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Abstract 

Background: Antler regeneration, a stem cell-based epimorphic process, has 

potential for applications as a valuable model for regenerative medicine. A pool of 

antler stem cells (ASCs) for antler generation and regeneration is located in the 

antlerogenic periosteum (AP). However, this antler stem cell pool has not been fully 

characterized.  

Finding: We produced a comprehensive transcriptome dataset at the single-cell level 

for antler stem cells based on the 10x Genomics platform. We generated ~252 million 

sequence reads representing a large RNA-Seq dataset for 4,731 cells from an 

individual AP tissue sample. Further screening identified 16 key stem cell markers, of 

which four mesenchymal (CD29, CD90, vimentin, nucleophosmin) and one 

embryonic (CD9) stem cell markers showed high expression levels. This suggests 

ASCs are intermediate type between embryonic and mesenchymal stem cells and will 

help to identify and purify specific ASC types or subtypes.  

Conclusion: Our results provide the first comprehensive transcriptome dataset at the 

single-cell level for ASCs, which may hold the key to unveil the secrets about why 

antlers are the only mammalian organ to fully regenerate. 
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Background Information 

The ‘Holy Grail’ of modern regenerative medicine is to grow back lost 

organs/appendages, which is known as epimorphic regeneration1,2. Our current 

knowledge of epimorphic regeneration is largely gained from the studies on lower 

vertebrates3. Notably, these animals have the ability to reprogram phenotypically 

committed cells at the amputation plane toward an embryonic-like cell phenotype 

(dedifferentiation) and to form a cone-shaped tissue mass, known as a blastema4. Deer 

antlers are the only mammalian appendages capable of full renewal and therefore 

offer a unique opportunity to explore how nature has solved the problem of 

epimorphic regeneration in mammals5-8. Recent studies concluded that antler 

regeneration is a stem cell-based epimorphic process9-12, which have potential for 

application as a valuable model for biomedical research and regenerative medicine. 

Revealing the mechanism underlying this stem cell-based epimorphic regeneration 

would undoubtedly place us in a better position to promote tissue/organ regeneration 

in humans. 

Antlers regenerate from permanent cranial bony protuberances, known as 

pedicles. Growth of a pedicle itself is initiated during puberty from a piece of 

periosteum, called the antlerogenic periosteum (AP), which covers a crest in the deer 

skull13. Removal of the AP prior to pedicle initiation stops pedicle and antler growth 

and transplantation of the AP autologously induces ectopic pedicle and antler 

formation14-16. The initial discovery of AP17 has been hailed as a “hallmark” event in 

antler research history1. The AP tissue, ~2.5 cm in diameter and 2.5-3 mm in thickness, 

contains around five million cells, which sustain the seasonal renewal of the entire 

antler throughout the deer’s life7. The potency of AP cells has been investigated by 

several laboratories12,18,19. The AP cells express some key embryonic stem cell 

markers, and can be induced in vitro to differentiate into chondrocytes, osteoblasts, 

adipocytes, myoblasts and neural-like cells. Therefore, AP cells have been termed 

antler stem cells7 (ASC) and are essential for full regeneration of this unique 

mammalian organ. It is known that histologically AP consists of two layers: the upper 
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fibrous layer and the lower cellular layer13, and the cells released from these two 

layers reacted to IGF1 and testosterone differently in vitro20. In addition, only around 

50% AP cells expressed Stro-1 marker (unpublished). All these results imply that the 

AP cells must not be homogenous. However, it is not known how many subtypes of 

AP cells exist in the AP tissue. 

Differences in cell type in any tissue are an essential feature for their biological 

state and function. More and more studies on cell biology have now adopted 

single-cell RNA sequencing by employing new protocols of single cell isolation to 

characterize functionally heterogeneous cells21. Thus far, single cell sequencing 

technology has not been applied to investigate the ASCs. Here, we have taken this 

powerful approach to carry out single cell transcriptome sequencing for this unique 

ASC population using the 10x genomics platform22, a droplet-based system that 

enables 3’ messenger RNA (mRNA) digital counting of thousands of single cells (Fig. 

1). 

Data Description  

AP tissue sampling 

The AP tissue was obtained from three 6-month -old male sika deer immediately 

after slaughtering, according to the previous protocol23. To collect the AP tissue, a 

crescent-shaped incision was made on the scalp skin 2 cm medial to the frontal crest; 

skin was separated from the frontal bone to expose the AP. The AP was then peeled 

off from the underlying bone following the incisions cut on periosteum and then 

placed into cold DMEM medium plus 500 U/ml penicillin and 500 g/ml streptomycin 

(Invitrogen, USA). 

