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Abstract 
Alzheimer’s disease (AD) develops silently over decades. We cannot easily access 

and analyse pre-symptomatic brains, so the earliest molecular changes that initiate 

AD remain unclear. Previously, we demonstrated that the genes mutated in early-

onset, dominantly-inherited familial forms of AD (fAD) are evolving particularly 

rapidly in mice and rats. Fortunately, some non-mammalian vertebrates such as the 

zebrafish preserve fAD-relevant transcript isoforms of the PRESENILIN (PSEN1 

and PSEN2) genes that these rodents have lost. Zebrafish are powerful vertebrate 

genetic models for many human diseases, but no genetic model of fAD in zebrafish 

currently exists. We edited the zebrafish genome to model the unique, protein-

truncating fAD mutation of human PSEN2, K115fs. Analysing the brain 

transcriptome and proteome of young (6-month-old) and aged, infertile (24-month-

old) wild type and heterozygous fAD-like mutant female sibling zebrafish supports 

accelerated brain aging and increased glucocorticoid signalling in young fAD-like 

fish, leading to a transcriptional ‘inversion’ into glucocorticoid resistance and vast 

changes in biological pathways in aged, infertile fAD-like fish. Notably, one of these 

changes involving microglia-associated immune responses regulated by the ETS 

transcription factor family is preserved between our zebrafish fAD model and 

human early-onset AD. Importantly, these changes occur before obvious 

histopathology and likely in the absence of Aβ. Our results support the 

contributions of early metabolic and oxidative stresses to immune and stress 

responses favouring AD pathogenesis and highlight the value of our fAD-like 

zebrafish genetic model for elucidating early changes in the brain that promote AD 

pathogenesis. The success of our approach has important implications for future 

modelling of AD. 

Introduction 
Alzheimer's disease (AD) is the leading cause of dementia, a condition characterised 

by the progressive decline of memory and cognition. Like other neurodegenerative 

diseases, AD affects diverse cellular processes in the brain, including mitochondrial 

function1,2, metal ion homeostasis3-5, lipid metabolism6-8, immune responses9,10, 

synaptic transmission11, and protein folding and trafficking12,13. Dysregulation of 

these processes eventually results in severe atrophy of several brain regions 

(reviewed by Braak and Braak 14 and Masters et al. 15). Consequently, late stages of 

AD are likely to be much more difficult to treat than earlier stages of AD, 

contributing to our failure to discover ameliorative drugs16. 
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The pathological processes that result in AD are likely to initiate decades before 

clinical symptoms arise. Increased levels of soluble amyloid beta (Ab) peptides in 

the cerebrospinal fluid and blood plasma is one of the earliest markers of both 

sporadic and familial forms of AD, preceding disease onset by 20-30 years17,18, 

while vascular changes are likely to occur even earlier19. Additionally, individuals 

possessing highly penetrant, dominant mutations in genes linked to the familial 

form of AD (fAD) such as PSEN1 show structural and functional changes in their 

brains as early as 9 years of age, despite being cognitively normal20,21. Similar 

findings are evident in young adults carrying the e4 allele of APOE, the major risk 

gene for the sporadic form of AD22. To prevent AD, we must identify the stresses 

underlying these early pathological changes. However, detailed molecular analysis 

of the brains of asymptomatic young adult fAD mutation carriers is currently 

impossible. 

 

Analysing high-throughput ‘omics data (e.g. transcriptomic, proteomic) is a 

comprehensive and relatively unbiased approach for studying complex diseases like 

AD. Over the past decade, numerous post-mortem AD brains have been profiled 

using microarray and RNA-seq technologies, exposing an incredibly complex and 

interconnected network of cellular processes implicated in the disease23,24. 

Unfortunately, analysing post-mortem AD brains does not discern which cellular 

processes are responsible for initiating the cascade of events leading to AD. 

 

Animal models can assist exploration of the early molecular changes that promote 

AD. However, early “knock-in” mouse models that attempted to model the genetic 

state of human fAD showed no obvious histopathology25-27. Modern ‘omics 

technologies provide molecular-level descriptions of disease states, but these 

technologies were not available when the early knock-in models were made. 

Subsequent transgenic models of AD constructed with multiple genes and/or 

mutations have displayed (what are assumed to be) AD-related histopathologies 

and these have also been analysed by ‘omics methods. However recent analysis of 

brain transcriptomes from five different transgenic AD models showed little 

concordance with human, late onset, sporadic AD brain transcriptomes. Worse 

still, none of the models were concordant with each other28.  

 

Surprisingly, there has not yet been a detailed molecular investigation of the young 

adult brains of any animal model closely imitating the human fAD genetic state – 
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i.e. heterozygous for a fAD-like mutation in a single, endogenous gene.  Previously, 

we used zebrafish to analyse the unique, frameshifting fAD mutation of human 

PRESENILIN2 (PSEN2), K115fs, that inappropriately mimics expression of a 

hypoxia-induced truncated isoform of PSEN2 protein, PS2V29-32. Mice and rats 

have lost the ability to express PS2V33 (and the fAD genes of these rodents are 

evolving more rapidly than in many other mammals33), but in zebrafish, this 

isoform is expressed from the animal’s psen1 gene32. Consequently, to model and 

explore early changes in the brain driving AD pathogenesis, we have now used 

gene-editing technology to introduce a K115fs-equivalent mutation into the 

zebrafish psen1 gene, K97fs. In this paper, we analyse RNA-seq and mass 

spectrometry data collected from young adult (6-month-old) and aged, infertile (24-

month-old) adult mutant and wild type zebrafish brains to comprehensively assess 

gene and protein expression changes in the brain due to aging and this fAD-like 

genetic state. At the molecular level, we find that the young fAD-model brains 

show elements of accelerated aging while aged fAD-like brains appear to ‘invert’ 

into a distinct and presumably pathological state. Our results emphasise the 

difficulty of understanding the early molecular progression of AD by examining 

overtly diseased brains and highlight the importance of accurate genetic models of 

fAD for elucidating mechanisms of AD pathogenesis.  
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Results 
Gene editing in zebrafish to produce the psen1 K97fs mutation is described in the 

Materials and Methods section and in Supplementary Methods 1. To 

determine whether the K97fs mutation in the zebrafish psen1 gene induces gene 

and protein expression changes, we removed whole-brains of psen1K97fs/+ (mutant) 

and psen1+/+ (wild type) adult zebrafish for total RNA sequencing (RNA-seq) and 

label-free tandem mass spectroscopy (LC-MS/MS) when zebrafish were 6 months 

(young) and 24 months (aged) old. We used three biological replicates to represent 

each of the four experimental conditions (young wild type, young mutant, aged 

wild type, aged mutant), and performed pairwise comparisons between 

experimental conditions to determine differentially expressed (DE) genes and 

differentially abundant (DA) proteins (Figure 1). Full lists of DE genes and DA 

proteins are provided in Supplementary Table 1 and Supplementary Table 

2. 

 

A familial AD-like mutation in zebrafish induces age-dependent 
gene expression changes 

Early gene expression changes 

The brains of children or young adults carrying fAD mutations display 

morphological and functional differences compared to age-matched individuals 

without these mutations20,21. Because of this, we hypothesised that gene expression 

in the brains of young adult (6-month-old) zebrafish carrying a fAD-like mutation 

would also be altered when compared to wild type zebrafish siblings. Overall, we 

find supporting evidence for 105 genes that are differentially expressed in young 

mutant brains relative to wild type brains (65 up-regulated, 40 down-regulated; 

FDR-adjusted p-value < 0.05) (Supplementary Fig. 1). Of these 105 genes, 65 

have an log2 fold change greater than 0.5 or less than -0.5 in the ‘young mutant vs. 

young wild type’ comparison (Figure 2A). By examining the expression of these 

genes in the other three comparisons described in Figure 1, we observe two 

important phenomena: 

 

1. Accelerated aging genes are associated with increased immune 

response: 62% (65/105) of the genes that are DE in 6-month-old mutant 

brains (‘young mutant vs. young wild type’) show the same direction of 

expression change during normal aging (‘aged wild type vs. young wild type’). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 9, 2018. ; https://doi.org/10.1101/262162doi: bioRxiv preprint 

https://doi.org/10.1101/262162
http://creativecommons.org/licenses/by/4.0/


 6 

However, far more genes are DE during normal aging (1,795 compared to 

105). This suggests that the 6-month-old mutant brains may demonstrate 

accelerated aging for a subset of cellular functions. As an initial step to uncover 

these altered cellular functions, we applied functional enrichment analysis on 

these 65 genes and discovered significant enrichment in an MSigDB gene set 

relating to immune response genes that are up-regulated following 

lipopolysaccharide treatment “GSE9988 LPS VS VEHICLE TREATED 

MONOCYTE UP” (Bonferroni adjusted p-value 0.000948) (Supplementary 

Table 3).  

