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ABSTRACT 
 
The human immune system consists of many specialized cell subsets that simultaneously carry 
out a diverse range of functions using overlapping pathways and signals. Subset-specific 
immune profiling can resolve immune activity in autoimmune disease, cancer immunity, and 
infectious disease that may not be discoverable or detectable in analyses of crude blood 
samples. The activity of specific subsets may help predict the course of disease and response 
to therapy in certain patient populations. Here, we present a low-input microfluidic system for 
sorting immune cells into subsets and profiling their cellular states by gene expression analysis 
using full-length RNA-seq. Our system is robust and has the potential to make multiplexed 
subset-specific analysis routine in many research laboratories and clinical settings. We validate 
the device’s technical performance by benchmarking its subset enrichment and genomic 
profiling performance against standard protocols. We make the added value of subset-resolved 
profiling over crude samples clear through ex vivo experiments that show subset-specific 
stimulated responses. Finally, we demonstrate the scalability of our device by profiling four 
immune cell subsets in blood from systemic lupus erythematosus (SLE) patients and matched 
controls enrolled in a clinical study. The results from our initial cohort confirm the role of type I 
interferons in lupus pathogenesis and further show that the canonical interferon signature for 
SLE is prominent in B cells, demonstrating the ability of our integrated analytical platform to 
identify cell-specific disease signatures. 
 
INTRODUCTION 
 
Millions of immune cells can be obtained from a small blood draw, yet most clinical methods for 
immune profiling fail to resolve the biological information contained within these cells. Recently, 
profiling the immune state of individuals using gene expression analysis of peripheral blood 
mononuclear cells (PBMCs) has become instrumental in defining immune signatures and 
disease states in humans. These studies provide insight into the mechanisms of complex 
immune responses that occur in infection1,2 and autoimmunity3–5, which are difficult to 
recapitulate in murine models6–8. Furthermore, expression signatures can be used to stratify 
individuals into different disease subtypes9–13 or predict individualized clinical prognoses14–16. 
More recently, gene expression profiles from specific cell types or cell “subsets” were shown to 
be better discriminants of immune status than bulk PBMC profiles due to the diversity of 
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leukocyte responses17–19. In addition, new immune subsets and cellular states, some of which 
are indicative of impaired immune function, have been discovered through gene expression 
profiling of PBMCs at the single cell level20–23. Such observations have stirred interest in probing 
the expression and monitoring the activity of these subsets in particular. As a whole, this body of 
work suggests that molecular profiling of PBMC subsets is poised to become an important tool 
in basic studies of immune disease as well as a clinical tool useful for predicting and monitoring 
patient outcomes.  
 
Despite its potential as a tool for immunomonitoring, current methods for subset-specific 
expression profiling are ill-suited for large studies and clinical translation. First, technologies for 
cell subset enrichment such as fluorescence-activated cell sorting (FACS) are both capital 
intensive and require substantial attention from highly trained staff. As a result, FACS is 
challenging to scale for large-number samples generated from clinical studies (especially those 
that generate large sample sets by analyzing multiple cell subsets across patients at different 
time points). In addition, FACS requires a minimum sample input to establish gates for each 
target subset, which can constrain its application to low-quantity samples and projects targeting 
many subsets from each sample.  Second, the throughput of RNA-seq library construction is 
limited by reagent cost and labor. Implementing library construction at high throughput using 
conventional pipetting robots is feasible, but capital intensive, inflexible, and only tractable for 
the largest studies and the largest clinical centers. Conventional magnetic-affinity cell sorting 
(MACS) has the potential to be automated, but available commercial systems are low-
throughput and custom liquid handling systems suffer the same drawbacks just described for 
their application in RNA-seq library construction. Because of these limitations, most clinical 
gene expression studies are currently limited to whole-blood or total PBMC profiling9–11,14,15, 
which fails to resolve expression signatures from most cell subsets due to confounding signals 
from more abundant cell populations. To efficiently identify and monitor important disease 
signatures in lower-abundance subsets, we developed a microfluidic system that integrates both 
human PBMC subset enrichment and library construction for genome-wide expression 
measurements by RNA-seq.  
 
