












To quantify the overlap between the signatures, we computed the number of common295

links supporting both subject and condition identifications, when increasing the two subsets
according to the order given by RFE as before in Fig. 4C. The overlap fell within the expected
values for the null hypothesis up to 30% of all links, as illustrated in Fig. 5D. This indicated
that distinct subsets of links were relevant for the subject identities and behavioral conditions,
ensuring the “orthogonality” of the two signatures for this dataset. In addition, the few links300

in common could be removed and replaced by further links in the RFE ranking to further
disentangle the signatures. In any case, this suggested a good generalization property of the
multivariate signature extraction for several modalities, in the sense that disjoints subsets
of links can support the classifications. This application further demonstrated the above
mentioned advantage of the MLR classifier equipped with RFE: Working in the original305

space of links allows us to identify the most discriminative links individually, as well as
combinations of them in a subsequent step. In contrast, PCA-like approaches gives PCs
corresponding to linear combinations of many links, making it difficult to interpret results at
the level of single links.

Another implication of the non-orthogonality of signatures in the right panel in Fig. 5A310

is that noise in EC estimates may induce correlated errors in the two classifications. To test
this idea, we compared the errors of the two classifiers compared to the perfect outcome
(probability of 1 for the correct class and 0 for others). We found that the two classifiers for
the support networks in Fig. 5C had uncorrelated errors, with a high p-value in Fig. 5E. This
further confirmed that the selection of only a few links to support the signature classifiers315

preserved a twofold classification without bias between the two modalities.
Similar to Datasets A1 and B, subject identification of Dataset C largely concerned the

frontal and cingulate systems. Condition identification was also supported by occipital and
temporal cortices, which were found to have the strongest activity modulations during movie
viewing [Gilson et al., 2017]. We then compared the two corresponding support networks rep-320

resented in the top panels of Figures 5A and B (the directed nature of links can be appreciated
by zooming). Because we only considered two tasks, it was somehow expected that the task
network would be much simpler than the support network for the 19 subjects. However, these
two support networks also corresponded to distinct types of graphs: The subject network had
a large connected component with several central nodes (hubs, indicated by their large size),325

located in frontal and cingulate regions, in addition to two small components. In comparison,
the condition network was segregated into 8 small isolated components. This suggested that
elaborate collective dynamics involving high-level ROIs differed across subjects, which might
be used as a biomarker to examine its relationship with individual cognitive traits, as was
done with FC [Finn et al., 2015].330

The bottom plots in Fig. 6 show the lateralization of the support links, stressing the
asymmetries between the two hemispheres: Most of the important links are ipsilateral (i.e.,
within the same hemisphere) and many belong to the left hemisphere for the subject network,
whereas they are mainly contralateral for the condition network. This is also in line with
strong inter-hemispheric interactions observed during movie viewing for the same dataset,335

but relying on community analysis [Gilson et al., 2017]. This shows that the non-overlap
between the signatures is not only quantitative, but also qualitative in the sense that these
signatures involve distinct types of links.

3 Discussion

In this study, we have proposed a framework to extract signatures related to various modal-340

ities from fMRI data, allowing for a quantification of the interference between signatures.
The twofold classification of subjects and behavioral conditions goes beyond previous studies
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Support network of condition classification

Figure 6: Support networks of subject and condition classification. A) The top graph
plot represents the 57 most discriminative EC links supporting the classification of subjects
(same as in Fig. 3C). The size of each node represents its betweenness centrality in the
extracted network. The most central regions are located mainly in the frontal and cingulate
cortices. The bottom circular plot shows the asymmetry and lateralization of the network,
with more links located in the left hemisphere. Links that are inside the circle correspond to
contralateral connections, while links outside the circle correspond to ipsilateral connections.
B) Similar graph and circular plots as A for the 13 links supporting the classification between
the two conditions (resting versus movie viewing). Fewer links are required to reach high
accuracy in the condition discrimination: they form a network with many disjoint components
and are mainly contralateral, in comparison to the subject classification support network.
The color for each link corresponds to its source ROI.
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that used FC as a “fingerprint” [Miranda-Dominguez et al., 2014, Finn et al., 2015, Calhoun
et al., 2017, Finn et al., 2017]. It is precisely because fMRI signals are dominated to some
extent by individual traits [Finn et al., 2015] that a proper multivariate classification is nec-345

essary. In particular, we have shown how machine-learning tools such as the MLR enable a
quantification of the topological orthogonality between signatures, in addition to efficiently
extracting them. Our study also demonstrates that signatures based on EC are very robust
to session-to-session variability (much more than with FC) and can be obtained relying on
a limited number of sessions, namely 4-5 recording sessions (of 5 minutes each) to classify350