2. Age-dependent ‘inversion’ pattern: A subset of 63 genes with increased 

expression in 6-month-old mutant brains (‘young mutant vs. young wild type’) 

show decreased expression in 24-month-old mutant brains (‘aged mutant vs. 

aged wild type’). We call this expression pattern an age-dependent ‘inversion’ 

between mutant and wild type brains. We explore the biological relevance of 

the genes involved in this inversion pattern in the transcriptome later.    

Late gene expression changes 

By comparing gene expression in 24-month-old mutant and wild type zebrafish 

brains, we can gain insight into a putatively pathological transcriptomic state 

present in the brains of aged zebrafish carrying a fAD-like mutation. We find 

supporting evidence for 177 genes that are differentially expressed in mutant brains 

relative to wild type brains (139 down-regulated, 38 up-regulated, FDR-adjusted p-

value < 0.05) (Figure 2B; Supplementary Fig. 1). Note that not all of these 

genes are shown in Figure 2B, which only includes genes with log2 fold change 

values greater than 0.5 or less than -0.5.  To allow for easier interpretation of these 

177 genes, we used hierarchical clustering to separate them into groups with 

distinct expression patterns based on all four brain-types: 

 

§ Inverted (63 genes): Defined as genes showing opposite fold-changes in 

young mutant brains (‘young mutant vs. young wild type’) compared to aged 

mutant brains (‘aged mutant vs. aged wild type’). To be included in this group, 

genes were required to have an FDR-adjusted p-value < 0.05 in either the 

‘young mutant vs. young wild type’ or ‘aged mutant vs. aged wild type’ 

comparison and an unadjusted p-value < 0.05 in the other comparison.  
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§ Inappropriately down-regulated (57 genes): Defined as genes that are

down-regulated in the ‘aged mutant vs. young mutant’ and ‘aged mutant vs.

aged wild type’ comparisons (FDR-adjusted p-value < 0.05 in both).

§ Failure to up-regulate (94 genes): Defined as genes that are up-regulated

during normal aging (FDR-adjusted p-value < 0.05 in the ‘aged wild type vs.

young wild type’ comparison) but not up-regulated in the ‘aged mutant vs.

aged wild type’ comparison.

§ Failure to down-regulate (26 genes): Defined as genes that are down-

regulated during normal aging (FDR-adjusted p-value < 0.05 in the ‘aged wild 

type vs. young wild type’ comparison) but not down-regulated in the ‘aged 

mutant vs. aged wild type’ comparison.

To determine whether these different component groups of the gene expression 

patterns are biologically relevant, we assessed each group’s functional enrichment 

using Gene Ontology terms, MSigDB gene sets, and Reactome and Interpro 

pathways (summarised in Supplementary Table 3; full results in 

Supplementary Table 4). Overall, we find statistically significant enrichment 

(Bonferroni adjusted p-value < 0.05) for all groups except for the ‘failure to down-

regulate group. The ‘inverted’ group is significantly enriched in several gene sets 

related to stress and immune response; the ‘inappropriately down-regulated’ group 

is significantly enriched in developmental transcription factors including 

homeobox genes; the ‘failure to up-regulate’ group is significantly enriched in 

immune response. 
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Gene expression changes due to brain aging  

By comparing gene expression in 24-month-old and 6-month-old brains, it is 

possible to identify genes that show altered expression during normal aging and the 

aberrant molecular aging of the fAD-like mutant fish. 1,795 genes show altered 

expression levels with normal brain aging in zebrafish (‘aged wild type vs. young 

wild type’), while 1,072 genes show altered expression in mutant brains as they age 

(‘aged mutant vs. young mutant’) (FDR-adjusted p-value < 0.05). 525 genes overlap 

in these two sets, and can be considered an ‘aging signature’ showing statistically 

significant fold changes in the same direction during both wild type and mutant 

brain aging. These genes are enriched in gene ontology terms related to immune 

function (Supplementary Table 3) indicating that some immune responses that 

are associated with normal brain aging are still preserved in mutant zebrafish.  

 

The gene expression changes observed are likely not due to 
changes in the proportions of brain cell types 

It is possible that changes in the proportions of different cell types in the brain 

could result in genes being falsely interpreted as differentially expressed. To ensure 

that our observations of differential gene expression are not an artefact of changes 

in the proportions of the major brain cell types (e.g. astrocytes, microglia, neurons, 

oligodendrocytes), we checked that the average expression for sets of marker genes 

representing each of the major brain cell types was approximately constant across 

the samples in each biological condition (young wild type, young mutant, aged wild 

type, aged mutant). Representative marker genes for microglia were obtained from 

Oosterhof et al.34 while gene markers for astrocytes, neurons, and oligodendrocytes 

were obtained from Lein et al.35 The number of genes used to calculate the average 

gene expression (in logCPM) was 41 (astrocyte), 99 (microglia), 77 (neuron) and 78 

(oligodendrocyte). Overall, the average expression of gene markers for the major 

neural cell types is approximately constant in each of the biological conditions, and 

no obvious outlier samples are evident (Supplementary Fig. 3).    

 

Regulation of gene expression changes in fAD-like mutant 
zebrafish brains differs from normal brain aging 

A transcription factor can regulate (activate or repress) gene expression by binding 

to a specific DNA motif in the promoter region of a gene. We hypothesised that 

changes in gene expression during normal aging or differences in gene expression 
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between mutant and wild type brains would be driven by differences in 

transcription factor activity. To test this, we examined gene promoter regions for 

enriched motifs corresponding to known transcription factor binding sites 

(summarised in Supplementary Table 5; full results in Supplementary Table 

6). Overall, we find: 

 

1. Numerous known transcription factors likely drive the gene 

expression changes that occur during normal zebrafish brain 

aging. As wild type brains age, the genes which are differentially expressed are 

significantly enriched in many known motifs. These motifs correspond to 

binding sites for interferon regulatory factors (e.g. IRF1, IRF2, IRF8); a 

binding site for the the PU.1-IRF8 complex; an interferon-stimulated response 

element (ISRE); and binding sites for various transcription factors important 

for essential cellular processes like proliferation, differentiation, and apoptosis 

(Atf3, Fra2, Ets-distal, AP-1, Fra1, JunB, BATF, and ZNF264). This supports 

the idea that numerous transcription factors contribute to the coordinated gene 

expression changes observed during aging.   

2. Altered glucocorticoid signalling in mutant zebrafish brains is 

likely to contribute to brain pathology in fAD-like mutants. 

Promoters of genes that are differentially expressed in the ‘aged mutant vs. 

aged wild type’ comparison are significantly enriched in the glucocorticoid 

receptor element motif (GRE) (Bonferroni p-value = 0.0057). Interestingly, the 

subset of genes showing inappropriate downregulation (down-regulated in the 

‘aged mutant vs. young mutant’ and ‘aged mutant vs. aged wild type’ 

comparisons) is even more enriched in the GRE motif (Bonferroni p-value = 

0.0001), suggesting that genes that are normally activated by glucocorticoid 

signalling during aging may not be activated in aged mutant brains. This 

altered glucocorticoid signalling appears to be present even in young zebrafish 

brains, as genes showing inverted behaviour (opposite direction of differential 

expression in ‘young mutant vs. young wild type’ and ‘aged mutant vs. aged 

wild type’ comparisons) are also enriched in the GRE motif (Bonferroni p-value 

= 0.0047). Because these inverted genes tend to show high expression in young 

mutant brains (i.e. up-regulated in the ‘young mutant vs. young wild type’ 

comparison) and low expression in aged mutant brains (i.e. down-regulated in 

the ‘aged mutant vs. aged wild type’ comparison), this suggests that young 

mutant zebrafish brains may initially exhibit abnormally increased 
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glucocorticoid signalling, while aged mutant brains later exhibit abnormally 

decreased glucocorticoid signalling. Notably, the inverted genes containing a 

GRE motif in their promoters include COQ10A (encodes Coenzyme Q10, a key 

component of the electron transport chain and free-radical scavenging 

antioxidant); pik3r3a (encodes regulatory subunit gamma of phosphoinositide 3-

kinase, an enzyme that interacts with insulin growth factor 1 receptor among 

other proteins); mmadhc (encodes a protein involved in an early and essential 

step of vitamin B12 metabolism), plk3 (polo-like kinase 3, involved in stress 

response and double-stranded DNA repair), and fkbp5 (encodes FK506 binding 

protein, involved in regulating immune and stress responses, protein trafficking 

and folding, and glucocorticoid receptor regulation). A list of zebrafish genes 

containing the GRE promoter motif is provided in Supplementary Table 7.  