Cell culture 

Primary culture for the AP cells was carried out according to our previous 

methodology24. The AP tissue was cut into small pieces and digested in the DMEM 

culture medium containing collagenase (150 units/ml) at 37℃ for 1-1.5 hour to 

release cells, and then the digest was washed twice with DMEM only before pelleting. 
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The AP cell pellet was suspended in 10 ml completed medium (DMEM +10% FBS 

+100 U/ml penicillin +100 mg/ml streptomycin) and transferred into a 75 ml culture 

flask (Nunc, Denmark) containing 15 ml completed medium. The AP cells were 

trypsinized upon reaching about 80% confluence and reseeded in T75 culture flasks at 

the density of 2×105 cells/ml. The cells were detached again when reaching around 

85%-90% confluence, transferred to the freezing medium (FBS +10% DMSO) at 1×

105 cells/ml, and then stored in liquid nitrogen for later use. 

Sequencing library construction using ChromiumTM Platform 

The AP single-cell library was constructed using the ChromiumTM Controller and 

ChromiumTM Single Cell 3’ Reagent Version 1 Kit (10x Genomics, Pleasanton, CA) 

to generate single cell GEMs (Gel Bead-in-Emulsions) as previously described22. 

Briefly, to thaw the ASCs, 1X PBS containing 0.04% BSA was added to wash and 

dilute the cells. About 1×106/ml (1000/ul) suspended cells was obtained and placed on 

the ice. In total, a 17 μl cellular suspension that contained ~4500 cells was added to 

the Master Mix (20 μl nuclease-free water, 50.0 μl RT Reagent Mix, 4 μl RT Primer, 

1.5 μl RNase Inhibitor, 2.5 μl Additive A and 4.6 μl RT Enzyme) in the tube strip well. 

The 100 μl Master Mix containing cells was transferred to each well in the 

ChromiumTM Single Cell 3’ chip row labeled 1, and 40 μl Single Cell 3’ Gel Beads 

was loaded in the chip row labeled 2, and 135 μl oil-surfactant solution was loaded in 

the chip labeled 3 for GEM generation and barcoding. Subsequently, GEM-RT was 

performed using a Thermocycler (BioRad; 55 °C for 2 hrs, 85 °C for 5 mins, hold at 4 

°C). Post GEM-RT cleanup and cDNA amplification was performed to isolate and 

amplify cDNA for library construction. Quality of the cDNA library was assessed 

using a 2100 Bioanalyzer (Agilent Technologies) to confirm the overall shape of the 

sample electropherogram shown as the peak at around 2000 bp. The samples were 

sequenced in two lanes on the HiSeq2500 in rapid run mode using a paired end flow 

cell. Read1: 98 cycles, Index1: 14 cycles, Index2: 8 cycles, and Read2: 10 cycles 

Statistical analysis and quality assessments of single-cell sequence 
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data 

Cell Ranger Software Suite version 1.3.1 (http://support.10xgenomics.com/) by 

10x Genomics was used to perform sample de-multiplexing, barcode processing and 

single-cell 3′ gene counting, as performed previously22. Ten bp UMI tags were 

extracted from Read2. Cellranger mkfastq used bcl2fastq v2.19 

(https://support.illumina.com/) to demultiplex raw base call files from Hiseq 2500 

sequencer into sample-specific FASTQ files. Cellranger mkref was run to construct a 

cellranger-compatible reference based on both the Ovir.te1.0 reference sequences and 

the transcriptome GTF file. These FASTQ files were aligned to the Ovir.te1.0 

reference transcriptome with cellranger count that used an aligner called STAR25
, and 

aligned reads were filtered for valid cell barcodes and UMI to generate filtered 

gene-barcode matrices. The sequencing and mapping data were summarized in Table 

1 and Table 2.  

We obtained 252,818,309 sequence reads representing 4,731 single cell 

transcriptomes, which constituted 14,993 genes. The median gene number and 

transcripts/Unique Molecular Identifier (UMI) counts were 2,568 and 10,309 

respectively. On average, 53,438 reads were detected per cell. According to the 

previous studies26,27, ~50,000 mapped reads were sufficient for an accurate analysis by 

Single Cell 3′ Solution. A steep drop-off was indicative of good separation between 

the cell-associated barcodes and the barcodes associated with empty partitions (Fig. 

2A). Number of genes, UMI counts and percentage of mitochondrial genes per cell 

were calculated to see if there was a subset of cells at an outlier level as potential 

multiplets (Fig. 2B, C and D). We observed that a small subset of cells had slightly 

increased percentage of mitochondrial genes (Fig. 2B and D), i.e., only 85 cells 

included more than 5% mitochondrial gene referring to the previous threshold 

criterion27. 

Identification of antler stem cell markers 

We utilized t-SNE (t-Stochastic Neighbor Embedding) as a powerful tool in Cell 

Ranger R kit (http://support.10xgenomics.com/) to screen for known stem cell marker 
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in 2-d space and selected 16 markers based on the criteria that a marker must be 

expressed by more than 3% of ASCs and with at least one UMI count. The signatures 

of these gene markers were visualized in 2-D space (Fig. 3A), including ten 

mesenchymal stem cell markers (i.e., CD29, CD73, CD105, CD90, Fibronectin1, 

Vimentin, Nucleophosmin, PDGFRA CD44, CD49), four embryonic stem cell 

markers (i.e., CD9, SMAD2, MYC, TBX3), three neural stem cell markers (i.e., ID2, 

NES, Vimentin) and five cancer stem cell markers (i.e., Nestin, CD44. MYC, CD90, 

CD105) (Fig. 3B). Based on the abundance of their expression (i.e., nUMI>1, 3 and 5) 

(Fig. 3C), four mesenchymal stem markers (i.e., CD90, CD29, Vimentin and 

Nucleophosmin) and one embryonic stem cell marker (i.e., CD9) were standout. This 

suggests that ASCs might display features associated with an intermediate type of cell 

between mesenchymal stem cells and embryonic stem cells.  