40+ other sessions. This corresponds to a train-test ratio of 10-90, which is unusual low;
in contrast, most studies use ratio above 50-50, which raises concerns about generalization
capabilities [Varoquaux et al., 2017]. Our method yields consistent results for fMRI datasets
collected using different scanners and preprocessed with different pipelines, which further
supports its general scope. Taken together, our results define a solid ground to scale up the355

multivariate classification to larger datasets with more subjects and tasks. We now discuss
specific points.

We found that very sparse signatures (a few % of all EC links) are sufficient to obtain
perfect classification because of the datasets we used, which involved 30 subjects maximum
and 2 conditions. The size of the corresponding support networks (Figs. 4A and 5C) is360

expected to increase with the complexity of the “environment” to be represented, with more
subjects and tasks. Open-access resources are becoming available to quantitatively test the
framework on larger scales [Zuo et al., 2014, Gordon et al., 2017]. An encouraging result for
the generalization capability of EC is the sublinear dependency of the signature size with
the subject number (Fig. 4D). The sparsity of signatures means that the complexity of the365

variability of EC biomarkers remains “controlled” in the sense that it can be described using
a number of dimensions much smaller than the numbers of elements in the corresponding
category (here subjects or conditions).

The support networks for the twofold classification (subject and condition) show several
noticeable differences (Fig. 6). The subject network is large, almost fully connected, dis-370

tributed over the two hemispheres (with more links within the left one) and concentrated
in the cingulate and frontal areas. This suggests subject-specific dynamics between areas
involved in high-level functions and overlapping with the default mode network [Raichle
et al., 2001]. These discriminative EC patterns may reflect heterogeneities in the interac-
tions between the different neural subsystems (e.g., cingulate to frontal in Fig. 5C) and the375

propagation of information between them [Ekstrom, 2010, Engel et al., 2013]. As expected
with the movie viewing condition studied here, links in the visual and temporal areas are
discriminative. In addition, we also found a much higher percentage of contralateral links
for condition than subject. This suggests that EC-based biomarkers may also be interpreted
in terms of brain communication as was shown recently [Gilson et al., 2017, Senden et al.,380

2017], beyond simply supporting the classification.
A fundamental advancement of our study is the development of a reliable and well-

benchmarked method, extending previous proofs of concept for subject or condition iden-
tification [Miranda-Dominguez et al., 2014, Finn et al., 2015, Gonzalez-Castillo et al., 2015].
Our core technical result is that (whole-brain) EC discriminates subjects better than corrFC385

(Fig. 2 and Fig. 3), which is used in the vast majority of previous studies [Finn et al., 2015,
2017, Kaufmann et al., 2017, Calhoun et al., 2017, Varoquaux et al., 2017, Woo et al., 2017,
Xie et al., 2017, Drysdale et al., 2017]. The generalization capability of EC is much more
robust than FC when the classification becomes harder (many subjects to identify with few
sessions per subject, Fig. 3B-C). This confirms that the BOLD temporal structure —captured390

by the EC after the bandpass filtering of the BOLD signals— reflects the identity of the sub-
ject [Miranda-Dominguez et al., 2014], as previously shown for a task involving attention (or
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not) [He, 2011] or for wake versus sleep [Mitra et al., 2015]. The use of z-scores in the classi-
fication shows that the EC ranking (i.e., which brain connections have large weights among
all) conveys the relevant information. This is also in line with our previous studies [Gilson395

et al., 2017, Senden et al., 2017] that showed how changes in task-evoked fMRI activity is
captured by whole-brain EC. Moreover, the directed nature of EC reflects the propagation
of BOLD signals and can be interpreted in terms of brain communication. Our results thus
support a change in biomarkers used for multivariate classification, where EC unfolds the
relevant information of BOLD signals in a suitable space. Here the focus was on EC because400

it performed better than Σ estimates for the resting-state fMRI, but it has been shown that
Σ may be strongly affected by tasks [Gilson et al., 2017], so Σ might further improve the
classification for conditions, reflecting sensory stimuli.