 

Gene expression changes in the fAD-like mutant indicate vast 
changes to cellular processes and pathways 

A gene set is a group of genes that contribute to a predefined biological function, 

pathway, or state. A gene set test is an analysis used to evaluate whether a 

particular gene set is differentially expressed for a particular comparison. We used 

FRY to test whether ‘Hallmark’ gene sets from the Molecular Signatures Database 

(MSigDB)36 were differentially expressed in each of the four comparisons (Figure 

3, Supplementary Table 8). Using an FDR-adjusted p-value < 0.05 to define a 

gene set as differentially expressed, we find: 

 

1. 50 gene sets are differentially expressed during normal brain 

aging ('aged wild type vs. young wild type') (middle row of 

heatmap, Figure 3A). This supports that many biological functions and 

pathways are altered during normal aging. For some gene sets, the 

proportion of genes that are up-regulated and down-regulated is similar 

(e.g. interferon alpha response, E2F targets, early estrogen response). 

However, other gene sets contain a predominance of up-regulated genes 

(e.g. epithelial mesenchymal transition, TNFA signalling via NFKB) or 

down-regulated genes (e.g. coagulation, reactive oxygen species pathway).  

2. 22 gene sets are differentially expressed in young mutant brains 

('young mutant vs. young wild type') (top row of heatmap, Figure 
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3A). These 22 gene sets may represent earlier functional changes in the 

brain that occur due to a fAD-like mutation. The gene sets implicate 

diverse processes including Wnt/β-catenin signalling, early estrogen 

response, DNA repair, hedgehog signalling and fatty acid metabolism. 

Similar to the pattern of accelerated aging observed in Figure 2, we also 

observe that most of the gene sets up-regulated in young mutant brains are 

regulated in the same direction during normal aging. This is consistent 

with the idea that the biological changes in young mutant brains may 

partially recapitulate those that occur during normal brain aging. 

3. 44 gene sets are differentially expressed between aged mutant 

and wild type brains (bottom row, Figure 3A). These differentially 

expressed gene sets may represent the pathological state of aged zebrafish 

brains bearing a fAD-like mutation. Importantly, 21 of the 22 gene sets 

that were differentially expressed in young mutant brains ('young mutant 

vs. young wild type') remain altered also when these are aged ('aged mutant 

vs. aged wild type'). However, the proportions of up- and down-regulated 

genes tend to differ; notably, several gene sets containing a predominance 

of up-regulated genes in the young mutant brains contain a predominance 

of down-regulated genes in the old mutant brains. These ‘inverted’ gene 

sets include biological functions and pathways as diverse as Wnt/b-catenin 

signalling, early estrogen response, hedgehog signalling, androgen 

response, epithelial mesenchymal transition, DNA repair, apical surface, 

and TGF-β signalling.   

4. Aging in mutant brains is similar but distinct from aging in 

wild type brains. The 50 gene sets differentially expressed during 

normal brain aging are also differentially expressed during mutant brain 

aging ('aged mutant vs. young mutant') (Figure 3B). However, proportions 

of up- and down-regulated genes differ from those in normal brain aging. 

This suggests that zebrafish brains bearing a fAD-like mutation may not 

properly regulate certain gene sets during aging (e.g. cholesterol 

homeostasis, adipogenesis, DNA repair, hypoxia, Wnt/b-catenin 

signalling). 
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Altered protein abundances in fAD-like mutant zebrafish 

Mutant zebrafish brains exhibit numerous transcriptional alterations linked to 

diverse cellular processes. However, since different mechanisms regulate the 

stability of RNA transcripts and proteins, it can be difficult to predict changes in 

protein abundance from RNA-seq data. We used LC-MS/MS to explore protein 

abundance changes in mutant zebrafish brains. Unfortunately, the resulting 

proteomic data are not directly comparable to the RNA-seq data due to only 

reliably quantifying 323 proteins from LC-MS/MS compared to 18,296 genes 

from RNA-seq (see Supplementary Methods 2 and Supplementary Fig. 4 

and 5 for correlation analysis between the RNA-seq and LC-MS/MS data sets). 

Nevertheless, the proteomic data reveal that numerous proteins are differentially 

abundant across each of the four comparisons. Here, we focus on the comparisons 

between mutant and wild type brains in young and aged zebrafish brains (Figure 

4, Supplementary Fig. 2). 

Early protein abundance changes 

1. When zebrafish are 6 months old, 22 of the 323 detected proteins are 

differentially abundant between mutant and wild type brains ('young 

mutant vs. young wild type' comparison, Figure 4A) (12 up-regulated, 10 

down-regulated, FDR-adjusted p-value < 0.05).  

2. Remarkably, three of the 12 up-regulated proteins have well-established 

roles in neurodegenerative diseases: apolipoprotein Eb (encoded by the 

zebrafish apoeb gene, orthologous to the major human genetic risk gene for 

sporadic AD, APOE); superoxide dismutase (encoded by the zebrafish sod1 

gene, orthologous to the human SOD1 gene mutated in familial 

amyotrophic lateral sclerosis); and protein DJ-1 (encoded by the zebrafish 

park7 gene, orthologous to the human PARK7 gene mutated in familial 

Parkinson's disease).  

3. Several mitochondrial proteins (cytochrome c oxidase subunit 2, NADH-

ubiquinone oxidoreductase chain 4, ATP synthase protein 8, 

mitochondrial calcium uniporter protein, probable 2-oxoglutarate 

dehydrogenase E1) are decreased in 6-month-old mutant brains. This is 

consistent with the alterations in energy metabolism and oxidative stress 

previously identified as early events in AD pathogenesis37,38.  
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Late protein abundance changes 

1. When zebrafish are 24 months of age, 65 of the 323 proteins are 

differentially abundant between mutant and wild type brains ('aged mutant 

vs. aged wild type' comparison, Figure 4B) (35 up-regulated, 30 down-

regulated FDR-adjusted p-value < 0.05).

2. As with the differentially expressed genes in Figure 2, the differentially

abundant proteins for this comparison are also grouped according to their

abundance changes in the four comparisons. The 'failure to down-regulate'

and 'failure to up-regulate' clusters represent proteins that normally

decrease or increase during normal brain aging, but fail to do so during the

aberrant aging of mutant brains. The 'inappropriately up-regulated' and

'compensation during aging' clusters represent proteins that tend to not be

differentially abundant at 6-months (except for adssl1), but increase during

aging of mutant brains, finally becoming differentially abundant in the

aged mutant brains.

3. In contrast to the differentially expressed genes in Figure 2, many of the

protein abundance changes appear to be specific to a particular age group

(i.e. either 6-month-old or 24-month-old). Only three proteins (encoded by

the adssl, mt-co2, ciapin1 genes) are differentially abundant at both 6 months

and 24 months of age. Interestingly, several proteins that are differentially

abundant at 6 months (including apolipoprotein Eb, superoxide dismutase

and protein DJ-1) are no longer differentially abundant at 24 months.

Overall, the protein abundance results provide a complementary perspective to 

the differentially expressed genes and gene sets identified earlier.  

An interconnected view of altered gene expression in fAD mutant 
zebrafish brains  

Our results support the idea that aged mutant zebrafish brains contain 

dysregulated genes that are involved in diverse cellular processes, raising several 

key questions.  

1. What particular cellular processes are critical for the pathological state

observed in aged fAD-like mutant brains?

2. Are these pathological changes similar to those in human brains with fAD?
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To address these questions, we compared gene expression patterns in zebrafish and 

human brains by constructing co-expression networks of genes. The zebrafish co-

expression network was constructed using the RNA-seq data described earlier; the 

human co-expression network was constructed using a microarray-based dataset 

from Antonell et al. 24 (GEO accession number GSE39420). The Antonell et al. 

dataset includes patients with fAD caused by PSEN1 mutations and patients with 

early-onset AD lacking PSEN1 mutations. This allows us to compare co-expression 

patterns in our mutant zebrafish to PSEN1-linked AD and the more general cases 

of early-onset AD. 

Constructing gene co-expression networks in zebrafish and human 

When constructing the co-expression networks, we only included genes that were 

orthologs in humans and zebrafish. Whilst there are many methods for 

constructing a co-expression network of gene expression39, we used the weighted 

gene co-expression network analysis (WGCNA) method40. WGCNA has previously 

been used to group genes expressed in the brain into “modules” that are associated 

with biological functions41-45. The zebrafish brain co-expression network is shown 

in Figure 5A, and the human brain co-expression network is provided in 

Supplementary Fig. 6. 

