movement. Rather than explicitly
simulating the disease transmission process, we only aim
to estimate contact rates between a host and an infectious
agent. Doing so allows us to illustrate (and critically ex-
amine) the utility of movement ecology in disease research,
without having to correct for the complex disease dynam-
ics that would emerge if we included transmission in the
model. High-resolution GPS data offers insight into the
general rules that dictate host movements, enabling an ac-
curate consideration of the heterogeneity in this fundamen-
tal contributor to the disease transmission process. Fur-
thermore, applying analytical tools from movement ecol-
ogy offers the ability to evaluate variation in an important
epidemiological process at the population level, despite
collecting data on a relatively small subset of the popu-
lation at risk. Thus, we demonstrate the multi-faceted

manner by which the data and methods from movement
ecology can contribute to our understanding of the hetero-
geneity that defines disease systems.

Simulation Methods

Anthrax, the acute disease caused by the bacterium
Bacillus anthracis, remains a persistent threat in many
wildlife populations throughout the world [36, 37]. Though
a variety of animal species can contract the zoonotic dis-
ease, herbivores experience the highest mortality rates,
while many carnivores and scavengers exhibit resistance
or tolerance [37, 38]. In some systems, anthrax outbreaks
are seasonally-driven, though there may exist inter-specific
differences in the timing of the peak of infections. For
example, zebra in Etosha National Park in Namibia ex-
perience peaks in infection during the warm wet season
(March-April), whereas elephants are more likely to be in-
fected during the dry months of October-November [35]. A
definitive explanation for these peaks remains elusive, but
a number of alternatives have been proposed, including
nutritional stress, heterogeneous soil ingestion rates [33],
and complex coinfection dynamics [39, 40].

B. anthracis takes the form of reproducing vegetative
cells in infected hosts and endospores when in soil and
ponded water environments [36, 41], although some vege-
tative reproduction may take place within the rhizosphere
of vigorously growing grasses [42]. The spores are excep-
tionally resilient in the face of environmental stress, and
allow the infectious agent to persist in environmental reser-
voirs for extended periods of sub-optimal conditions [41]

Spores can enter the host organism through cutaneous
lesions, by inhalation into the pulmonary system, or via
the gastrointestinal (GI) tract. Many ungulates consume
substantial amounts of soil in addition to vegetation dur-
ing foraging bouts, and in doing so, may inadvertently in-
gest the pathogen [33]. Limited evidence from necropsies
suggests that GI infections are the most common route of
infection in herbivores [43] and will be the primary mech-
anism modeled here. Anthrax is highly pathogenic in her-
bivores, and death may occur within a few days or up to
two weeks after contact with a lethal dose of B. anthracis
spores [35].

Anthrax is endemic in the plains herbivores of Etosha
National Park, Namibia, peaking in zebra, springbok, and
wildebeest during the rainy season and in elephants during
the dry season [33, 44, 40]. Extensive carcass surveillance
efforts in Etosha National Park, Namibia, between 1968
and 2011, conducted by The Etosha Ecological Institute
[33, 45, 38], were used to inform the densities of anthrax
infected carcasses considered in the simulation. In addi-
tion, empirical movement data collected from Etosha Na-
tional Park, were used to inform the agent components
of the simulation model. Specifically, the movement tra-
jectories of nine zebra (Table 1) were used to estimate
20-minute step-length and turning angle distributions, as
well as the general activity budget (i.e., the distribution of
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GPS fixes falling into each of the three possible behavioral
states based on all of the points obtained from zebra). We
used both carcass and movement data to develop a simu-
lation model and explore the role of individual movement
in disease transmission. Our description follows the ODD
(Overview, Design concepts, and Details) framework [46].

Purpose

The simulation model consisted of agents (with size
and movement characteristics obtained from zebra data)
moving across a simulated heterogeneous landscape upon
which infected carcasses (three sizes with biomasses cor-
responding to springbok, zebra, and elephants) were de-
posited at the initialization of the model. A probability of
contact with locally infectious zones (LIZs; [47]) was calcu-
lated for each individual throughout a single anthrax sea-
son (defined as the three month period between February
and April; [33]). This probability serves as a synthesized
epidemiologically-relevant metric that is then estimated
using alternative movement analyses.

State Variables and Scale

The three fundamental interacting components of our
agent-based model are: 1) the landscape, which reflects
the forage quality across the simulated park; 2) the agents
that represent susceptible ungulates moving according to
empirically-driven rules; and 3) the locally infectious zones,
which are the infectious component of the model and form
the basis of the transmission dynamics. The state variables
of interest for each of these components are displayed in
Table 2 and are explained in more detail below.

A heterogeneous landscape of forage quality was estab-
lished to serve as the mechanism driving the movement of
agents. A square study area covering 2,500 km2 (50 km by
50 km) was created. Hexagonal cells, each with a radius
of 200 meters, were placed atop the study area, defining
the landscape under surveillance. The edges of the hexag-
onal grid act as a fence and prohibit movement outside
of the study area. Though this imagined area is substan-
tially smaller than the entire extent of Etosha National
Park (approximately 22,000 km2), it is consistent in scale
with the mean 100% minimum convex polygon (MCP) of
the empirical movement tracks, which was 2522.8 km2.
Though the maximum 100% MCP was larger than 2500
km2, the fact that all of the empirical tracks had dura-
tions longer than three months (the length of the anthrax
season) suggested that the mean MCP area would serve as
a reasonable extent for our simulation.