The microfluidic system carries out multiplexed enrichment of target cell subsets based on 
affinity for cell surface markers by MACS and high-sensitivity sequence library construction for 
full-length RNA-seq based on Smart-seq chemistry. Using 50,000 cells as input, the device can 
purify multiple PBMC cell subsets with high purity while detecting up to 10,000 genes in each 
subset. In testing immune stimulation and challenge ex vivo, we highlight the importance of 
subset-specific profiling by showing differential responses across four selected subsets. Finally, 
we apply the microfluidic device to profile PBMCs of SLE patients and identified clear 
differences in the transcriptomic states of healthy individuals and SLE patients in multiple 
immune cell subsets. By integrating multiplexed enrichment and library construction workflows 
in a single device, our platform enables scalable PBMC sample preparation for large clinical 
studies and allows for both high-resolution and high-throughput profiling of the immune system. 
We foresee the application of this system as a routine tool in monitoring immune responses in 
clinical studies and a potential diagnostic tool for patients with complex and/or pressing immune 
conditions.  
 
RESULTS 
 
Microfluidic device design 
 
We designed a two-layer microfluidic device capable of semi-automated cell isolation, cell 
disruption, and sequence library construction protocols. This system integrates microfluidic 
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liquid handling with magnetic affinity purification. The device is fabricated using established 
methods for two-layer soft-lithography24 and contains 39 micromechanical valves controlled by 
an external pneumatic valve controller25. The device consists of three main chambers 
partitioned by microvalves (Fig. 1a), each having different capacities (1 µl, 2 µl, 4 µl). The 
largest chamber is rectangular in shape and is utilized for cell isolation (Supplementary Note), 
while the two smaller “rotary reactors” are used for library construction26. These reactors have 
internal microvalves that are used to formulate samples and reagents, and to mix these by 
peristalsis around the circular channel (Fig. 1b). Bead resuspension is achieved by peristalsis in 
the smaller rotary reactors and by a moving magnetic field in the large rectangular chamber. A 
675 micron thick silicon wafer was used as the substrate for these microfluidic devices to allow 
rapid heat transfer during temperature changes called for in the protocol, particularly for PCR 
(due to its thinness and high thermal conductivity). The substrate thinness also enables small 
external permanent magnets to be placed in close proximity to magnetic beads in the device 
chambers and to subject these to strong magnetic forces. The magnets are used to move beads 
between chambers and hold beads in place during buffer exchange steps. With such device 
functionality, we are able to automate many steps in the complex protocol for cell sorting, cell 
disruption, and RNA-seq library construction in a simple microarchitecture consisting of just 
three microfluidic chambers (Supplementary Fig. 1). The three-chamber design element is 
modular and constitutes a scalable microarchitecture for devices with variable sample 
multiplexing capacity. The data presented here were produced using 10-channel devices, 
although we have fabricated devices with 6 – 30 channels. Like the devices employed in our 
previously published system for microbial genomic DNA sample preparation25, the devices 
described here can be reused following a simple washing procedure (particular devices were 
used up to 4 times in this study). 
 
Microfluidic cell sorting and low-input RNA-seq 
 
To validate the performance of our microfluidic device, we independently benchmarked the 
subset enrichment and RNA-seq workflows against standard protocols (Fig. 1c). We tested our 
workflows using adult peripheral PBMC samples from healthy subjects obtained from a 
commercial supplier (Research Blood Components) at an input level of 50,000 cells per 
enrichment. We first implemented MACS on the microfluidic device and configured an eight-
color flow cytometry analysis as a readout of the purity and yield of the purified cell subsets 
(Supplementary Fig. 2). We optimized the conditions for microfluidic cell subset isolation by 
testing different reagents, incubation, and washing procedures and compared the results of the 
optimized protocol to conventional benchtop MACS (Supplementary Fig. 3, Methods). We 
found that the purity of the subsets isolated using the optimized microfluidic MACS protocol 
were about the same as those as conventional benchtop MACS, suggesting that the MACS 
reagents were performing up to their potential in both formats.  
 