Conclusion  

In summary, we first report a comprehensive transcriptome dataset at the 

single-cell level for antler stem cells based on the 10x Genomics platform, which will 

provide a useful resource for the study of antler biology. The data from the surface 

marker screening will be helpful in purifying specific cell subtypes of the ASCs for 

further characterization, which would greatly facilitate dissection of the mechanism 

underlying annual renewal of deer antlers, the only stem cell-based mammalian organ 

regeneration. It is also possible to use the raw reads for executing a new experiment to 

distinguish different cell subtypes with multiple biological samples, such as the 

pedicle periosteum (PP) cells (another type of ASCs, which are further differentiated 

derivatives of AP cells) and FP cells (deer facial periosteum, used as a control)24 
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Table 1. Summary of single cell sequencing quality 

Sequencing quality metrics Value 

Number of Reads 252,818,309 

Valid Barcodes 94.7% 

Reads Mapped Confidently to Transcriptome 61.3% 

Reads Mapped Confidently to Exonic Regions 63.5% 

Reads Mapped Confidently to Intronic Regions 5.4% 

Reads Mapped Confidently to Intergenic Regions 8.8% 

Sequencing Saturation 58.5% 

Q30 Bases in Barcode 72.9% 

Q30 Bases in RNA Read 93.6% 

Q30 Bases in Sample Index 96.8% 

Q30 Bases in UMI 97.0% 

 

 

 

 

Table 2. Summary of single cell sequencing cells 

Sequencing cells metrics Value 

Estimated Number of Cells 4,731 

Fraction Reads in Cells 82.9% 

Mean Reads per Cell 53,438 

Median Genes per Cell 2,568 

Total Genes Detected 14,993 

Median UMI Counts per Cell 10,309 
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Availability of supporting data 

The raw single-cell RNA-seq data in fastq format can be found at SRA under 

BioProject PRJNA416396.  
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AP: antlerogenic periosteum; ASCs: antler stem cells; PBS: phosphate buffer salin; 
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Bead-in-Emulsions; UMI: unique molecular identifier; RT: reverse transcription; bp: 
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Figure Legends 

Figure 1. Overview of the design and work flow. The AP was collected from a 

slaughtered deer head, antler stem cells (ASCs) dissociated from the AP were 

primarily cultured and then individual cells were selected for the single-cell library 

construction using ChromiumTM Single Cell 3’ Reagent Kit and sequencing on 

Illimina Hiseq 2500 platform. The single-cell data quality control and bioinformatics 

analysis using the R packages were performed. 

Figure 2. Quality metrics of the ASC single-cell transcriptomes using 10x 

Genomics. A) Barcode rank plot. In the plot, a steep drop-off is indicative of good 

separation between the cell-associated barcodes and the barcodes associated with 

empty partitions. B) Distribution of number of genes, Unique Molecular Identifier 

(UMI) counts and percentage of mitochondria UMIs per cell. C) Plot between number 

of genes and UMIs counts per cell. D) Plot between percentage of mitochondria UMIs 

and UMIs counts per cell. A small subset of cells (85 cells) had more than 5% 

mitochondrial genes. 

Figure 3. ASC screening results using currently available stem cell markers. A) 

t-SNE projection of single cells. These cells were labeled by 16 stem cell markers 

respectively, and the label threshold was set to meet a criterion that a marker must be 

expressed by more than 3% ASCs and with at least one Unique Molecular Identifier 

(UMI) count. B) Venn diagram of the 16 stem cell markers across the four types of 

stem cell markers, including ten mesenchymal stem cell markers, four embryonic 

stem cell markers, three neural stem cell markers and five cancer stem cell markers. C) 

Expressed abundance of the 16 stem cell markers based on nUMI>1, 3 and 5. 
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Nestin CD90 CD29 Nucleophosmin CD9 Fibronectin1 SMAD2 CD73 CD105 CD44 MYC PDGFRA Vimentin ID2 CD49 TBX3

nUMI>1 23.53% 88.97% 96.55% 97.55% 84.63% 47.47% 6.11% 30.25% 3.34% 43.35% 12.89% 11.69% 99.98% 32.91% 16.30% 7.65%

nUMI>3 5.12% 69.52% 88.06% 90.19% 63.83% 18.71% 0.23% 5.62% 0.15% 10.86% 1.88% 1.71% 99.94% 10.55% 1.63% 0.59%

nUMI>5 1.01% 50.37% 75.08% 82.29% 44.16% 7.14% 0.00% 1.04% 0.02% 2.18% 0.34% 0.38% 99.68% 3.66% 0.23% 0.06%
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