Agents, representing individual ungulates moving across
the landscape, were assigned a body size that did not
change over the course of the simulation (Bi) and a per-
ceptual range parameter (Pi), according to the following
equations:

Pi = Crad + |ε| ∗Bi

ε ∼ N
(
µ, σ2

)
, where µ = 0.5, σ = 0.2

In this way, each individual perceives at least the cell
in which it was currently located, but may have been able
to perceive larger areas, with larger individuals likely hav-
ing increased ability to perceive the quality of cells fur-
ther away [48]. In addition, each agent was assigned to
a particular behavioral state following the distribution of
behavioral states observed in the nine empirical movement
trajectories from Etosha National Park based on a Hidden
Markov Model (HMM; [49]; see Supplementary Materials).
The three possible states were resting (State 1), foraging
(State 2), and directed movement (State 3). These states
were associated with particular characteristics of move-
ment, described below.

Locally infectious zones (LIZs), centered around the
point locations at which an animal succumbs to its infec-
tion, are the critical infectious components of the anthrax
system [35, 33, 34]. Due to the resilience of the B. an-
thracis spores, the area immediately surrounding an in-
fected carcass can contain infectious material for extended
periods of time (on the order of multiple years) [50]. Sub-
sequent visits by grazers to these LIZs may result in their
infection when spores in the soil are incidentally ingested
along with vegetation [33]. These LIZs were identified in
the model as either small (representing a springbok-sized
carcass), medium (representing a zebra or wildebeest car-
cass), or large (representing the occasional elephant-sized
carcass) according to the general distribution observed in
empirical carcass data from Etosha National Park. Each
LIZ was then assigned an initial mass (associated with the
individual at the time of its death) based on the size cat-
egory to which it was designated. In addition, the age of
the LIZ (the number of years prior to the initialization of
the model, up to three) was assigned, such that the num-
ber of the LIZs on the landscape deposited each year were
approximately equal and reflected empirical observations
in Etosha National Park (and considered with the error
associated with surveillance efforts; [45]). The latter state
variable was used to determine the relative increase in at-
tractiveness associated with the landscape cell upon which
the LIZ was deposited (see Initialization below).

Process Overview and Scheduling

Following the initialization of the model, there are two
primary sets of processes that occur during the execution
of the simulation: the movement processes affecting the
positions and behavioral states of agents and the land-
scape feeding (general and specific) and growth processes
affecting the current forage quality values in various hexag-
onal cells. The scheduling of these processes is depicted in
Figure 1.

Design Concepts

Emergence: The key measure of the simulation, the in-
dividual probability of contact with infectious mate-
rial, emerges from the mechanistic movements of the
agents (during the foraging behavioral state) within
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Individual ID Number of Points Start Date End Date
AG059 20,769 2009-04-20 2010-08-29
AG061 17,196 2009-04-20 2010-03-03
AG062 12,794 2009-04-20 2010-01-30
AG063 25,721 2009-04-20 2010-04-30
AG068 32,661 2009-04-20 2010-08-29
AG252 23,450 2009-10-06 2010-08-29
AG253 21,676 2009-10-06 2010-12-17
AG255 23,470 2009-10-06 2010-08-29
AG256 23,519 2009-10-06 2010-08-29

Table 1: Serial location data (collected every 20 minutes from 9 zebra) that were used for parameterizing movement in the simulation model.

Component State Variables Description
Landscape Forage Carrying Capacity The maximum carrying capacity for forage in each hexag-

onal cell

Current Forage Quality The current value of the hexagonal cell following feeding
and growth processes

Agents
(zebra only)

Body Size The size (in kilograms) of the individual agent; mean of
350, SD of 43.75

Perceptual Range The range (in meters) within which the agent perceives the
quality of vegetation patches

Behavioral State One of three possible movement states: resting, foraging,
or directed movement

LIZs (spring-
bok, zebra,
wildebeest,
elephant)

Species One of three possible carcass size classes: small (springbok),
medium (wildebeest, zebra), or large (elephant)

Initial Mass The mass (in kilograms) of the carcass upon initial deposi-
tion based on the species classification

Time Since Deposition The time (in years) since the animal had succumbed to
anthrax and became a carcass-producing LIZ

Table 2: Descriptions of the state variables associated with each of the components of the agent-based model.

the immediate vicinity of LIZs on the landscape. The
probabilistic co-occurrence of the two components of
the model give rise to the metric of interest.

Sensing: The perceptual range variable assigned to each
agent governs the manner by which agents sense their
surrounding. Agents are presumed to sense perfectly
their own behavioral states, which dictates their sub-
sequent movement.

Interaction: Interaction occurred only between agents
and the landscape, and only during one of the behav-
ioral states (foraging). An implicit interaction be-
tween LIZs and the landscape is also incorporated at
initialization (in the form of their preferential place-
ment on high quality patches), but this interaction is
not continuously updated as in the case of the agent
movements.