We tested positive selection of target cells, negative depletion of non-target cells, and 
sequential isolation using both modalities in tandem. Total T cells were isolated by depleting 
cells expressing markers for lineages other than T cells. The total T cell population was then 
positively selected for either CD4 or CD8 to isolate helper and cytotoxic T cell subsets 
separately. The prior negative selection reduced contamination from non-target lineages that 
express CD4 or CD8. B cells and monocytes, on the other hand, were effectively isolated using 
single positive selection for CD19 and CD14, respectively. The device consistently achieved 
good purity (80 ± 8%) and excellent yield (76 ± 21%) for multiple targets and modes of isolation 
(Fig. 2a-b), leading to 2- to 13-fold enrichment of the selected cell types, which is close to the 
maximum theoretical enrichment possible for the relatively abundant cell subsets tested. This 
result shows that microfluidic cell sorting with magnetic beads presents a viable alternative to 
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conventional sorting approaches and demonstrates the possibility of subset-specific enrichment 
with limited quantity samples. 
 
Based on the cell isolation testing, we expected to capture thousands of cells in each subset 
using our microfluidic device. With these relatively low numbers in mind, we implemented a 
sensitive RNA-seq protocol27 (Smart-seq2) in the chip with minor modifications. Instead of 
SPRI-based clean-up for RNA extraction, we utilized custom-prepared poly-dT capture beads 
(Methods) that captured mRNA molecules in lysate by direct hybridization to enable purification 
and subsequent solid-phase reverse transcription. Our protocol calls for amplifying cDNA by 
PCR, purifying the products with SPRI, and subsequently recovering the samples from the 
device for Nextera fragmentation and enrichment PCR closely following the standard Smart-
seq2 method. The cDNA amplicons from the microfluidic device showed the expected size 
distribution and the RNA-seq datasets resulting from such samples show high technical 
reproducibility (Pearson correlation of 0.88 ± 0.04) and correlate well with libraries produced 
using the standard Smart-seq2 protocol on the benchtop across for four different cell subsets 
(0.90 ± 0.03) (Fig. 2d, Supplementary Fig. 4, Table 1). Despite the similarity between the gene 
expression profiles of the four subsets (Fig. 2c), the sequence libraries produced in our 
workflow can distinguish the subsets based on simple correlation and clustering procedures 
(Fig. 2e). In addition, the enrichment of polyadenylated RNA in the microfluidic protocol reduced 
the number of ribosomal RNA reads and improved transcript mapping rates over the standard 
Smart-seq2 protocol (Table 1, Supplementary Fig. 5). Combining RNA-seq with cell isolation 
in an integrated workflow yields libraries of similar quality (Table 1, Supplementary Fig. 6). 
These results demonstrate that full-length cDNA synthesis and amplification by PCR can be 
implemented in a microfluidic device with input from on-device-enriched cell subsets to support 
RNA-seq and that reduction in the reaction volume (from 25 to 2 µl) does not negatively affect 
the quality of libraries obtained.  
 
Gene expression signatures of ex vivo stimulated PBMCs 
 
We assessed whether our workflow can accurately and reproducibly profile the dynamic 
immune responses of different cell subsets. We cultured healthy PBMCs and applied three 
distinct treatments known to impact immune cells (LPS, IFN-α, and DEX) in duplicate.  Using 
the microfluidic device to carry out multiplexed subset enrichments and RNA-seq library 
construction, we profiled the treatment response of three different subsets (CD4+ T, B cells, and 
CD14+ monocytes). The device-processed libraries again showed strong reproducibility, co-
clustering the duplicates based on differential gene expression responses (Fig. 3a, 
Supplementary Fig. 7) and accurately recording the differences in response between the three 
specific treatments used (Fig. 3b, Supplementary Fig. 8). Furthermore, our results highlight 
the heterogeneity in response between different cell subsets (Fig. 3c-d), as evidenced by the 
minimal overlap in differentially expressed genes and difference in enriched pathways between 
the profiled subsets. For B cells, IFN-α induces a proliferative response, as shown by the 
upregulation of cell cycle and metabolism pathways, while for monocytes, IFN-α induces an 
opposite effect. Even in the well-characterized Jak-STAT pathway, which is known to be directly 
activated by IFN-α, the pattern of downstream responses varied significantly across the three 
subtypes studied here (Fig. 3e). These results are consistent with previous reports that type I 
interferons can have either proliferative or suppressive effects on lymphocytes, depending on 
the relative timing of receptor co-activation28. In addition, these responses are greatly affected 
by cell-to-cell communication and the interplay between innate and adaptive immune activity29–