On the machine learning side, our results show that the MLR classifier performs better
than 1NN (Fig. 3B-C), as well as kNN with k ≥ 2 (results not shown). This suggests that the405

EC/FC pools related to subjects/conditions are linearly separable in their high dimensional
spaces, in a even easier manner for EC (related to the better performance). Unlike the kNN
classifier [Finn et al., 2015], the MLR discards uninformative links with little reliability to
discriminate the desired modalities, so taking whole-brain EC with many dimensions (links)
without a-priori selection is not an issue. In addition, we have shown how RFE can be410

used to to quantitatively study the signatures and assess the orthogonality between them as
it provides access to the link-level contributions to classification (Fig. 5D-E). Therefore, the
multivariate classification can be implemented using distinct subsets of links, discarding those
that mix several modalities. Together, these results underline the importance of adequate
machine learning tools to obtain a powerful and flexible framework that can scale up.415

Formally, our whole-brain dynamic model is a continuous-time network with linear feed-
back that incorporates topological constraints from SC. EC is estimated using a gradient
descent (or Lyapunov optimization) that takes into account the network feedback and can be
very efficiently calculated for the whole brain with 100 ROIs and each session with 300 time
points per ROI [Gilson et al., 2016, 2017]. Each session gives a parameter estimate (for each420

EC link), whose distributions across subjects and conditions are used for classification. Our
dynamic model and estimation procedure are simpler than the dynamic causal model with
hemodynamics and Bayesian machinery [Friston et al., 2003, Stephan et al., 2004], which has
been used for classification relying on a few ROIs only [Brodersen et al., 2011]. Nonethe-
less, they provide powerful signatures in a much richer (high-dimensional) space that can be425

used for modality discrimination. Our study focused on two coarse parcellations covering the
whole brain [Tzourio-Mazoyer et al., 2002] or cortex [Hagmann et al., 2008]. Although the
two parcellations were applied to different datasets, we did not observe significant difference
in the performance of the classifiers. Much work has been done recently to correct the bias
due to the use of specific parcellations [Da Mota et al., 2014]; for our purpose, more refined430

parcellations may entail better discriminability in higher-dimensional spaces, but raise issues
for the EC estimation robustness. This motivated us to choose rather coarse parcellations
with large ROIs as a first step. We have used a generic SC with 30% density, ensuring a suf-
ficiently rich potential biomarker with thousands of estimated EC links in total. Inaccuracies
about SC may affect some % of all links, but this is unlikely to hardly affect the collective435

predictive power of EC. Moreover, preprocessing using PCA was surprisingly found to have
very little influence on the performance. Nonetheless, PCA may be useful for datasets with
larger number of subjects and conditions [Preti et al., 2017]. We also tried the classification
procedure with additional global signal regression of the BOLD signals and results were sim-
ilar in terms of performance. Although refining the preprocessing pipeline may improve the440

(already excellent) classification performance, we expect EC to perform better in general.
Applications of neuroimaging to characterize brain disorders at the patient level are
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emerging [Matthews and Hampshire, 2016, Yahata et al., 2017]. The development of per-
sonalized medicine with tailored therapeutic protocols [Shen, 2014] —to optimize recovery
and minimize adverse effects— requires quantitative tools that deliver a precise diagnostic of445

the patient’s evolution. Our proposed scheme is to follow a patient’s trace over time in the
(high-dimensional) EC space: Extending the diagram in Fig. 5A, the classification should
involve a 4-dimensional space (session-to-session variability to discard, subject, task and
pathology), the latter dimension corresponding to healthy versus pathological states. Here
the goal of the multivariate signatures is to ensure that the pathology one is not “polluted”450

by other modalities. One (or several) pathology-specific signature(s) would be extracted from
resting-state [Greicius, 2008] or task-evoked fMRI, as specific tasks may indeed reveal pow-
erful signatures for certain pathologies, e.g., memory exercises for Alzheimer [Kurth et al.,
2015]. We expect our framework to bridge the gap between the two types of recent ap-
proaches that dealt with either side of individual traits, but not both at the same time: 1)455

A recent prospective study on the evolution of psychiatric disorders emphasized individual
specificities in the FC stabilization during childhood (but irrespective of the disease) [Kauf-
mann et al., 2017]; 2) Group-averaging is often used to ignore the individual differences and
obtain pathology-specific signatures [Drysdale et al., 2017]. The generalization capability of
prediction methods to future (unseen) data [Hughes, 1968, Calhoun et al., 2017, Varoquaux460

et al., 2017, Woo et al., 2017] is crucial in this clinical context. To this end, our method
appear suitable for disentangling diverse signatures, while properly conditioning out the day-
to-day fMRI variability (as uninformative intrinsic noise). This provides a practical solution
to the recent criticism that “a major reason for disappointing progress of psychiatric diagnos-
tics and nosology is the lack of tests which enable mechanistic inference on disease processes465

within individual patients” [Stephan and Mathys, 2014].