Stochasticity: Stochasticity was incorporated in multi-
ple ways. The initial state variables were derived in

a stochastic manner for all three components of the
model (Landscape, Agents, and LIZs). In addition,
the behavioral states of agents were stochastically
generated using binomial draws with probabilities
derived from empirically-driven transition functions
(described below). Once the behavioral state was se-
lected, the steps and turning angles were stochastic
in that they were drawn from state-specific distribu-
tions.

Observation: The behavioral states of each individual
over time were not observed directly, but they were
theoretically extractable from the observed move-
ment paths. Similarly, the actual forage quality layer,
representing the mechanism underpinning agent move-
ments in the foraging behavioral state, was not di-
rectly observable, and only a proxy akin to NDVI
was available for downstream analyses (Figure 2).
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Figure 1: Process Diagram. The scheduling of the landscape and movement processes throughout the simulation. Following initialization
of the landscape and agents (t = 0 : 00, hours:mins), the first process to occur is a general feeding bout whereby a set of untagged individuals
(i.e., those with unknown movement pathways that are consequently randomly dispersed across the landscape) effectively decrease the current
forage quality of underlying cells. Then the movement processes occur at the first 20 minute interval. First the behavioral state is evaluated
and potentially shifted, then a step is taken based on the step size and turning angle distributions associated with the current behavioral
state of each agent. The next behavioral state shift and positional change is undertaken prior to the next landscape process, specific feeding.
This occurs immediately following the second move of the hour (i.e., at t = 0 : 40), and only cells with tagged individuals occupying them are
affected. Another update to the behavioral state and position of the agents is executed before the final landscape process (growth) occurs,
effectively beginning the same sequence of steps again for each hour of the 24-hour day over the course of the 90-day anthrax season.

Initialization

Each landscape cell j = {1, ..., 72250} was randomly
assigned a relative forage quality value (Qj) that was de-
pendent on an overall mean forage quality value for the
landscape (µF ; in kg/km2). This value was set as a ran-
domly selected value from a uniform distribution between
900,000 and 1,100,000 (based on estimates using satellite
monitoring technology; [51]). Because each cell was con-
siderably smaller than 1 km2, the overall mean forage qual-
ity that served as the basis for assigning a value to each
cell was scaled accordingly (i.e., each cell contained an area
of approximately 34640 m2, so the mean forage value was
reduced to 0.03464 * µF ). Ultimately, the forage qual-
ity value of each standard cell (we also have high and low
quality cells, as discussed below) emerged from the dis-
tribution Qj ∼ N

(
µ, σ2

)
, where µ = µF ∗ 0.03464 and

σ = µF ∗ 0.03464/4
Two percent of the cells were then selected as high

quality cells and assigned a value from a normal distribu-
tion with a mean 1.33 times that used in a standard cell.
A radius of influence was then assigned to each of the high-
est quality cells, equivalent to five times the hexagon cell
size (Crad ≈ 1000 meters) times an arbitrary factor chosen
randomly from a normal distribution with a mean of 1.5
and a standard distribution of 0.5. The same process was

carried out for selecting low quality cells, but the mean of
the normal distribution was set as 0.66 that of a standard
cell. The quality of each cell whose center fell within this
radius of influence was then adjusted by selecting a value
from the same high-quality normal distribution. Thus,
each of the highest quality cells was surrounded by some
variable number of cells with similar quality to effectively
create patches of generally higher quality than the rest of
the landscape (see Figure 2, left panel). These values rep-
resented the carrying capacity of that particular cell (Kj),
such that growth processes (described below) would return
the quality of the cell to these levels when it was unoccu-
pied by an agent. Following this, cells whose center fell
within a buffer of 1500 meters of the edge of the park were
reassigned a value drawn from a normal distribution with
a mean of 0.33 times that of a standard cell.

At the beginning of the anthrax season (February 1),
18 agents were assigned an initial behavioral state using a
random number drawn from a uniform distribution rang-
ing between 0 and 1. The probability of beginning the sim-
ulation in State 1 was approximately 0.080 (i.e., a random
value between 0 and 0.080), the probability of beginning
in State 2 was approximately 0.542 (i.e., a random value
between 0.080 and 0.622), and the probability of beginning
in State 3 was approximately 0.378 (i.e., a random value
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Figure 2: Initialized Landscape. A representation of the forage
quality as perceived by the grazing agents on the landscape. An
adjustment was made to decrease the quality of the forage near the
fence along the outer boundary of the “park.”

between 0.622 and 1). All agents in behavioral state 2
were placed upon the landscape such that they were utiliz-
ing cells of high quality (i.e., cells with values greater than
one standard deviation above the mean grazing value), but
were placed randomly otherwise.

The placement of LIZs k = {1, ..., z} was also depen-
dent on the underlying forage quality layer. A slightly
higher proportion (70%, rather than approximately 54%)
of LIZs were placed on cells with forage quality greater
than one standard deviation from the mean forage quality
to reflect the fact that LIZs actively increase the qual-
ity of the cell in which they are deposited [34]. In addi-
tion, a “green up” was induced at initialization to increase
the carrying capacity of cells containing anthrax carcasses
(Kj,t; where the index t was used set up an iterative re-
lationship over time), thereby impacting the growth curve
in the cell (see Landscape Processes, below). The amount
of increase depended upon the age of the LIZ (Ak), and
followed the equation:

Kj,t+1 = Kj,t ∗ (1 + (0.4− (Ak ∗ φ))), φ ∼ N
(
µ, σ2

)
where µ = 0.1 and σ = 0.02

The initial mass of the carcass (Bk) and the time since
deposition (Ak) were used to create a buffer around the
central point associated with the LIZ. The size of the buffer
(S) of each LIZ (k) was determined by the following equa-
tion:

Sk =
log(Bk)

log(350)
∗ χ, χ ∼ N

(
µ, σ2

)
where µ = 3(4−Ak) and σ =

3(4−Ak)

8

These polygons served as the synthesized LIZ layer for
the calculation of the number of contacts (described below
in Analysis Methods).