31. This result emphasizes the importance of subset specific profiling to achieve higher 
resolution compared to monitoring immune responses compared with bulk expression profiling.  
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Transcriptomic profiling of SLE patients 
 
To demonstrate the utility of the device for disease studies, we profiled the immune state of 5 
SLE patients and 5 healthy controls by isolating CD4+ T, CD8+ T, B cells, and CD14+ monocytes 
from cryopreserved PBMC samples (Supplementary Table 1). For each sample, 0.5 M cells 
were split into 8 channels on devices to isolate 4 subsets in duplicate and prepare RNA-seq 
libraries (Supplementary Methods). The data from our cohort validates the role of type I 
interferons in the pathogenesis of lupus32. We found type I interferon responses that are 
upregulated in SLE patients compared to matched healthy controls based on both differential 
expression and gene set analyses (Figure 4a, Supplementary Fig. 9). Interestingly, gene 
targets of the fusion protein NUP98-HOXA9, a potent driver of myeloid leukemia, were also 
enriched in all subsets. This supports previously published evidence that dysregulated 
lymphocyte proliferation is associated with both cancer and autoimmune disease, and could 
explain the increased malignancy risk in lupus patients33. Finally, to compare with previous gene 
expression studies, we generated an IFN-gene score based on a known panel of SLE signature 
genes previously identified in bulk studies34 (Supplementary Methods, Supplementary Fig. 
10). Our data shows that while this signature can be found across all the subsets we profiled, 
the difference between healthy and SLE scores is most pronounced in B cells (Figure 4b) (P = 
0.05). This suggests that the diagnostic sensitivity and predictive power of the IFN signature for 
SLE may be improved by specifically profiling B cells instead of bulk PBMCs. Altogether, these 
initial findings show that gene expression responses in SLE differ across immune cell subsets 
and highlight the importance of subset-specific profiling in identifying disease signatures.  
 
DISCUSSION 
 
Through our scalable microfluidic workflow, we demonstrate the utility of subset specific profiling 
of immune cells and its advantages over conventional bulk blood transcriptomics. Subset-
specific analysis allows ready detection of biological signals from minority subsets by removing 
confounding effects from abundant cell populations such as the monocytes that dominate our 
test samples. Our method is complementary to the application of single cell transcriptomics 
approaches that are rising rapidly in popularity. For example, single-cell studies could point us 
to pathogenic subsets that can be enriched using the microfluidic device for large-scale 
research studies or clinical diagnostics. With this framework, scRNA-seq can be initially applied 
to a small cohort to identify clinically relevant subsets, after which, the integrated subset-specific 
microfluidic workflow can be used to scale-up to a larger cohort, increasing the study’s statistical 
power and lowering its cost. Another example would be the application of cell subset enrichment 
to help target cells of interest ahead of scRNA-seq. This type of workflow could dramatically 
improve the efficiency of scRNA-seq studies that target rare cell subsets by reducing the 
number of non-target cells that need be processed and sequenced to gain access to data from 
rare cells of interest.  
 
In this report, we introduce the design and operation of a single microfluidic device that 
integrates both cell subset isolation and transcriptomic profiling. The device can reliably isolate 
cell subsets of interest and reproducibly construct RNA-seq libraries for next-generation 
sequencing. The sample multiplexing capability and free scaling of our microfluidic MACS 
implementation to low numbers of input cells while maintaining good enrichment performance 
are key advantages over conventional MACS approaches.  Furthermore, the microfluidic device 
can be readily repurposed for other library preparation techniques, such as chromatin 
accessibility and DNA methylation profiling. We highlighted the importance of subset-specific 
profiling through ex vivo treatment of healthy PBMCs and the scalability of the workflow by 
profiling cell subsets in multiplex from SLE patient clinical samples. While the device does not 
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yet reach the purity levels of FACS, the on-device enrichment approach boosts the signal from 
target subsets relative to bulk profiles by a significant 2- to 13-fold, enabling robust detection of 
weaker signals. This device will enable high-resolution monitoring of immune responses in 
clinical studies, especially in applications where blood samples or other inputs bear limited 
numbers of target cells, and large-scale immunomonitoring studies where significant sample 
throughput is required.  
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MAIN FIGURES 
 