 

Identification of biologically relevant modules in the co-expression 

networks 

We identified 23 modules (i.e. groupings of genes) in the zebrafish brain co-

expression network containing between 79 and 818 genes each, and 13 modules in 

the human brain co-expression network containing between 62 and 921 genes 

each. We used two methods to confirm that most modules represented functional 

relationships between genes: enrichment analysis (for identifying enriched 

biological functions and enriched promoter motifs), and correlating modules with 

particular traits of interest (age and/or psen1 genotype).
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Correlating modules with zebrafish traits 

By correlating modules with particular zebrafish traits (age and psen1 genotype), we 

identified the modules showing evidence of altered expression patterns in mutant 

zebrafish brains. Of the 23 modules identified here in the zebrafish brain (as A to 

X), 13 show evidence of disruption in the mutant brains compared to wild type 

brains (Figure 5B).  Eight modules (from A to H) show decreased co-expression in 

mutant zebrafish brains, while six modules (from I to L) show increased co-

expression in mutant zebrafish brains.  

 

Enrichment Analysis 

A summary of the biological relevance of each module in the zebrafish co-

expression network is provided in Table 1 (full enrichment analysis results in 

Supplementary Tables 9, 10 and 11). Overall, zebrafish and human network 

modules show significant enrichment in functional categories (e.g. Gene ontology 

terms, MSigDB gene sets, with Bonferroni-adjusted p-value < 0.05), supporting the 

idea that these modules are likely to represent biologically relevant groupings of 

genes. Some of the biological functions represented by different modules in the 

zebrafish brain include: immune response (represented by module G), oxidative 

phosphorylation (represented by module E), translation and ribosomal components 

(represented by module V), G-protein coupled receptor activity (represented by 

module X), and extracellular matrix (represented by module S). Only one module 

(G) was significantly enriched in promoter motifs (Bonferroni-adjusted p-values for 

enriched motifs < 0.05). The enriched promoter motifs in module G include 

several motifs recognised by the ETS transcription factor family (SpiB, ELF3 and 

ELF5; Bonferroni-adjusted p-values of 0.00424, 0.0106, and 0.0127 respectively) 

and interferon regulatory factor motifs (IRF3, IRF8, ISRE; Bonferroni-adjusted p-

values of 0.0118, 0.0144, and 0.0260 respectively) (Supplementary Table 12).  

Several pathological changes in mutant zebrafish brains are similar to 
those in human fAD brains. 

There are several methods for assessing whether modules are preserved across two 

independent gene co-expression networks constructed using the same genes46. The 

most easily interpretable method is to compare directly the assignment of 

equivalent genes to modules identified in each network. The resulting overlap in 

gene co-expression patterns across the two networks can be visualised using a 

Sankey diagram (Figure 6). Overall, the gene co-expression patterns in the 

zebrafish brain appear to be broadly similar to the gene co-expression patterns in 
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the human brain. A more sophisticated method of assessing module preservation 

involves using permutation-based Z-statistics to test whether certain properties of 

modules (e.g. density, connectivity) defined in one co-expression network are 

preserved in another network46. Z-statistics for each module property can be 

summarised into a Z-summary score, with Z-summary scores less than 2 indicating 

no module preservation, scores between 2 and 10 indicating weak to moderate 

module preservation, and scores above 10 indicating strong preservation46. When 

comparing zebrafish and human brain co-expression networks, six of the 23 

zebrafish modules have Z-summary scores between 2 and 10, indicating weak to 

moderate preservation in the human co-expression network (Table 1, 

Supplementary Table 13). Importantly, three of these modules (D, G, H) also 

display altered co-expression in the mutant zebrafish brains (Figure 5), suggesting 

that at least several biological processes (“microtubule motor activity”, “immune 

response”, “regulation of synaptic plasticity”) altered in fAD-like mutant zebrafish 

brains may also be altered in the brains of humans with fAD. Notably, the module 

enriched in immune response functions, module G (Z-summary score 3.83), is also 

significantly enriched in ETS and IRF motifs.  

In zebrafish, the molecular changes in aged mutant brains occur 

without obvious histopathology 

Teleosts (bony fish) such as the zebrafish show impressive regenerative ability 

following tissue damage that includes repair of nervous tissue. Previous attempts to 

model neurodegenerative diseases in adult zebrafish have failed to show cellular 

phenotypes47. Also, zebrafish are thought unlikely to produce the Ab peptide48  that 

many regard as central to AD pathological mechanisms49. The analyses described 

in this paper support that fAD mutations in the PSEN genes accelerate aspects of 

brain aging and promote a shift in aged mutant brains towards an altered, 

pathological state of gene and protein expression. We therefore made 

histopathological comparisons of aged (24 months) wild type and mutant brains 

equivalent to those used in our ‘omics analyses. Analysis of various brain regions 

using markers of aging, senescence and amyloid accumulation (lipofuscin, 

senescence-associated b-galactosidase, and congo red staining respectively) revealed 

no discernible differences (see Supplementary Methods 3 and 

Supplementary Fig. 7, 8 and 9). This is consistent with the lack of 

neurodegenerative histopathology observed in a heterozygous knock-in model of a 

PSEN fAD mutation in mice25. 
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Discussion 
Using zebrafish with heterozygous fAD-like mutations in single endogenous genes 

appears to be useful for studying fAD pathogenesis at the molecular level. Figure 7 

summarises the main molecular changes that occur with aging and the fAD-like 

mutation.  

Evidence of increased stress long preceding AD  

We identified a subset of ‘inverted’ genes that are up-regulated in young mutant 

brains, but down-regulated in aged mutant brains. Although this pattern might be 

initially overlooked, similar patterns have also been observed in human cases.  At 

the structural-level, the brains of asymptomatic children with PSEN1 mutations 

display greater functional connectivity and increased grey matter volumes of 

several brain regions20. Interestingly, adult PSEN1 mutation carriers who are still 

asymptomatic retain these increased brain structure sizes, but upon developing AD 

symptoms, the affected brain structures rapidly decrease in size50-52. These changes 

are likely to be mirrored at the molecular level in the brain. Patients with Mild 

Cognitive Impairment, pre-clinical AD, or Down Syndrome (who often develop 

AD in adulthood) initially display increased expression of particular genes, which 

decreases when AD symptoms become more severe23,53-55. Collectively, results from 

these studies and our fAD-like mutant zebrafish suggest that early increases in brain 

activity likely precede AD symptoms in both PSEN1-mutation carriers and more 

general cases of AD. Evidently, to find strategies for preventing AD progression 

while patients are still asymptomatic, it is important to understand the causes of this 

increased brain activity. 

 

Our results suggest that stress responses are likely to contribute to early increases in 

brain activity for fAD mutation carriers. In mutant zebrafish, the inverted gene 

expression pattern seems to arise partially from altered glucocorticoid signalling. In 

humans, chronically increased glucocorticoid signalling in the brain can lead to 

glucocorticoid resistance, whereby the brain is unable to increase glucocorticoid 

signalling even during stressful conditions56,57. We did not confirm whether 

glucocorticoid signalling and cortisol levels were altered in zebrafish brains in vivo. 

However, many of the inverted genes possess glucocorticoid receptor elements in 

their promoters, and one particular inverted gene (fkbp5) encodes a protein which is 

known to bind directly to the glucocorticoid receptor to negatively regulate its 

activity. Previous studies in humans demonstrate that fkbp5 levels are highly 

responsive to chronic stress and stress-related diseases (e.g. bipolar disorder; 
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depression in AD58), implying that fkbp5 expression is a sensitive marker of 

glucocorticoid signalling. Our analysis supports this, with fkbp5 mRNAs showing a 

significant difference in expression between mutant and wild type brains (logFC = 

2.1, FDR-adjusted p-value = 1.77e-06 in young mutant vs wild type; logFC = -3.9, 

FDR-adjusted p-value = 3.16e-08 in aged mutant vs wild type). Aside from altered 

glucocorticoid signalling, we also linked altered gene expression to a range of 

biological processes that are altered in mutant zebrafish brains. If we assume that 

these mutant zebrafish accurately model the genetics underlying human AD, then 

these alterations may offer insight into early changes in the brains of human fAD-

mutation carriers and, potentially, other individuals predisposed to AD. The brains 

of young mutant zebrafish exhibit changes to developmental signalling pathways 

(Wnt/b-catenin signalling, hedgehog signalling, TGF-b signalling), stress and 

immune responses (DNA repair, IL2-STAT5 signalling, complement system, IFN-γ 

response, inflammatory response), hormonal changes (early and late estrogen 

responses, androgen response), and energy metabolism (glycolysis, oxidative 

phosphorylation). Evidently, appropriate regulation of these biological processes is 

critical for brain function, so it is unsurprising that disruption of these processes in 

the brain has been linked previously to various pathological states, including early 

stages of neurodegeneration59-62. It is difficult to infer how a single heterozygous 

fAD mutation could alter such diverse processes in the brain. It is unsurprising that 

cellular processes and pathways where Presenilin1 proteins are directly involved 

(e.g. Wnt/β-catenin signalling, Notch signalling63-68) are altered in the fAD-like 

mutant zebrafish brains. However, the mechanisms directly linking the fAD-like 

mutation to other processes (e.g. immune and stress responses) cannot be inferred 

directly from our results.  In future, it would be useful to include zebrafish younger 

than 6 months of age and additional age groups between 6 and 24 months to 

further elucidate the sequential progression of brain transcriptome changes in 

zebrafish carrying a fAD-like mutation.  