4 Methods and Materials

4.1 Description of fMRI datasets

Three datasets acquired at different locations were used in this work:

• Dataset A was acquired for the Day2day project [Filevich et al., 2017] at the Max Planck470

Institute for Human Development (Berlin, Germany) of 40-50 resting-state sessions
recorded from the 6 subjects over 6 months. The uniqueness of this data lies in the
capability to have statistically valid evaluation of the session-to-session variability for
single subjects.

• Dataset B is publicly available and is part of the Consortium for Reliability and Re-475

producibility (CoRR) [Zuo et al., 2014]. We used this dataset to generalize the results
of the discriminability when increasing the number of subjects (up to 30 subjects).

• Dataset C [Mantini et al., 2012] was recently analyzed using our model-brain dynamic
model to extract effective connectivity [Gilson et al., 2017]. We used it to perform a
twofold classification with respect to both subjects and conditions (resting-state versus480

movie viewing).

In this section, we provide details about the acquisition of the blood-oxygen-level dependent
(BOLD) signals for the three datasets.

4.1.1 Dataset A

This dataset has two parts. The first part (A1) is longitudinal and consists of resting-state485

fMRI sessions from 8 subjects (age 24-32, 6 female). 2 subjects (one male, one female) were
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not able to continue the study and were discarded. The other 6 subjects underwent scanning
between 40 and 50 times along a period of 6 months. The second part of the dataset (A2)
was acquired during the same period of time. A total 50 subjects (age 18-32, all female)
were scanned during a single fMRI session each using the same MRI sequences. Participants490

were free of psychiatric disorder according to a personal interview —mini-international neu-
ropsychiatric interview [Sheehan et al., 1998]— and had never suffered from a mental disease.
The study was approved by the local ethics committee (Charité University Clinic, Berlin).
Participants were instructed to remain with their eyes closed and data acquisition had to be
constrained to 5 min per scan due to experimental limitations.495

Images were acquired on a 3 T Magnetom Trio MRI scanner system (Siemens Medical
Systems, Erlangen, Germany) using a 12-channel radiofrequency head coil. Functional images
were collected using a T2*-weighted echo planar imaging (EPI) sequence sensitive to BOLD
contrast (TR = 2000 ms, TE = 30 ms, image matrix = 64×64, FOV = 216×216×129 mm3,
flip angle = 80◦, bandwidth=2042 Hz/pixel, voxel size=3× 3× 3 mm3, 36 axial slices using500

GRAPPA acceleration factor. Structural images were obtained using a three-dimensional
T1-weighted magnetization-prepared gradient-echo sequence (MPRAGE) based on the ADNI
protocol (www.adni-info.org): repetition time (TR) = 2500 ms; echo time (TE) = 4.77 ms;
TI = 1100 ms, acquisition matrix = 256× 256× 192 mm3, flip angle = 7◦; bandwidth=140
Hz/pixel, 1× 1× 1 mm3 voxel size.505

Pre-processing
The data was preprocessed using SPM5 (Wellcome Department of Cognitive Neurology,

London, UK) and DPARSF/DPABI [Yan et al., 2016] after discarding the first 10 volumes
of each session. It included: slice timing and head-motion correction (6 parameters spatial
transformation), spatial normalization to the Montreal Neurological Institute (MNI) tem-510

plate, and spatial filtering of 4 mm FWHM. Linear trends were removed from the fMRI
time courses before band-pass filtering (0.01-0.08 Hz). The data was parcellated using the
automated anatomical labeling (AAL) atlas [Tzourio-Mazoyer et al., 2002] into 116 regions
of interest (ROIs), which includes the whole cortex and the cerebellum.