 

 
 
 
Figure 1. Microfluidic chip design and integrated workflows. (a) Photograph of a 10-channel 
chip filled with yellow, blue, and red dye to highlight compartments, control valves are filled with 
green dye (black bar indicates 2 cm). Inset shows diagram of one channel, where 
compartments and control lines are colored similar to the photograph; red and black arrows 
indicate sample input/output and reagent input ports, respectively. (b) Schematic showing key 
device capabilities that enable various sample preparation steps. Black arrows indicate mixing 
valves that alternately open and close to generate flow within a compartment, allowing for 
reagent mixing and bead resuspension without external fluid input. Permanent magnets are 
utilized for moving magnetic beads across different compartments or preventing their flow 
during buffer exchange and washes. (c) Full and partial (cell sorting and RNA-seq) sample 
preparation workflows implemented in the microfluidic chip. 
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Figure 2. Chip performance and validation. (a-b) Representative purity (black bars), yield (gray 
bars), and composition of immune cell types after microfluidic sorting. Yield is determined 
relative to fraction of the target subset in the input sample. Error bars indicated S.E.M., n=3. (c) 
Pearson correlations between RNA-seq libraries of the four cell subsets processed through the 
microfluidic chip. (d) Scatterplot showing technical replicability of standard and microfluidic 
RNA-seq. Red points indicate genes with greater than 2-fold change between replicates. (e) 
Correlation matrix between standard and microfluidic RNA-seq libraries for four FACS-sorted 
cell lysates with single positive markers (CD4, CD8, CD14, and CD19). 
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Figure 3. Genomic characterization of ex vivo-treated PBMCs. (a) Unsupervised clustering of 
untreated (NT) and treated (DEX, IFN, and LPS) PBMC subsets based on differentially 
expressed genes (FDR < 0.01). Top differentially expressed genes are labelled. Venn diagrams 
(b, c) showing common differentially expressed genes (FDR < 0.05) between treatments and 
subsets. (d) Gene set enrichment analysis (Reactome sets, FDR < 0.01) of IFN-treated B-cells 
and monocytes. Red nodes indicate upregulation, while blue nodes indicate down-regulation. 
Node sizes are proportional to the number of genes in the gene set, while edge lengths are 
inversely proportional to the number of overlapping genes between the sets. (e) Normalized 
fold-change in expression of Jak-STAT pathway genes in IFN-treated samples over untreated 
controls.  
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Figure 4. Transcriptional immune profiling of SLE patients. (a) Enriched gene sets (MSigDB C2) 
in SLE samples compared to healthy controls. P-values are adjusted for multiple gene set 
testing (Benjamini-Hochberg). (b) Heat map showing relative IFN-signature scores across 
different cell types of 10 patients. Scores (transcripts-per-million sum for 37 genes, 
Supplementary Methods) are mean-centered across each subset. Dendrogram shows 
clustering of patients based on IFN-signature scores for B cells. (*) Asterisk indicates missing 
data due to technical dropout. 
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Table 1. RNA-seq library statistics for the samples generated in this study. Two technical 
replicates are performed for each sample and isolated subset, n represents the total number of 
RNA-seq libraries generated for each column. Values are shown as mean ± S.D. 
 