Input

The input data used to inform the simulation model
consisted of the empirical movement tracks of nine zebra
between 2009 and 2010 (Table 1) and an archive of car-
cass surveillance records from 1968-2011. The GPS data
from the zebra were used to determine the optimal number
of distinguishable behavioral states, parameterize the step
length and turning angle distributions during each of those
states, and calculate the probabilities of transitioning be-
tween behavioral states. The carcass surveillance data en-
abled the initialization of the LIZ layer by informing the
likely density of carcasses (0.0135 carcasses/km2/year) as
well as the expected size and age distributions of locally
infectious zones on the landscape (82.7% medium, 14.8%
small, and 2.5% large).

Submodels

Movement processes: The movement of agents across
the landscape was based upon the behavioral state of the
individual at time t. For each possible state, a gamma
distribution derived from empirical zebra movement paths
was used to generate appropriate step lengths. For behav-
ioral states 1 (resting) and 3 (directed movement), the
turning angles were also generated from a circular von
Mises distribution derived from the same empirical tra-
jectories. The von Mises was selected because it is a com-
monly used distribution for simulating or analyzing turn-
ing angles in animal movement paths [52, 53, 54, 49]. Move-
ment fixes were made at 20 minute intervals (to match the
resolution of the empirical zebra trajectories). Prior to
each step, the behavioral state was evaluated and updated
based on the probabilities of the observed zebra shifting
behavioral states. The relationship between time of day
(or more accurately, the time since sunrise, T ) and current
behavioral state was extracted from the empirical move-
ment paths, and these functions were used to shift individ-
uals between behavioral states (transitions not expressed
below were not observed in the empirical data, and thus,
were treated as impossible in the model):

P1→2 = e0.030T −1.482

P3→2 = e0.024T −1.480

P2→1 = e0.037T −2.669

P2→3 = e0.002T −2.318

These probabilities served as the basis for Bernoulli
draws for each individual in each behavioral state. Un-
der very rare circumstances, the same individual would
stochastically be assigned to shift from State 2 to both
State 1 and State 3 during the same update. In these
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cases, the Bernoulli draws were executed repeatedly until
the individual was assigned to only one of the two behav-
ioral states.

The foraging state (2) is the behavioral mode most im-
portant for the transmission of anthrax. In the simulation
model, for individuals in behavioral state 2 at time t, move-
ments were made according to the step length distribution
observed in empirical movement paths, but the turning
angle emerged based on the forage quality in surround-
ing cells. The perceptual range value (Pi) of individual i
was used to create a search radius. The individual then
adjusted its position to direct its movement toward the
center of the cell with the highest relative forage quality
(among all of the cells whose center was within the search
radius).

Landscape processes: Two primary processes affected
the landscape, namely feeding and vegetation growth. Feed-
ing occurred each hour (i.e., after three movements by
agents), and affected the landscape in two ways. The
first form of feeding, called general feeding, occurred at
the landscape level (on an hourly basis), where an ex-
pected number of “untagged” individuals in the foraging
state (approximately 54% of the total ungulate popula-
tion) were randomly dispersed across cells with a relative
forage quality value greater than the mean forage quality
(muF ). The density of ungulate agents in this simula-
tion was set at 0.89/km2, which was chosen based on the
approximate density of medium-sized ungulates in Etosha
National Park. Of the proportion of this population that
was in the foraging state, 80% were assigned to high qual-
ity cells and 20% were assigned to lower quality cells (sug-
gesting imperfect detection of high quality vegetation).
Once these individuals were dispersed, feeding decreased
the current relative forage quality of the cell (Qj,t) without
impacting the carrying capacity of the cell (Kj,t), follow-
ing the equation (valid only for changes sufficiently small
to ensure Qj,t > 0):

Qj,t+1 = Qj,t −
Bi ∗ 12

365 ∗ (24 ∗ 0.54)

This feeding equation is based on the average biomass
consumption of a similar equid species, the horse (Equus
ferus), per year (3835 - 4146 kg/year; [55]). This value is
approximately 12 times the mean body size of the agents
in this simulation, so the above equation results in an av-
erage daily extraction rate of approximately 11.5 kg/day.

A second, similar form of feeding, called specific feed-
ing, affected only cells that contained a tracked (or “tagged”)
individual currently in the foraging state. In those cells,
forage quality was also decreased according to the formula
above for each individual located therein.