4.1.2 Dataset B515

This dataset consists of 10 fMRI resting-state sessions acquired from 30 healthy participants
every three days for one month [Zuo et al., 2014]. Each session lasted 10 minutes. To
minimize head movement, straps and foam pads were used to fix the head snugly during each
scan. The participants were instructed to relax and remain still with their eyes open, not to
fall asleep, and not to think about anything in particular. The screen presented a fixation520

point and after the scans, all the participants were interviewed, and none of them reported to
have fallen asleep in the scanner. The time of day of MRI acquisition was controlled within
participants.

Recording sessions were performed using a GE MR750 3.0 Tesla scanner (GE Medical
Systems, Waukesha, WI) at CCBD, Hangzhou Normal University. T2-weighted echo-planar525

imaging (EPI) sequence was performed to obtain resting state fMRI images for 10 minutes
using the following setup: TR = 2000 ms, TE = 30 ms, flip angle = 90◦, field of view =
220× 220 mm2, matrix = 64× 64, voxel size = 3.4× 3.4× 3.4 mm3, 43 slices. A T1-weighted
fast spoiled gradient echo (FSPGR) was used with the following protocol: TR = 8.1 ms, TE
= 3.1 ms, TI = 450 ms, flip angle = 8◦, field of view = 256× 256 mm2, matrix = 256× 256,530

voxel size =1 × 1 × 1 mm3, 176 sagittal slices) was carried out to acquire a high-resolution
anatomical image of the brain structure.

Pre-processing
Dataset B was preprocessed with SPM12 (Wellcome Trust Centre for Neuroimaging, Lon-

don, UK) and DPARSF/DPABI [Yan et al., 2016]. The first 5 fMRI volumes were discarded535
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in order to let the BOLD signal reach stability. The pre-processing pipeline included: slice-
timing correction, realignment for motion correction, co-registration of the T1 anatomical
image to the mean functional image, detrending, regression of 6 movement parameters, 5
principal component analysis (PCA) white matter and CSF Compcorr, and spatial normal-
ization to MNI coordinates. Scrubbing with Power 0.5 and linear interpolation was applied.540

This data was also parcellated into 116 ROIs using the AAL parcellation [Tzourio-Mazoyer
et al., 2002] and time courses were band-pass filtered between 0.01 and 0.08 Hz, as done with
Dataset A. No further global signal regression and spatial smoothing were applied.

4.1.3 Dataset C

We used a third dataset to study the discrimination between subjects and conditions. In this545

case, a total of 22 subjects (age 20-31, 15 females) were scanned during rest with eyes opened
and natural viewing condition. Volunteers were informed about the experimental procedures,
which were approved by the Ethics Committee of the Chieti University, and signed a written
informed consent. In the resting state, participants fixated a red target with a diameter
of 0.3 visual degrees on a black screen. In the natural viewing condition, subjects watched550

and listened to 30 minutes of the movie ‘The Good, the Bad and the Ugly’ in a window of
24× 10.2 visual degrees. Visual stimuli were projected on a translucent screen using an LCD
projector, and viewed by the participants through a mirror tilted by 45 degrees. Auditory
stimuli were delivered using MR-compatible headphones. For each subject, 2 and 3 scanning
runs of 10 minutes duration were acquired for resting state and natural viewing, respectively.555

The BOLD signals were acquired with a 3T MR scanner (Achieva; Philips Medical Sys-
tems, Best, The Netherlands) at the Institute for Advanced Biomedical Technologies in Chi-
eti, Italy. The functional images were acquired using T2*-weighted echo-planar images (EPI)
with BOLD contrast using SENSE imaging. EPIs comprised of 32 axial slices acquired in
ascending order and covering the entire brain with the following protocol: TR = 2000 ms, TE560

= 3.5 ms, flip angle = 90◦, in-plane matrix = 230×230, voxel size = 2.875×2.875×3.5 mm3.
For each subject, 2 scanning sessions of 10 minutes duration were acquired for resting state
and 3 for natural viewing. Each run included 5 dummy volumes, allowing the MRI signal
to reach steady state and the subsequent 300 functional volumes were used for the analysis.
Eye position was monitored during scanning using a pupil-corneal reflection system at 120 Hz565

(Iscan, Burlington, MA, USA). A three-dimensional high-resolution T1-weighted image was
acquired for anatomical referencing using an MPRAGE sequence with TR = 8.1 ms, TE =
3.7 ms, voxel size=0.938× 0.938× 1 mm3 at the end of the scanning session.