 
Benchtop Microfluidic 

 
Lysates 

 (n = 12) 

Lysates 

 (n = 12) 

PBMCs 

(n = 10) 

Cultured 

PBMCs 

(n = 24) 

SLE PBMCs 

(clinical study) 

(n = 32) 

Healthy PBMCs 

(clinical study) 

(n = 34) 

Estimated 

library size (M) 
16.1  1.7 12.4  5.5 7.7  5.47 13.0  8.7 6.3  4.6  8.9  3.6 

Genome map 

rate (%) 
91.6  8.7 88.9  1.7 86.8  2.5 77.0  16.3 79.8  6.3 82.5  5.7 

Transcript map 

rate (%) 
48.0  7.0 63.0  10.0 45.0  15.0 65.0  13.0 61.9  10.5 63.1  8.7 

Gene count 13 592  512 10 850  481 10 336  848 8899  1379 9091  1956 9817  1757 

rRNA (%) 8.67  1.76 0.22  0.06 2.48  1.17 0.56  0.37 1.29  1.07 1.34  1.08 
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METHODS 
 
Study samples 
 
Human blood samples were obtained either from Research Blood Components (MA, USA) for 
technical validation experiments, or from collections at the Brigham and Women’s Hospital, MA 
USA (Supplementary Table 1). Research on the samples was approved by Institutional 
Review Boards at the Broad Institute of MIT and Harvard, MA (USA) and Brigham and Women’s 
Hospital, MA (USA). Blood samples from SLE patients and healthy control donors were drawn 
with EDTA Vacutainer tubes (BD Biosciences) and processed within 3 h of collection. 
 
Isolation of PBMCs from whole blood 
 
Cells were isolated from whole blood samples using density gradient centrifugation. Whole 
blood was diluted 1:1 with 1X PBS, layered on top of Ficoll-Paque Plus (GE Healthcare), and 
centrifuged at 1200g for 20 min. The PBMC layer was retrieved, resuspended in 10 mL RPMI-
1640 (Gibco), and centrifuged again at 300 g for 10 min. The cells were counted using a manual 
hemocytometer, resuspended in FBS (Gibco) with 10% DMSO (Sigma), and aliquoted in 1 mL 
cryopreservation tubes at a concentration of 5 M cells/mL. The tubes were kept at -80 °C 
overnight, then transferred to liquid nitrogen for long-term storage. Prior to processing, cells 
were thawed at 37 °C for 3 min, resuspended in 10 mL RPMI-1640 supplemented with 10% 
FBS (Gibco), and centrifuged at 300 g for 5 min. The cells were then resuspended in the 
desired concentration or buffer, depending on the experiment. 
 
Microfluidic device design and fabrication 
 
The microfluidic device was fabricated using a previously published protocol25 with minor 
modifications. Flow layer molds were patterned in 3 steps: (1) rectangular 75 µm, (2) 
rectangular 200 µm, and (3) rounded 60 µm. All silicon wafers were pre-coated with 
hexamethyldisilazane (Sigma) before spin-coating. Rectangular features were prepared by spin-
coating SU-8 2075 (Microchem) on a silicon wafer. The coated wafers were patterned by 
ultraviolet exposure (OAI 206 mask aligner) through a mask printed at 20,000 dpi (Fineline 
Imaging, design files are included in Supplementary Material). The features were then 
developed using SU-8 developer (Microchem). The rounded features were produced by spin 
coating AZ-40XT photoresist (Microchem), patterning the wafer with UV exposure and a mask, 
developing with AZ 400K developer (Microchem). After development, the wafer was subjected 
to an additional curing step (105° C for 10 min) to round the features. The control layer mold 
was patterned in one step: (1) rectangular 40 µm, using methods similar for the flow layer with 
SU-8 2015 photoresist (Microchem). Device production was carried out using standard soft-
lithography, following the same published protocol, with the exception of final bonding to a 
silicon wafer substrate. 
 
Magnetic affinity cell isolation and microfluidic implementation 
 
Magnetic affinity cell sorting was done using commercially available EasySep kits (CD14, CD19, 
CD4, CD8 positive isolation II and T cell negative isolation) from StemCell Technologies. In 
order to implement the isolation protocols on the device, the buffers were modified and volumes 
were scaled accordingly. EasySep buffer (StemCell Technologies) was supplemented with 10% 
FBS (Gibco) and 0.2% Pluronic-F127 (Sigma), in order to reduce non-specific cell adhesion in 
the PDMS channels. The micro-channels were also pre-incubated with 1% Pluronic-F127 
(Sigma) prior to cell isolation. Neodynium magnets (Grainger) with a 43 lb pull were used for all 
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magnetic capture steps. 
 