Each hour, a growth process also occurred such that
any cell whose current forage quality (Qj,tS) was less than
the carrying capacity of the cell (Kj , as set at initial-
ization) would experience an increase in its quality. The
growth process was governed by a logistic equation with a

fixed maximum growth rate (r, set at 0.10 based on [17])
applied across the landscape:

Qj,t+1 = Qj,t + r ∗Qj,t ∗
(

1− Qj,t

Kj,t

)
This basic logistic growth equation [56] was used rather
than a more complex function (such as that presented in
[17, 47]) because the foraging dynamics were not the pri-
mary focus of the model. Logistic growth offered a means
of maintaining a relatively constant overall landscape qual-
ity while offering the ability to implement short-term (i.e.,
daily) constraints on individual decisions.

Analysis Methods

The simulation model presented above enables the cal-
culation of probabilities of contact between hosts and LIZs
at several different scales of analysis. These analysis meth-
ods reveal how alternative scales of movement analysis
may contribute significantly, and differently, to our under-
standing of the epidemiological aspects in question. Though
the model does not reflect empirical data directly, the out-
puts represent a particular construction of the system that
can be analyzed in much the same way as field data from
a disease system. As such, this agent-based formulation of
the anthrax system offers a means of comparing the behav-
ior of alternative methods for estimating important rates
that are often difficult to ascertain with empirical data.

Broad-scale Analysis

The broadest scale of analysis conducted in this case
occurred at the level of the home range [57, 58, 59]. This
area describes the portion of the park that is utilized by an
animal during the course of its normal activities, but this
simple definition belies the diversity of methods currently
available to demarcate this region. In this case, we have
used two different methods: the minimum convex poly-
gon (MCP) [60, 61] and the Local Convex Hull (LoCoH)
method [58, 59]. The MCP method is arguably the sim-
plest conception of the home range and depends upon the
creation of a polygon that encloses a pre-defined propor-
tion of the points. Though the 95% MCP is frequently
used to eliminate outlying points that may be anomalous
with regard to the normal activity patterns of an individ-
ual, we opted to use the 100% MCP to ensure that con-
tacts with LIZs were not missed. The LoCoH method aims
to more accurately reflect the home range by reducing the
amount of unused space within the delineated area. Rather
than building an MCP around all of the points, the Lo-
CoH algorithm seeks to construct a series of hulls around
smaller subsets of points (See Supplementary Materials for
details on parameterization of the LoCoH algorithm based
on [62]). The result is often more tightly fitted to the
known movement track of the individual than the MCP-
based home range. Here, too, we used the 100% hullset
to verify that all potential points of contact between the
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Figure 3: Comparison of the Analysis Methods. The gray re-
gions represent the area considered in the calculation of the probabil-
ities of contact using the MCP (top panel) and LoCoH home ranges
(middle panel), as well as the space-time prism (STP; bottom panel)
method. The colored points indicate the positions of the LIZs (red
dots represent zebra, green springbok, and blue elephants).

animal and the infectious reservoir were considered in our
calculation.

Fine-scale Analysis

A finer-scale analysis of the movement trajectory in-
volved the explicit consideration of uncertainty around
each point rather than the more holistic approach of de-
limiting a home range around the entire path. To address
the uncertainty inherent in the discrete positional fixes,
we created a set of simulated possible paths to develop a
probability surface around the known fix locations. We
simulated intermediate points using the space-time prism
concept (STP; [63]). This method uses the time budget
and the maximum possible speed of movement (Vmax) of
the individual to simulate a series of steps between the
known points that would enable the individual to cover
the distance between the origin and destination point in
the time allowed. However, rather than a single path in be-
tween known fixes, we generated 50 alternative paths [64]
of the 19 intermediate points (and one point at each of
the known locations). The purpose of this was to enable
the creation of a probability surface that was effectively
continuous to reflect the continuous nature of movement.

Considerations of Behavior

Assuming that some knowledge concerning the mode
of transmission of anthrax is available, a researcher may
conclude that only points obtained when an individual was
in the foraging state should be considered in the calcula-
tion of the probability of contact. The incorporation of
behavioral state analysis may impact the results at both
the broad- and fine-scale, so the methods described above
were applied to reduced datasets that only included points
during which the animal was assessed to most likely be in
the foraging state.

To segment our simulated movement trajectories into
approximate behavioral states, we used the k-means clus-
tering algorithm of Hartigan & Wong (1979) [65] on in-
dividuals’ step sizes seeded with three a priori centers
(0m, 150m, 1000m) according to visual inspection of in-
dividuals’ step size distributions (for example distribu-
tion, see Figure 4, right panel). With location data at
a resolution of 20 minutes per fix, only canonical activity
modes (CAMs; [66]) can be effectively identified, rather
than the more specific fundamental movement elements
(FMEs; [66]) that underlie these observations. Table 4 re-
ports the mean, median, and standard deviation of step
sizes in each cluster, or CAM, averaged across simulated
individuals. The k-means clustering algorithm classified
89.1% of the points into the correct behavioral mode, how-
ever, it performed even better when only steps in the for-
aging state were considered, accurately assigning 99.0% of
those steps.

For subsequent analyses, an animal was considered to
be in the foraging state during the 20 minute period be-
tween fixes when either the preceding, succeeding, or both

8

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2018. ; https://doi.org/10.1101/261198doi: bioRxiv preprint 

https://doi.org/10.1101/261198
http://creativecommons.org/licenses/by-nd/4.0/


State Median Mean StDev
Resting 6.38 8.57 7.76
Foraging 105.7 113.5 100.0
Traveling 545.1 630.5 404.9

Table 3: Basic descriptive statistics of step lengths for simulated
individuals during each of the potential behavioral states.