Pre-processing
Data were preprocessed using SPM8 (Wellcome Department of Cognitive Neurology, Lon-570

don, UK), including slice-timing and head-motion correction (see Methods in Gilson et al.
[2017] for details), co-registration between anatomical and mean functional image, and spa-
tial normalization to MNI stereotaxic space (Montreal Neurological Institute, MNI) with a
voxel size of 3× 3× 3 mm3. Mean BOLD time series were extracted from N = 66 regions of
interest (ROIs) of the brain atlas used in [Hagmann et al., 2008] for each recording session.575

The data are available at github.com/MatthieuGilson/EC_estimation. The discarded
subjects in the present study are 1, 11 and 19, among the 22 subjects available online (num-
bered from 0 to 21). The same subjects were discarded in our recent study [Gilson et al.,
2017] because of abnormally high BOLD variance.

4.1.4 Structural connectivity (SC)580

For all models, we used a generic matrix of structural connectivity to determine the skeleton
of the effective connectivity (i.e., existing connections). For For Dataset C, structural con-
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nectivity for Dataset C was estimated from diffusion spectrum imaging (DSI) data collected
in five healthy right-handed male participants [Hagmann et al., 2008]. The gray matter was
first parcellated into the N = 66 ROIs, using the same low-resolution atlas used for the FC585

analysis. For each subject, we performed white matter tractography between pairs of cortical
areas to estimate a neuro-anatomical connectivity matrix. In our method, the DSI values
are only used to determine the skeleton: a binary matrix of structural connectivity (SC)
obtained by averaging the matrices over subjects and applying a threshold for the existence
of connections. The strengths of individual intracortical connections do not come from DSI590

values, but are optimized as explained below. For Datasets A and B, the generic SC cor-
responded to the AAL parcellation with N = 116 ROIs [Tzourio-Mazoyer et al., 2002]. A
similar pipeline was used with diffusion tensor imaging.

It is known that both tractography and DTI underestimate inter-hemispheric connections
[Hagmann et al., 2008]. Homotopic connections between mirrored left and right ROIs are595

important in order to model whole-cortex BOLD activity [Messé et al., 2014]. For both SC
matrices, we added all possible homotopic connections, which are tuned during the optimiza-
tion as other existing connections.

4.2 Connectivity measures and model estimates

Here we provide details about the calculation of the functional and effective connectivity600

measures introduced in Fig. 1.

4.2.1 Empirical measures of functional connectivity

For each fMRI session, the BOLD time series is denoted by sti for each region 1 ≤ i ≤ N
with time indexed by 1 ≤ t ≤ T (time points separated by a TR=2 seconds). The time series
were first centered by removing —for each individual ROI i— the session mean s̄i = 1

T

∑
t s

t
i.605

Following [Gilson et al., 2016], the spatiotemporal FC corresponds to covariances calculated
as:

Q̂0
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(stj − s̄j) , (1)

Q̂1
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(st+1
j − s̄j)

The classical BOLD correlations (corrFC in the main text) correspond to

K̂0
ij =

Q̂0
ij√

Q̂0
iiQ̂

0
jj

. (2)

4.2.2 Model of cortical dynamics

The model uses two sets of parameters to generate the spatiotemporal FC:610

• The network effective connectivity (EC) between the ROIs (cf. Fig. 2 in the main text)
is denoted by the matrix C in the following equations. Its skeleton is determined by
the SC matrix, but not its weight values: Weights for absent connections are kept equal
to 0 at all times, but weights for existing connections are estimated from FC matrices
for each session.615

• The local variability is described by the variances (1 per ROI) on the diagonal of the
matrix Σ.
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The model FC comes from the propagation of the local variability —inputed to every ROI—
that propagates via EC, generating network feedback.

Formally, the network dynamics is described by a multivariate Ornstein-Uhlenbeck pro-620

cess, where the activity variable xi of node i decays exponentially with time constant τx
—estimated using Eq. (7)— and evolves depending on the activity of other populations:

dxi =
(−xi
τx

+
∑
j 6=i

Cijxj
)
dt+ dBi , (3)

where dBi is equivalent to white noise with covariance matrix Σ (formally a Wiener process);
note that only variances on the diagonal are non zero here.