 

Quantifying protein abundance in young mutant zebrafish brains revealed 

additional sources of early-life stress. In the young mutant zebrafish brains, proteins 

associated with oxidative stress responses and energy metabolism in mitochondria 

already displayed altered abundance. Overall, stress responses were increased, 

consistent with the RNA-seq data, and decreased abundance of metabolic and 

antioxidant proteins indicated potential impairment to mitochondrial function. 

Both increased oxidative stress and altered energy metabolism appear to be early 

events in AD2,69-75 and it is possible that these events may induce early stress 
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responses in the brain. Unfortunately, although we intended to integrate 

transcriptome and proteome information more thoroughly in this study, we were 

only able to reliably quantify 323 proteins across all samples, with most of these 

being biased towards higher-abundance proteins in the zebrafish brain. Using more 

sophisticated mass spectrometry technology should provide higher-resolution 

detection of lower abundance proteins and metabolites76. 

 

Comparison of our elucidation of brain co-expression networks 
with similar studies 

We find that several gene modules are altered in mutant zebrafish brains and in 

human early-onset AD brains. The most significantly preserved module in the 

zebrafish and human brain co-expression networks analysed is enriched in immune 

responses and genes expressed by type 1 and 2 microglia. Remarkably, two 

independent studies involving co-expression analysis of AD brains by Miller et al. 44 

and Zhang et al. 45 also found a prominent immune-microglia module.  

 

By comparing the zebrafish and human brain co-expression networks, we found 

several modules of genes which were altered in both mutant zebrafish brains and 

early-onset AD human brains. We found that the most significantly preserved 

module across the zebrafish and human brain co-expression networks was enriched 

in immune responses and genes expressed by type 1 and 2 microglia. Miller et al. 44 

used 18 human datasets and 20 mouse datasets representing various brain regions, 

diseases and Affymetrix platforms to construct consensus co-expression networks 

(aggregated from multiple datasets) for the human and mouse brain. Similarly, the 

study by Zhang et al. 45 used over 1,647 post-mortem brain tissue samples from 

patients with late-onset AD to construct a consensus co-expression network for the 

human brain. Compared to our analysis, the large-scale analyses by Miller et al. 44 

and Zhang et al. 45 used many more samples, had broader representation of brain 

tissue types, included more general cases of sporadic and late-onset AD, and 

constructed consensus networks to increase the robustness of the co-expression 

network. Nevertheless, both studies independently identified a module associated 

with AD which is significantly enriched in immune processes and microglial genes. 

Collectively, the results from these studies and our analysis here suggest that 

immune responses and microglial cells are strongly implicated in both early-onset 

fAD and sporadic late-onset forms of AD. This is reasonable, given that microglia 

are essential cells in the brain's innate immune response, and neuroinflammation is 
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a prominent feature of AD. Our results also support the idea that these responses 

are highly conserved across species. 

 

Our analysis reveals additional key insights that may help explain why the immune-

microglia module is involved in AD. First, promoter enrichment analysis of genes 

in the immune-microglia module indicates statistically significant enrichment in 

several known motifs. Intriguingly, all of these motifs are binding sites for 

transcription factors from either the ETS (SpiB, ELF3, ELF5, PU.1, EHF) or IRF 

(IRF3, IRF8, IRF1) families. This finding is important, because 1) ETS and IRF 

transcription factor motifs are also enriched in the promoters of genes that are up-

regulated with brain aging in wild type zebrafish, but not in genes that are up-

regulated with brain aging in mutant zebrafish. This suggests that the genes they 

regulate are important during normal brain aging and that their dysregulation may 

contribute to pathology. 2) ETS and IRF transcription factors are known to 

mediate critical biological functions. The ETS family regulates cellular 

differentiation, proliferation, cell-cycle control, apoptosis, migration and 

mesenchymal-epithelial interactions77,78, while the IRF family regulates immune 

and other stress responses. Our results are consistent with those in a previous study 

by Gjoneska et al. 79 that analysed RNA-seq and ChIP-seq (chromatin 

immunoprecipitation sequencing) data from mouse and human brain tissues, which 

found that immune response genes were up-regulated in both the CK-p25 mouse 

model and in human sporadic AD, that these genes were enriched in ChIP-seq 

peaks corresponding to ETS and IRF transcription factor motifs, and that 

microglia-specific activation was likely responsible for these gene expression 

changes.  

 

Although revealing valuable insights, our comparison of zebrafish and human 

brain co-expression networks is limited for several reasons. First, the zebrafish 

dataset is RNA-seq data while the human dataset is microarray-based data. 

Differences in the correlation in noise inherent to either technology have been 

shown previously to affect connectivity within network modules, although 

functional enrichment of modules tends to be highly preserved between microarray 

and RNA-seq co-expression networks39. This means that our current analysis is 

likely unable to accurately detect most highly-connected genes within modules that 

are preserved between the zebrafish and human co-expression networks, which 

makes it difficult to find key genes that might drive changes in the co-expression 

network. Second, while entire zebrafish brains were used in our analyses, the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 9, 2018. ; https://doi.org/10.1101/262162doi: bioRxiv preprint 

https://doi.org/10.1101/262162
http://creativecommons.org/licenses/by/4.0/


 21 

analysed human brain tissues were derived only from the posterior cingulate 

region. Although a previous analysis identified similar co-expression networks 

across different brain regions43, it is likely that differences in the properties of 

networks constructed from different regions could confound our ability to fully 

detect similarities and differences between the co-expression networks of zebrafish 

and human brains.  

 

AD-like transcriptome and proteome changes can occur without 
amyloid plaques typically associated with AD 

Somewhat surprisingly, the gene and protein expression changes observed in our 

aged fAD-like mutation model zebrafish were not reflected in an obvious 

histopathology. However, this is consistent with an attempt to model neuronal 

ceroid lipofuscinosis in adult zebrafish47 and with observations from heterozygous 

fAD mutation knock-in models in mice25-27 (although in general, mouse single 

heterozygous mutation brain histology phenotypes have not been reported). It is 

important to realise that differences in scale between the mass of a human brain 

and the brains of mice and zebrafish, (~1,000-fold and ~70,000 fold respectively) 

mean that any metabolic or other stresses in the small brains of the genetic models 

are likely exacerbated in the huge human brain80. Human brains also lack the 

regenerative ability of zebrafish, while mice and zebrafish both show sequence 

divergences in the Ab regions of their APP orthologous genes greater than seen in 

most mammals33,81,82.  Nevertheless, the heterozygous fAD-like mutation models of 

mice and (with this paper) zebrafish are probably the closest one can come to 

modelling AD in these organisms without subjectively imposing an opinion of what 

AD is by addition of further mutations, transgenes etc. We speculate that the 

transcriptional state of 2-year-old fAD-like mutant zebrafish brains may represent, 

at the molecular level, the zebrafish equivalent of AD. 

 

It is important to remember that the pathological role in AD of Ab, neuritic 

plaques, and neurofibrillary tangles is still debated and that around one quarter of 

people clinically diagnosed with AD are, upon post-mortem examination, seen to 

lack typical amyloid pathology83. By the current definition, these people do not 

have AD84 although this restrictive definition has been questioned85. Many people 

also have brains containing high levels of Ab86 or Braak stage III to VI 

neurodegeneration83 without obvious dementia. Thus, the connection between 

amyloid pathology, histopathological neurodegeneration and Alzheimer’s disease 
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dementia is unclear. Our data indicate that the AD cellular pathologies may occur 

subsequent to cryptic but dramatic changes in the brain’s molecular state (gene and 

protein expression) that are the underlying drivers of AD. 