State Median Mean StDev
Resting 5.60 7.96 7.46
Foraging 68.4 104.2 111.9
Traveling 577.5 647.1 398.8

Table 4: Basic descriptive statistics of step lengths for empirical
individuals during each of the behavioral states defined by the three-
state hidden Markov model.

fixes were predicted to be in state 2. This method serves
as a relatively liberal estimate of time spent in the foraging
state (i.e., likely overpredicting foraging points) by includ-
ing the entire period during which a transition between
states was predicted to occur. This, in turn, should of-
fer the most inclusive estimate of potential contact events,
such that Type I errors (including a non-foraging time pe-
riod during which contact occurs; false positive) are more
likely than Type II errors (excluding a foraging time period
in which contact occurs; false negative).

Calculation of Contacts

A raster layer of the synthesized locations of LIZs was
created with 10 meter by 10 meter grid cells v, v = 1, ..., w.
The resulting circular buffer polygons were then laid atop
the raster, and the proportion of each cell covered by the
buffer polygon was calculated to represent the probability
of encountering a LIZ in each cell. To calculate the prob-
ability of contact for each individual, this synthesized LIZ
layer was considered in conjunction with the probability
surfaces created by the broad- and fine-scale analyses. The
surfaces obtained after the explicit incorporation of behav-
ioral state were also considered to determine the utility of
the additional analysis step at both scales. Because of the
uncertainty regarding the dose required to cause infection
or death in a wild ungulate, we considered only the prob-
ability of a transmission-enabling contact rather than the
actual probability of transmission itself.

In the case of the broad-scale analyses (with and with-
out behavior considered), the home ranges that emerged
from the MCP and LoCoH methods were first rasterized
onto the same 10 meter by 10 meter resolution grid, and
then set down upon the LIZ layer. Because the entire
home range was treated as having a uniform probability
of presence throughout, the number of cells encapsulated
by the home range was calculated (including the portions
of cells covered at the edges) and the probability of 1 was
distributed accordingly. If PA

i,v and PK
k,v represent the re-

spective probabilities of an agent foraging in cell v and of a
carcass being in cell v, then the probability of individual i

encountering at least one of the z LIZs during the anthrax
season PC

i was calculated as:

PC
i =

z∑
k=1

w∑
v=1

PA
i,v ∗ PK

k,v

For the fine-scale analyses, the simulated points were
summarized using another 10 meter by 10 meter resolution
raster. The number of simulated points within each raster
cell was calculated and divided by the total number of
simulated points across the entire path (6,805,050 points
in the case of the full path of an individual). By dividing
by the total number of points, the sum of the values of all of
the raster cells was equal to 1 for each individual, thereby
representing a probability of presence over the course of
the anthrax season. The probability surface derived from
the simulated paths was used instead of the home range
raster, but the same equation was applied.

Results

LIZs occupied at least some portion of 422 of the raster
cells (10 by 10 meters) on the landscape. That represents
a proportion of 0.000014 of the total number of cells in
the park. The probabilities of contact for every individ-
ual, irrespective of analysis method, are greater than that
expected through random movement alone (Figure 5; Ta-
ble 5). The probability of contact values presented below
effectively represent the proportion of steps during an an-
thrax season that an individual will be present in a cell
with anthrax spores.

The MCP-based broad scale analysis method applied
to the full dataset resulted in estimates of probabilities
of contact that ranged from 0.000471 to 0.000613 (mean
= 0.000564; SD = 0.000037). Estimates obtained using
the reduced dataset, representing only those points during
which the individual was in the foraging behavioral state,
were almost identical (mean = 0.000563; SD = 0.000037),
with only two individuals estimated to have different prob-
abilities of contact (IDs 9 and 14).

The LoCoH-based broad scale analysis resulted in sub-
stantially different estimates. Using the full dataset, the
probabilities of contact ranged from 0.000353 to 0.000709
(mean = 0.000521; SD = 0.000118). This level of het-
erogeneity between individuals was not reflected in the
more simplistic MCP approach. In addition, the appli-
cation of the LoCoH-based method to the foraging-only
dataset resulted in significantly lower estimates of proba-
bilities of contact (p = 0.0012 based on a paired t-test).
The values obtained using the reduced dataset ranged from
0.000175 to 0.000693 (mean = 0.000402; SD = 0.000132).
On average, the probabilities of contact using the reduced
dataset were 21.6% lower than those estimated from the
full dataset.

The finer-scale analysis based on the space-time prism
approach resulted in estimates of probabilities of contact
ranging from 0.000026 to 0.000682 (mean = 0.000137; SD
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Figure 5: Probability of Contact Estimates Across Analysis
Methods. A boxplot of the probabilities of contact that emerged
from the three alternative analysis methods: LoCoH (leftmost box),
MCP (middle box), and STP (rightmost box). The black dots in-
dicate the probabilities of contact associated with the 18 simulated
agents, though their dispersion along the x-axis is merely for clarity
within the three analysis types.

= 0.000152). The values obtained using the reduced dataset
ranged from 0.000015 to 0.000366 (mean = 0.000091; SD =
0.000087). Like the LoCoH-based analysis, the differences

between the probabilities derived from the full and reduced
datasets were significantly different (p = 0.03 based on a
paired t-test). On average, the probabilities of contact
using the reduced dataset were 28.5% lower than those
estimated from the full dataset.