The simplicity of the model allows for an analytic (feedforward) estimation of the co-625

variances Q0
ij = 〈xi(t)xj(t)〉 and Q1

ij = 〈xi(t)xj(t+ 1)〉, which must reproduce the empirical

Q̂0
ij and Q̂1

ij , respectively. In practice, we use the two time shifts 0 and 1 TR, because this
gives sufficient information to uniquely infer the network parameters (in the theory). As-
suming known network parameters C and Σ, the matrix Q0 can be calculated by solving the
Lyapunov equation (for example using the Bartell-Stewart algorithm):630

JQ0 +Q0J† + Σ = 0 . (4)

For Q1, it is simply given by

Q1 = Q0eJ
†
. (5)

Here J is the Jacobian of the dynamical system and depends on the time constant τx and
the network effective connectivity:

Jij =
−δij
τx

+ Cij , (6)

where δij is the Kronecker delta and the superscript † denotes the matrix transpose; note

also that eJ
†

is a matrix exponential.635

4.2.3 Parameter estimation procedure

Here we provide details about the Lyapunov optimization (or gradient descent) which is used
to tune the model FC to the empirical FC of a given fMRI session. Although it differs from
a maximum-likelihood estimate as classically used for multivariate autoregressive processes,
it provides a single estimated value for each model parameter.640

For each individual and session, we calculate the time constant τx associated with the
exponential decay of the autocovariance averaged over all ROIs:

τx =
1

N

∑
1≤i≤N

1

log(Q̂0
ii)− log(Q̂1

ii)
(7)

This is used to “calibrate” the model, before its optimization.
In order to invert the model (i.e., for the model FC to reproduce the experimental FC),

we iteratively tune the parameters to reduce the model error defined as645

E =
1

2

∑
i,j(∆Q

0
ij)

2∑
i,j(Q̂

0
ij)

2
+

1

2

∑
i,j(∆Q

1
ij)

2∑
i,j(Q̂

1
ij)

2
. (8)

Here each term —for FC0 and FC1— is the matrix distance between the model and the
data observables, normalized by the norm of the latter; for compactness, we have defined the
difference matrices are ∆Q0 = Q̂0 −Q0 and ∆Q1 = Q̂1 −Q1.
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The idea behind the tuning algorithm is to start from zero connectivity C = 0 and
homogeneous Σ, then calculate the model Q0 and Q1 using the desired Jacobian update650

given by

∆J† = (Q0)−1[∆Q0 + ∆Q1eJ
†
] , (9)

which decreases the model error E at each optimization step, similar to a gradient descent.
The best fit corresponds to the minimum of E. Finally, the connectivity update is

∆Cij = ηC∆Jij (10)

for existing connections only; other weights are forced at 0. We also impose non-negativity
for the EC values during the optimization. To take properly the effect of cross-correlated655

inputs into account, we use the Σ update as in Gilson et al. [2017]:

∆Σ = −ηΣ(J∆Q0 + ∆Q0J†) . (11)

As with C for non-existing connections, off-diagonal elements of Σ are kept equal to 0 at all
times.

In numerical simulations, we use ηC = 0.0005 and ηΣ = 0.05. Further details about the
derivation of the optimization updates are provided in Gilson et al. [2016].660

The optimization code is available with Dataset C at github.com/MatthieuGilson/EC_
estimation.

4.2.4 Comparison of the model to state-of-the-art dynamic models to interpret
fMRI data

Compared to dynamic causal modeling [Friston et al., 2003, Friston, 2011], our model makes665

the simpler assumption of linearity for the local dynamics. Doing so, it ignores an explicit
modeling of the mapping between the neuronal activity and the BOLD signals [Stephan
et al., 2004]. Moreover, it uses a simple model of local variability (Wiener process) related
to Σ to generate FC than recent development of DCM for resting state [Friston et al., 2014].
In exchange for this simplicity, we obtain a very efficient estimation procedure for networks670

of about 100 ROIs with 30% density, yielding ∼ 3000 EC parameters. It is also worth
noting that the objective function for our framework are the BOLD covariances, which are
canonically related to the BOLD cross-spectrum used in the DCM for resting state [Friston
et al., 2014].