 

Finally, it is also important to acknowledge that the specific fAD mutation (K115fs) 

modelled in this study is an uncommon fAD mutation that causes frameshifting and 

truncation of the human PSEN2 protein, and it is unclear how gene expression 

alterations caused by this mutation may differ from the far more common frame-

preserving fAD mutations. Our laboratory is currently developing additional 

mutant zebrafish modelling different fAD-causing mutations, and future analysis 

incorporating these zebrafish to produce a consensus co-expression network should 

help to identify and refine a “signature” of the gene and protein expression changes 

that cause fAD. 

 

Conclusion  
Overall, our study highlights the importance of studying gene expression changes 

in animals closely modelling the genetic state of human fAD in order to elucidate 

the early molecular-level brain changes driving AD pathogenesis. In particular, 

zebrafish heterozygous for single, endogenous fAD-like mutations may be useful for 

exploring several AD-related changes in the brain, including increased brain 

activity preceding AD symptoms, the role of glucocorticoid-mediated stress 

responses in the development of AD, and the roles of ETS and IRF transcription 

factors in regulating microglia-associated genes in AD. 
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Methods 

Zebrafish husbandry and animal ethics 

Tubegin zebrafish were maintained in a recirculated water system. All work with 

zebrafish was conducted under the auspices of the Animal Ethics Committee and 

the Institutional Biosafety Committee of the University of Adelaide. 

Generation of TALEN coding sequences and single stranded 
oligonucleotide 

TALEN coding sequences were designed by, and purchased from, Zgenebio. The 

DNA binding sites for the TALEN pair targeting psen1 were (5’ to 3’): left site, 

CAAATCTGTCAGCTTCT and right site, CCTCACAGCTGCTGTC (Figure 

1A3 in Supplementary Data). The coding sequences of the TALENs were provided 

in the pZGB2 vector for mRNA in-vitro synthesis. The single stranded 

oligonucleotide (ssoligo) sequence was designed such that the dinucleotide ‘GA’ 

deletion was in the centre of the sequence with 26 and 27 nucleotides of homology 

on either side of this site (Figure 1A3). The ssoligo was synthesized by Sigma-

Aldrich and HPLC purified. The oligo sequence was (5’ to 3’):  

CCATCAAATCTGTCAGCTTCTACACACAAGGACGGACAGCAGCTGT

GAGGAGC (Figure 1A). 

In-vitro mRNA synthesis  

Each TALEN plasmid was linearized with Not I. Purified linearized DNA was used 

as a template for in-vitro mRNA synthesis using the mMESSAGE mMACHINE 

SP6 transcription kit (Thermo Fisher, Waltham, USA) as per the manufacturer’s 

instructions as previously described87. 

Microinjection of zebrafish embryos 

Embryos were collected from natural mating and at the 1-cell stage were 

microinjected with a ~3nl mixture of 250ng/μl of left and right TALEN mRNA 

and 200ng/μl of the ssoligo. 

Genomic DNA extraction of zebrafish tissue 

Embryos  

A selection of 10-20 embryos were collected at 24hpf and placed in 150μl of a 

50mM NaOH 1xTE solution and then incubated at 95°C until noticeably 
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dissolved (10-20mins). The lysis solution was cooled to 4°C and 50μl of Tris 

solution (pH 8) was added. The mixture was then centrifuged at maximum speed 

for 2 mins to pellet cellular debris. The supernatant was transferred into a fresh 

microfuge tube ready for subsequent PCR.  

Adult fin clips 

For fin clips, adult fish were first anesthetised in a 0.16mg/mL tricaine solution and 

a small section of the caudal fin was removed with a sharp blade. Fin clips were 

placed in 50μl of a 1.7μg/ml Proteinase K 1xTE solution and then incubated at 

55°C until noticeably dissolved (2-3hours). The lysis solution was then placed at 

95°C for 5mins to inactivate the Proteinase K. 

Genomic DNA PCR and sequencing for mutation detection  

To genotype by PCR amplification, 5μl of the genomic DNA was used with the 

following primer pairs as relevant. Primers to detect wild type (WT) sequence at the 

mutation site: primer psen1WTF: (5’TCTGTCAGCTTCTACACACAGAAGG3’) 

(GA nucleotides in italics) with primer psen1WTR: 

(5’AGTAGGAGCAGTTTAGGGATGG3’). Primers to detect the presence of the 

GA dinucleotide deletion: primer psen1GAdelF: 

(5’AATCTGTCAGCTTCTACACACAAGG3’) with primer psen1WTR. To 

confirm the presence of the GA dinucleotide deletion mutation by sequencing of 

extracted genomic DNA, PCR primers were designed to amplify a 488bp region 

around the GA mutation site: primer psen1GAsiteF: 

(5’GGCACACAAGCAGCACCG3’) with primer psen1GAsiteR: 

(5’TCCTTTCCTGTCATTCAGACCTGCGA3’). This amplified fragment was 

purified and sequenced using the primer psen1seqF: (5’ 

AGCCGTAATGAGGTGGAGC 3’). All primers were synthesized by Sigma-

Aldrich. PCRs were performed using GoTaq polymerase (Promega, Madison, 

USA) for 30 cycles with an annealing temperature of 65°C (for the mutation-

detecting PCR) or 61°C (for the WT sequence-detecting PCR) for 30 s, an 

extension temperature of 72°C for 30 s and a denaturation temperature of 95°C for 

30 s. PCR products were assessed on 1% TAE agarose gels run at 90V for 30mins 

and subsequently visualized under UV light. 
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Whole brain removal from adult zebrafish 

Adult fish were euthanized by placement in an ice water slurry for ~30 seconds. 

The whole brain was removed and either RNA or protein was extracted 

immediately. All fish brains were sampled at late morning/noon to avoid effects of 

circadian rhythms. 

RNA extraction from whole brain 

Total RNA was isolated from mutant and WT siblings using the mirVana miRNA 

isolation kit (Thermo Fisher). RNA isolation was performed according to the 

manufacturer’s protocol. First the brain is lysed in a denaturing lysis solution. The 

lysate is then extracted once with acid-phenol:chloroform leaving a semi-pure RNA 

sample. The sample is then purified further over a glass-fiber filter to yield the total 

RNA. This procedure has been formulated specifically for miRNA retention to 

avoid the loss of small RNAs. Total RNA was then sent to the ACRF Cancer 

Genomics Facility (Adelaide, Australia) to assess RNA quality and for subsequent 

RNA sequencing. 

Protein extraction and proteomic analysis of adult brain 

Sample preparation 

Freshly removed adult zebrafish brains were lysed under denaturing conditions in 7 

M urea (Merck) plus complete protease inhibitors (Roche) using a Bioruptor 

(Diagenode, Seraing, Belgium) in ice cold water. Samples were quantified using the 

EZQ protein assay (Life Technologies) and the extracts were trypsin-digested using 

the FASP method88. Protein samples were then sent to the Adelaide Proteomics 

Centre (Adelaide, Australia) for quantification and data acquisition. 

Data Acquisition 

Nano-LC-ESI-MS/MS was performed using an Ultimate 3000 RSLC system 

(Thermo Fisher Scientific) coupled to an Impact HD™ QTOF mass spectrometer 

(Bruker Daltonics, Bremen, Germany) via an Advance Captive Spray source 

(Bruker Daltonics). Peptide samples were pre-concentrated onto a C18 trapping 

column (THC164535, Thermo Fisher) at a flow rate of 5 μL/min in 2% (v/v) ACN 

0.1% (v/v) FA for 10 minutes. Peptide separation was performed using a 75μm ID 

50 cm C18 column (THC164540, Thermo Fisher) at a flow rate of 0.2 μL/minutes 

using a linear gradient from 5 to 45% B (A: 5% (v/v) ACN 0.1% (v/v) FA, B: 80% 
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(v/v) ACN 0.1% (v/v) FA) over 180 minutes. MS scans were acquired in the mass 

range of 300 to 2,200 m/z in a data-dependent fashion using Bruker’s Shotgun 

Instant Expertise™ method (singly charged precursor ions excluded from 

acquisition, CID from 23% to 65% as determined by the m/z of the precursor ion). 

Data Analysis 

The acquired peptide spectra were identified and quantified using the mass 

spectrometry software MaxQuant with the Andromeda search engine against all 

entries in the non-redundant UniProt database (protein and peptide false discovery 

rate set to 1%). The MaxQuant software allows for the accurate and robust 

proteomewide quantification of label-free mass spectrometry data89. 