The individual-based methodology resulted in estimates
that were significantly lower than either home-range-based
approach. Paired t-tests between the estimated proba-
bilities of contact based on the STP method relative to
the MCP method demonstrate significant differences for
both the full dataset (t = 10.93; p < 0.0001) and the re-
duced datasets (t = 18.9; p < 0.0001). Comparing the
results from the LoCoH approach to the STP method re-
veals similar patterns for both the full (t = 7.64; p <
0.0001) and reduced (t = 8.05; p < 0.0001) datasets. In-
terestingly, though the probabilities of contact estimates
from the MCP method do not differ significantly from the
LoCoH method when the full dataset is considered (t =
1.64; p = 0.12), the differences are significant when the be-
havioral component is considered (t = 5.32; p < 0.0001).
This suggests that the inability of the MCP to respond
to the removal of epidemiologically-irrelevant points could
lead to dramatic overestimates of the probability of con-
tact during susceptible behavioral states.
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Simulant ID MCP LoCoH STP
Full Forage Full Forage Full Forage

ID1 559∗ 559 353 175 35 18
ID2 593 593 628 486 80 79
ID3 599 599 696 257 62 054
ID4 612 612 554 624 173 122
ID5 558 558 483 289 32 24
ID6 471 471 446 344 114 83
ID7 563 563 601 416 103 101
ID8 548 548 430 406 26 15
ID9 568 554 401 326 150 150
ID10 599 599 491 290 76 67
ID11 613 613 416 359 39 24
ID12 579 579 377 467 191 150
ID13 523 523 563 321 215 200
ID14 528 522 374 341 682 366
ID15 519 519 535 438 126 92
ID16 567 567 639 693 82 26
ID17 580 580 675 431 254 36
ID18 580 580 709 573 33 27

∗All values in this table must be multiplied by 10−6: i.e. this first entry is 0.000559

Table 5: Probability of contact values across 18 simulated agents using three alternative estimation methods: Minimum Convex Polygon
(MCP), Local Convex Hull (LoCoH), and Space-time Prism (STP), each applied to the full trajectory (Full) and a subset of the dataset
during which the individual was predicted to be in the foraging behavioral state (Forage).

Discussion

To demonstrate the benefits of incorporating move-
ment data into disease research, we analyzed the outputs of
an agent-based simulation model. The goal of our exercise
was to estimate, using some of the tools described above,
the probability of individuals coming into contact with
an infectious dose of an indirectly-transmitted pathogen
within an environmental reservoir. The outputs of the
simulation included a set of movement trajectories (cover-
ing the three-month anthrax period at a temporal resolu-
tion of 20 minutes per fix) and the locations and sizes of
LIZs across the landscape. Due to the limitations of most
field surveillance efforts, it is unlikely that a researcher
would have the ability to map out the exact locations of
every infected carcass on the landscape (estimates from the
Etosha system based on a hierarchical model of distance
sampling place the rate of detection at approximately 25%;
[45]), so the simulation framework offered an alternative
approach that enabled full knowledge of the distribution
of risk across the landscape. Thus a comprehensive map
of LIZ sites was used for the estimation of contact rates to
judge the relative strengths of various movement analyses
at different scales.

The analyses conducted here demonstrate the value of
using fine-scaled movement data in estimating rates of epi-
demiological relevance. The use of methods that function
at the scale of the home range resulted in higher proba-
bilities of contact than methods that adhered more closely
to the movement trajectory of the individual. The gen-
eral purpose of most home range delineation methods is to

generalize from relatively sparse movement paths, so the
inclusion of large areas is not surprising, nor are the corre-
spondingly high estimates of contact rates. The space-time
prism method, on the other hand, enabled the incorpora-
tion of some level of uncertainty regarding the movement
of the animal in between GPS fixes without generalizing
too far beyond the measured path. Thus, the area used
for calculating the probability of contact was less likely
to include a large number of LIZs. Even using the simu-
lation framework where the locations of LIZs are known,
there remains no means of extracting a ‘true’ probability
of contact for each individual. Rather, we can demonstrate
the performance of these alternative analysis methods in
a controlled microcosm that would be difficult to replicate
in the field.

In most wildlife disease systems, precise contact rates,
whether generalized over an entire host population or recorded
for each individual separately, are only very rarely calcu-
lated directly. The effort involved in the near-continuous
monitoring of individuals normally precludes such calcu-
lations (but see fairly extensive studies regarding tuber-
culosis transmission among badgers and livestock; e.g.,
[67, 68]). Here we demonstrate that relatively straightfor-
ward movement analyses can be used as a proxy for inten-
sive sampling regimes, offering insight into the magnitude
of variance among individuals as well as average rates for
use in more traditional epidemiological models. Analyses
applied at the home range scale tended to result in larger
estimates of contact rates than those applied at the indi-
vidual path level. When considering the ultimate impact
on the transmission term beta frequently fitted to epidemic
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data, any overestimation of contact results in a reciprocal
underestimation of the infectiousness of a pathogen. Sim-
ilarly, underestimation of the variance among individuals,
as results from the MCP-based approach, could lead to
incorrect conclusions about the variance in potential out-
break sizes. For example, the rapid fade-out of an epidemic
may be attributed to the pathogens infectiousness (or lack
thereof) when, in fact, it is merely the result of a stochas-
tic movement process. The same heterogeneity that led
to fade-out after one introduction of infection could very
well give rise to a much larger epidemic following another
introduction into the same population.