Flow cytometry and fluorescence-activated cell sorting 
 
For assessment of isolation purities, flow cytometry was conducted using the Cytoflex system 
(Beckman Coulter). For RNA-seq library validation experiments and benchtop comparisons, 
PBMCs were sorted using the MoFlo Astrios (Beckman Coulter). Lysate pools were generated 
by sorting 5000 cells into 20 µl TCL buffer + 1 ul 20 mg/ml proteinase K (Qiagen) and stored at -
80 °C to maintain RNA integrity. The following panel was used for both purity assessment and 
sorting: DAPI, CD45 BV605, CD3 AF700, CD4 FITC, CD8 PE, CD14 APC, CD19 PE-Cy7, 

CD56 BV650 (all IgG1κ, BioLegend). Flow cytometry data was analyzed using FlowJo v10.1. 

 
Low-input RNA-seq, microfluidic implementation, and sequencing 
 
RNA-seq was performed using Smart-Seq227 with minor modifications. Cells were sorted into 19 
µl TCL buffer + 1 ul 20 mg/ml proteinase K (Qiagen) and their RNA was purified by a 2.2x SPRI 
clean up with RNAClean XP magnetic beads (Agencourt) before reverse transcrition. For the 
microfluidic implementation of the protocol, Tween-20 (Teknova) was added to all reactions at a 
final concentration of 0.5%. For mRNA capture, a biotinylated oligo (/5BiosG/ - 
AAGCAGTGGTATCAACGCAGAGTAC-30T-VN) (Integrated DNA Technologies) was attached 
to streptavidin magnetic beads (New England Biolabs) following the manufacturer’s protocol. 
The beads were then used to capture mRNA from the lysates, and were washed with 10 mM 
Tris-HCl pH 7.5, 0.15 M LiCl, 1 mM EDTA, 0.5% Tween-20. The beads were then resuspended 
in the reverse transcription mix, following the same steps as the published protocol. cDNA 
processed on the benchtop and microfluidic device were amplified for 18 and 22 cycles, 
respectively. After amplification and clean-up, libraries were quantified using a Qubit fluorometer 
(Invitrogen) and their size distributions were determined using the Agilent Bioanalyzer 2100. 
After normalizing the amplicon concentrations to 0.1-0.2 ng/mL, sequencing libraries were 
constructed using the Nextera XT DNA Library Prep Kit (Illumina), following the manufacturer’s 
protocol. All RNA-seq libraries were sequenced with 38x37 paired-end reads using a MiniSeq or 
NextSeq (Illumina). 
 
Ex vivo stimulation of PBMCs 
 
Healthy PBMCs were resuspended in RPMI-1640 supplemented with 10% FBS and 1X 
penicillin-streptomycin (Gibco). Cells are cultured at a density of 1 M/mL and stimulated with 

LPS (5 µg/mL) (eBioscience), dexamethasone (100 nM) (Millipore), IFN- (250 U/mL) (Abcam), 

or no treatment. The cells were cultured for 24 hr at 37 °C in a 5% CO2 environment before 
processing through the microfluidic device. 
 
RNA-seq data analysis 
 
RNA-seq libraries were sequenced to a depth of 5-15M reads per sample. All technical 
validation libraries were subsampled to 10 M reads to remove potential confounding effects of 
sequencing depth. Sequencing reads were aligned to the UCSC hg19 transcriptome using 
STAR35 and used as input to generate QC statistics with RNA-SeQC36. RSEM37 was used to 
generate an expression matrix for all samples. Both raw count and TPM (transcripts per million) 
data were analyzed using edgeR and custom R scripts. Lowly expressed genes with log2(CPM) 
less than 5 were filtered out before analysis. Gene set analyses were performed using the 
Kolmogorov–Smirnov test implementation in gage38. Cytoscape and the enrichMap39 module 
extension was utilized to visualize pathway-specific differential expression data.  
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