 

RNA-seq Analysis 

Data Processing 

We used FastQC90 to evaluate the quality of the raw paired-end reads and identified 

several issues with read quality, adapter sequences, GC content, and over-

represented sequences. Using AdapterRemoval91, we trimmed, quality-filtered and 

removed adapter sequences from paired-end reads of each RNA-seq library, 

resolving issues related to read quality and adapter sequences. From the FastQC 

reports, we realised that some over-represented sequences in the raw and trimmed 

reads corresponded to ribosomal RNA, possibly from insufficient depletion during 

RNA-seq library preparation. We removed ribosomal RNA sequences in silico by 

aligning all trimmed reads to known zebrafish ribosomal RNA sequences followed 

by discarding all reads that aligned. Next, we used HISAT292 to align reads to the 

reference zebrafish genome assembly (GRCz10) downloaded from Ensembl. Using 

Picard93 and the MarkDuplicates function, we removed optical and PCR duplicates 

from the aligned reads. Following de-duplication, FastQC analysis revealed that de-

duplication resolved the issues relating to GC content and over-represented 

sequences. Finally, to quantify gene expression, we used FeatureCounts to count the 

reads aligning to each Ensembl gene model94. The output of FeatureCounts gave a 

matrix of gene expression counts for 32,266 genes for each of the 12 RNA-seq 

libraries. 
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Differential Gene Expression Analysis 

Differential gene analysis was conducted in R95 using the packages edgeR96 and 

limma97-99. We filtered out genes expressed at insufficient levels to be informative, 

retaining genes with >1.5 counts per million in at least 6 of the 12 RNA-seq 

libraries. This reduced the number of genes in the analysis from 32,266 to 18,296. 

We then calculated TMM-normalisation factors to account for differences in 

library sizes, and applied the RUVs method from the RUVseq package100 to account 

for a batch effect with one factor of unwanted variation (k = 1). Differential gene 

expression analysis was performed using limma. We considered genes differentially 

expressed if the FDR-adjusted p-value associated with their moderated t-test was 

below 0.05. We used the pheatmap R package101 to produce all heatmaps. 

Gene Set Testing 

We downloaded the Hallmark gene set collection from the Molecular Signature 

Database (v6.1)36 as a .gmt file containing genes with human Entrezgene identifiers. 

Using biomaRt102,103, we converted human Entrezgene identifiers to zebrafish 

Entrezgene identifiers. To perform gene set testing, we applied the fast rotation 

gene set testing (FRY) method104 for each comparison in the contrasts matrix. We 

considered all gene sets for a particular comparison with Mixed FDR < 0.05 as 

differentially expressed. To obtain estimates of the proportions of up-regulated and 

down-regulated genes for each significant gene set, we used the ROAST105 method 

with 9,999 rotations and set the ‘set.statistic’ option set to ‘mean’ to maintain 

consistency with the results obtained from FRY. We performed FDR multiple 

testing adjustment for the results from FRY and ROAST. 

Promoter Motif Analysis 

We performed promoter motif enrichment analysis using HOMER106,107. We 

downloaded a set of 364 zebrafish promoter motifs collated by HOMER authors 

from published ChIP-seq experiments using the command configureHomer.pl 

-install zebrafish-p. We retained default parameters with the HOMER 

findMotifs.pl program with the following modifications: the 18,296 

ENSEMBL genes used in the differential gene expression analysis were specified as 

the background genes, and promoter regions were defined as 1500 bp upstream 

and 200 bp downstream of the transcription start site of each gene. We defined 

motifs as being significantly enriched in a set of genes if the Bonferroni-adjusted p-

value was less than 0.05.  
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Proteomic Analysis 

LC-MS/MS Data Processing 

Raw MS/MS spectra were analysed using MaxQuant (V. 1.5.3.17). A False 

Discovery Rate (FDR) of 0.01 for peptides and a minimum peptide length of 7 

amino acids was specified. MS/MS spectra were searched against the zebrafish 

UniProt database. MaxQuant output files for the 6-month-old and 24-month-old 

samples were processed in separate batches with the MSStats R package108 due to 

an unresolvable batch effect in the data caused by generation of spectra on different 

days by different operators. Briefly, peptide intensities were log2-transformed and 

quantile normalised, followed by using an accelerated failure time model to impute 

censored peptides. Peptide-level intensities were summarised to protein-level 

intensities using a Tukey's median polish method. This resulted in 2,814 peptides 

(summarised to 534 proteins) for the 6-month-old data and 3,378 peptides 

(summarised to 582 proteins) for the 24-month-old data. After MSStats data 

processing, the 6-month-old and 24-month-old protein log2-intensities were 

combined, quantile normalised using the normaliseBetweenArrays function 

from the limma R package, and filtered to only retain the 323 proteins that were 

detected across all samples.  

Differential Protein Analysis 

Differential protein abundance analysis was performed using limma which has been 

shown to be highly applicable to proteomics data109. A linear model was fitted to 

each protein and moderated t-test performed to test for differential abundance 

between samples. Proteins were identified as being differentially abundant if their 

FDR-adjusted p-values were below 0.05. Over-representation analysis using the 

goana and kegga functions from limma were used to test for enriched gene 

ontology terms and KEGG pathways respectively.  

Network Analysis 

Network construction 

Network construction and analysis used functions from the WGCNA R package40 

applied to the same filtered set of gene counts from the earlier differential 

expression analysis. We additionally downloaded processed human microarray 

data from ArrayExpress under the E-GEOD-39420 accession number (raw dataset 

at GEO with accession number GSE39420). This data set contains gene expression 
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profiles derived from the posterior cingulate tissue of 21 adult brains (7 PSEN1 

mutation carriers with early-onset AD; 7 early-onset AD cases without PSEN1 

mutations; 7 controls). Mutations represented in the PSEN1 mutation carriers 

include E120G, V89L, and M139T. The mean age was 53.9 years (s.d = 6.5 years) 

for the PSEN1 mutation carriers with early-onset AD, 63.3 years (s.d = 4.3 years) 

for the early-onset AD lacking PSEN1 mutations, and 49.7 years (s.d = 4.5 years) 

for the control group. Principal component analysis revealed no association 

between having AD and either sex or APOE genotype of individuals. The 

microarray data was already background adjusted, normalised and summarised by 

Antonell et al 24. We then applied the collapseRows function with default 

parameters to retain only one gene per probe110. Using the BioMart package, we 

retrieved zebrafish ‘one-to-one’ homologous genes for human genes. We matched 

zebrafish genes to human homologous genes via common Ensembl gene identifiers 

and retained only genes that were expressed in both the human and zebrafish 

datasets, leaving 13,110 genes for network construction. To further reduce noise 

during network construction, we calculated connectivities for each gene in each 

dataset and retained only the 7,118 genes with connectivities above the 10th 

percentile of all connectivities. To construct approximately scale-free weighted 

networks, the Pearson correlation was calculated between each pair of genes, and 

the resulting correlation matrix was raised to the soft-thresholding power of 14 to 

produce a signed adjacency matrix for each dataset40. Next, we applied a 

transformation to obtain a measure of topological overlap for each pair of genes. 

Lastly, we hierarchically clustered genes in each dataset based on their topological 

overlap (using the measure 1 - Topological Overlap) to form a dendrogram where 

branches represented distinct modules of genes showing similar expression patterns 

across all samples. To identify modules of co-expressed genes, we used the Hybrid 

Tree Cut method from the dynamicTreeCut package111. We used default parameters 

except for the following modifications to define modules in the zebrafish network: 

minimum module size set at 40 genes, 0.90 as the maximum distance to assign 

previously unassigned genes to modules during PAM (Partioning Around Medoids) 

stage, and the deepSplit parameter to 1 for the zebrafish data set and 2 for the 

human data set.  

Network Analysis 

We assessed the functional enrichment of each module using default settings in the 

anRichment R package. To calculate the correlation between modules and 

phenotypic traits, we calculated the hybrid-robust correlation between the first 
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principal component of each module and four binary variables defining the 

experimental conditions112. We evaluated the preservation of zebrafish modules in 

the human network and vice versa using the “modulePreservation” function from 

WGCNA, which uses a permutation-based approach to determine whether module 

properties (e.g. density, connectivity) are preserved in another network46. We also 

used the Sankey diagram functionality in the networkD3 package to visualise overlap 

between zebrafish and human modules113. 

Network visualisation 

To visualise zebrafish and human networks, we imported edges and nodes into 

Gephi and applied the OpenOrd algorithm with default settings, which is suitable 

for visualising weighted, undirected networks114. We coloured the nodes (genes) 

based on their assigned modules from WGCNA.  