Due to the probabilistic nature of the analyses at the
individual and landscape levels, all 18 of the simulants
were estimated to have had some non-zero probability of
encountering a LIZ. Field-based investigations of sub-lethal
exposure in ungulates in Etosha revealed that 52%-87% of
sampled zebra exhibited some level of anti-anthrax anti-
body titres [38], though the rate at which titres may wane
over time is not known. Nevertheless, while the analysis-
derived values may be slight overestimates, it is not un-
reasonable to expect that every individual may come into
contact with at least a few anthrax spores, perhaps fol-
lowing deposition by tabanids (horse-flies) on browse [41].
Differences in the infectious doses encountered by each
individual—the cores of LIZs versus a few stray spores—
may be one possible explanation for the majority of indi-
viduals exhibiting some level of exposure.

The LIZs in our simulation were relatively small, with
infectious radii ranging from about 1 meter (for the small-
est carcasses, akin to a springbok) to about 14 meters (for
the rare large carcasses, akin to elephants). These infec-
tious sites occupied a total area of approximately 13,000
m2, or about 0.013 km2. Even so, all 18 of the simu-
lated individuals were predicted to encounter at least one
LIZ along their movement trajectories during the anthrax
season. This is likely because of the attractive nature of
these areas, which increase the forage quality in the vicin-
ity of the carcass [69, 34], a feature that emerges from
the movement dynamics during the foraging phase of the
simulation.

Several of the complexities of infection dynamics, in-
cluding considerations of heterogeneity in dosages and im-
mune responses, were excluded from this model. Instead,
the emphasis was on potential transmission events and a
more readily measurable metric: the probability of contact
with a LIZ bounded by the radii mentioned above. For this
reason, the relatively short-time frame of the simulation
was selected. Though the peak anthrax season is likely
long enough for some individuals who encounter infectious
carcass sites to succumb to the disease, such mortality
events were not incorporated. This was deemed reason-
able, as such newly deposited carcasses have been reported
to have repulsive effects on live individuals [34], meaning
that they would be unlikely to influence the subsequent
probabilities of contact for monitored agents. Several ad-
ditional state variables and submodels would be needed

to consider more complete infection dynamics. Additional
state variables would include parameters defining agent
immune systems and changing bacterial densities at LIZs.
Infection and immune response submodels would also be
required, which could account for altered movement pat-
terns in infected hosts and disease-induced mortality dur-
ing and after the anthrax season. Due to the lack of em-
pirical data for parameterizing such state variables and
submodels, the model presented here was not extended in
this manner.

According to the pattern-oriented modeling framework
[13], multiple observed patterns should be matched by an
agent-based model to optimize model structure, compare
alternative rule sets, and reduce parameter uncertainty.
The fact that infection with anthrax is difficult to ascer-
tain prior to an animal succumbing means that there are
not many empirical metrics to use for verification of the
model outputs. To verify that emergent properties arise
from the model, a more theoretical pattern was matched:
changes in the density of foraging agents on the landscape
should alter the probabilities of contact in a directional,
but potentially non-linear, fashion. This is based on the
idea that additional agents (i.e., increased densities) would
be similarly attracted to LIZ sites, extract resources from
those areas, and reduce the likelihood of tagged agents
foraging at such sites, thereby decreasing the mean prob-
ability of contact for all tracked individuals. This theoret-
ical pattern was tested with the simulation model at three
densities of hosts: D = 0.495, 0.89, and 1.78 agents/km2

(representing the predicted density as well as one-half and
twice that density). Though the relationship is not statis-
tically significant at the 0.05 level (p = 0.10), there exists
a downward trend in contact probability with increased
agent density that may be borne out with greater clar-
ity under a wider range of densities (see Supplementary
Figure S2).

Ultimately, the model serves as a proof of concept that
the incorporation of movement data collected using avail-
able technology may help elucidate some of the contribut-
ing aspects of infection processes. For pathogens with an
environmental reservoir, like B. anthracis, evaluating the
probability of susceptible hosts contacting sources of in-
fectious material is likely to be one of the most valuable
means of assessing the risk faced by local wildlife popula-
tions. Real world pathogens with dependence on read-
ily remotely-sensed environmental factors may be more
amenable to analyses at broader scales, as sites of pathogen
deposition may be readily predicted from imperfect or in-
complete data. In such cases, the necessary resolution
of the movement data may be relaxed while maintaining
some ability to draw conclusions about individual risk of
infection.

Despite the data-intensive nature of agent-based mod-
els, they hold a great deal of promise for understanding
the complex dynamics underlying epidemics, particularly
in wildlife populations. The use of empirical movement
data to parameterize this simulation model also demon-
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strates the value of incorporating such increasingly ubiq-
uitous data sources. These methods may help guide future
data collection efforts or elucidate certain traits (e.g., habi-
tat preferences) that indicate heterogeneous vulnerability
among hosts. Thus, such combinations of tools can alter
the means by which risk is evaluated in disease systems,
such as those dominated by anthrax.
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