Code availability 

Source code of all R analyses and associated data is available at 

github.com/UofABioinformaticsHub/k97fsZebrafishAnalysis. 

Data availability 

Raw RNA-seq data is available on the European Nucleotide Archive (ENA) with the 

accession number PRJEB24858.  
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Figure 1. Summary of experimental groups, comparisons, and differentially expressed (DE) genes and 
differentially abundant (DA) proteins. Three biological replicates (whole zebrafish brains) were 
subjected to RNA-seq and LC-MS/MS for each of the four experimental conditions. Arrows indicate 
pairwise comparisons (to identify DE genes and DA proteins) between experimental conditions. The 
numbers of DE genes and DA proteins determined from RNA-seq and LC-MS/MS analyses are 
indicated underneath the arrow for each comparison. We considered genes to be DE and proteins to 
be DA if the False Discovery Rate [FDR]-adjusted p-value of their moderated t-test (limma) was below 
0.05. All zebrafish of the same age are siblings raised in the same tank.
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Figure 2. Gene expression changes in the brains of fAD-like mutant (psen1K97fs/+) zebrafish compared to wild type (psen1+/+)  siblings. Genes shown in the heatmaps only include those with FDR-adjusted p-value < 0.05 and absolute 
log2 fold change > 0.5. A. Differentially expressed genes between young (6-month-old) mutant and wild type zebrafish brains.  B. Differentially expressed genes between infertile, aged (24-month-old) mutant and wild type zebrafish 
brains. The differentially expressed genes are separated into clusters based on gene expression changes across the four comparisons. Overall, note the similar expression changes in 'young mutant vs. young wild type' and 'aged wild 
type vs. young wild type' and the contrast of these to comparisons involving aged mutants. This illustrates the accelerated brain aging in young mutant brains and the "inverted" gene expression pattern of aged mutant brains.
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MSigDB Hallmark Gene Sets showing differential expression with fAD-like mutation

Figure 3. Gene sets showing differential expression with aging and/or familial Alzheimer's disease (fAD)-like mutation.  Colours of cells are 
proportional to the difference between the proportion of up- and down-regulated genes in a gene set. Differentially expressed gene sets have 
Mixed FDR below 0.05, indicating the gene set is likely to show statistically significantly altered (up or down) expression for a particular 
comparison. The genes in each gene set are defined using the  "Hallmark" gene set collection at the Molecular Signatures Database (MSigDB). 
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Figure 4. Protein abundance changes in the brains of fAD-like mutant zebrafish compared to wild type siblings 
at 6 months (young) and  24 months (aged) of age. Protein abundance was quantified at the peptide-level with 
LC-MS/MS (liquid chromatography tandem mass spectrometry) and differential abundance was assessed using 
moderated t-tests (limma). Differentially abundant proteins are defined as those with FDR-adjusted 
p-value < 0.05. Protein names were used to retrieve equivalent gene symbols for display purposes on these 
heatmaps.   A. Differentially abundant proteins between young mutant and wild type zebrafish brains. B. 
Differentially abundant proteins between aged mutant and wild type zebrafish brains. The proteins have been  
clustered according to their abundance changes across the four comparisons. 
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Figure 5. Zebrafish brain gene co-expression network. A. Gene co-expression network visualisation. Each node represents one gene, with node size 
proportional to the number of connected nodes (co-expressed genes). Edges represent co-expression between two genes, with edge weight proportional to 
the strength of co-expression. The co-expression network is a signed adjacency matrix constructed from gene expression data from wild type and mutant 
zebrafish brains at 6 and 24 months of age. Only nodes with at least four connections are shown. Alphabet letters correspond to "modules" of co-expressed 
genes. Modules that show altered gene co-expression patterns in mutant zebrafish brains relative to wild type zebrafish brains are coloured.  B. Gene 
expression patterns of modules in the gene co-expression network across mutant and wild type zebrafish brains at 6 months and 24 months of age. Colours 
of cells are indicate the hybrid Pearson-robust correlations between the overall gene expression in a module (summarised using the first principal 
component) and experimental condition encoded as a binary variable (6-month-old mutant, 24-month-old mutant, 6-month-old wild type, 24-month-old wild 
type). Modules showing potentially altered expression patterns during mutant aging compared to wild type aging are labelled with coloured text, with colours 
corresponding to module colours in A.  
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Figure 6. Module overlap between co-expression networks constructed using zebrafish and human brain gene expression data. 
Zebrafish and human co-expression networks were constructed using 7,118 genes that were orthologs in zebrafish and humans 
and expressed in brain gene expression data. Modules of co-expressed genes were separately identified for both the zebrafish 
and human co-expression networks, resulting in 23 modules in the zebrafish network (left) and 13 modules in the human network 
(right). Labelled zebrafish modules (J, D, G, N, H, W) have Z-summary preservation score > 2, indicating statistically significant 
weak-to-moderate preservation of these modules (i.e. genes in these modules still tend to be co-expressed) in the human brain 
co-expression network. Labels on zebrafish and network modules are based on the top functional enrichment terms found using 
Gene Ontology and MSigDB gene sets. See Table 1 for more details on the Z-summary preservation scores and functional 
enrichment for each module in the zebrafish co-expression network.  
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Figure 7. Summary of the molecular changes in the brains of zebrafish due to aging and/or fAD-like 
mutation (psen1K97fs/+). For each of the four pairwise comparisons shown, the summarised 
molecular changes (↑ = overall increased, ↓ = overall decreased, • = significant alterations but not in
an overall direction) were inferred from a combination of the following analyses: functional 
enrichment analysis of differentially expressed genes and proteins, promoter motif enrichment 
analysis of differentially expressed genes, gene set enrichment analysis of differentially expressed 
genes, and weighted co-expression network analysis of the gene expression data. 
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Table 1. Summary of modules in a co-expression gene expression network constructed from zebrafish 
RNA-seq data and their preservation in an independent human brain microarray data set. The Z-
Summary preservation score is a statistic that aggregates various Z-statistics obtained from permutation tests of the co-
expression network to test whether network properties such as density and connectivity in the zebrafish co-expression 
network are preserved in an independent co-expression network constructed from human brain gene expression data24. 
In this analysis, 200 permutations were used. Z-summary scores less than 2 indicate no preservation, while scores 
between 2 and 10 indicate weak-to-moderate evidence of preservation. The top functional enrichment and cell type 
marker enrichment terms are used to give insight into possible biological functions represented within each module. 
Cell type marker enrichment gene sets are from MSigDB, while functional enrichment terms are from Gene Ontology 
and MSigDB gene sets. The “Random” module is a random sample of 1,000 genes in the zebrafish co-expression 
network expected to show non-significant preservation (Z-summary < 2) in the human co-expression network. 

Module Number
of Genes 

Z-Summary 
Preservation 
Score 

Top Functional Enrichment Terms 
(FDR p-value < 0.05) 

Cell Type Marker Enrichment  
(FDR p-value < 0.05) 

A 89 1.42 –  – 

B 106 -0.31 Wnt Signaling Pathway, AP-2 Transcription 
Factor Family – 

C 440 -0.57 Zinc Finger C2H2 – 

D 273 2.16 – – 

E 132 0.53 Oxidative Phosphorylation, Fatty Acid Beta-
Oxidation Astrocyte 

F 89 0.53 
Transmembrane Receptor Protein Tyrosine 
Kinase Activity, Regulation of ERK1 and 
ERK2 Cascade 

– 

G 334 3.83 Immune Response Microglia  

H 79 3.72 Regulation of Synaptic Plasticity, Synaptic 
Signaling CA1 Pyramidal Neuron 

I 306 0.59 – – 

J 1178 4.91 – – 

K 126 0.37 
Glycinergic Synaptic Transmission, 
Developmental Transcription Factors bound 
by Suz12 

– 

L 267 0.98 Circadian Clock, b-Catenin Binding – 

M 714 -0.23 Mitochondrial Respiratory Chain – 

N 243 0.22 – – 

O 532 -0.99 DNA Repair, Cytoplasmic Part – 

P 85 -0.68 Visual Perception, Phototransduction – 

Q 126 1.33 – – 

R 149 0.85 Glycosylphosphatidylinositol (GPI)-anchor
biosynthesis – 

S 217 2.22 Extracellular Matrix – 

T 220 1.16 ECM-Receptor Interaction, Muscle Structure
Development – 

U 117 0.27 – – 

V 818 0.38 Translation, Ribosome, Nonsense Mediated
Decay – 

W 136 1.47 – – 

X 342 6.86 G-Protein Coupled Receptor Activity,
Synaptic Signaling CA1 Pyramidal Neuron 

Random 1000 0.64 – –
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