4.3 Analysis and classification of vectorized EC and corrFC675

In this section, we provide details about the analysis of the corrFC and estimated EC matrices
that are compared across sessions for subject and condition identification. As illustrated in
Fig. 1C, the connectivity measure for each session k was transformed into a vector vk by
extracting the lower triangle for corrFC, and by applying the SC mask for EC. Following the
literature in machine learning, we refer to a connectivity measure for a single session as a680

sample. The size of the samples vk is p = 6670 for an FC session and p = 4056 for an EC
session with Datasets A and B (corresponding to N = 116 ROIs). For Dataset C, we used
only EC with p = 1114 vector elements (for N = 66). Note that we use a slightly different
indexing in this section compared to the previous one: In the following i refers to a link in
the vector vk = (vki ), similarly to the pair (i, j) for a matrix element Cij before.685
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4.3.1 Similarity between sessions

We used Pearson correlation coefficient (PCC) as a measure of similarity, both within and
between subjects. For a pair of sessions k and l as reported in Fig. 2A and B, this is:

Skl = PCC(vk, vl) (12)

The distribution of within-subject similarity (WSS) in Fig. 2B was obtained by using all
pairs of vectors vk and vl with k 6= l from the same subject, in both Dataset A1 and B. To690

compute the distribution of between-subject similarity (BSS), all possible combinations of
vector pairs vk and vl from distinct subjects were used.

4.3.2 Dimensionality analysis

To study visually how the variability of the data is spread over in the space with high
dimension p, we applied principal component analysis (PCA) to extract the main dimensions695

(principal components, or PCs) that capture the largest portion of the data variance. In
Fig. 2C that compares corrFC and EC, PCA was applied to the whole Dataset A1 (6 subjects,
40-50 sessions per subject) and the first 6 PCs were retained. Each panel corresponds to PC1
to PC3 on the one hand, and PC4 to PC6 on the other hand.

4.3.3 Silhouette coefficient700

The silhouette coefficient [Rousseeuw, 1987] is defined for each vectors vk,s with indices k
for the session and s for the subject. Here, each subject s is a cluster and the similarity in
Eq. (12) is taken as the metric, but the indices k and l are replaced by doublets of the type
(k, s) here. For a given sample k, s, we have the average similarity within his own cluster s
defined as705

ak,s = meanl 6=k(S(k,s)(l,s)) , (13)

and the maximum —over all other clusters— of the same average similarity, but with elements
from another cluster:

bk,s = max
s′

[meanl′(S
(k,s)(l′,s′))] . (14)

The silhouette is then given by the following contrast between the cohesion of the element
within its cluster (ak,s) and the separation from other clusters (bk,s):

σk,s =
bk,s − ak,s

max(ak,s, bk,s)
. (15)

Values of silhouette range to 1 for fully separated clusters to -1 for fully overlapping clusters.710

These values correspond to the violin plots without PCA in Fig. 2E.
In Fig. 2D and E, the silhouette coefficient were computed for each point in these clouds

in a 6-dimensional PC space for Dataset A1. The reason for choosing the first 6 PCs is
because the mean silhouette coefficient of EC data reaches a maximum, before decreasing
(Supplementary Figure S3, left panel). The same method was applied to the Dataset B (30715

subjects, 10 sessions per subject), for which the retained maximum was 30 PCs (Supplemen-
tary Figure S3, right panel).

4.3.4 Within-session z-scoring

For the classification in Figures 3 and 4, the values of the EC and corrFC links were z-scored
within each session, using the mean and standard deviation of the corresponding vectorized720
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connectivity measure vk in Fig. 1C:

v̂ki =
vki −meani(v

k
i )

stdi(vki )
, (16)

where the vector elements are indexed by i, corresponding to a link in the EC or corrFC
matrix. The z-scored vectors v̂k are the inputs of the classifiers, which means that the
classification relies on the ranking of the vectorized elements vk rather than the absolute
values of their elements. This is important to understand our claim in the Discussion about725

where the discriminative information is: The repartition of the weak/strong EC weights
across the brain is different across subjects, which is picked up by the algorithms.

4.3.5 Classification of sessions to attribute them to subjects

Fig. 3A shows the classification procedure applied to identify subjects using connectivity
measures and estimates. First, a fixed number of sessions per subject were selected from730

each data set, corrFC and EC matrices. These matrices were vectorized (recall Fig. 1C)
and individually z-scored using Eq. (16), using the mean and standard deviation of each
vk. Then, the corresponding classifier —1-nearest-neighbor (1NN) or multilinear logistic
regression (MLR)— was trained using two different approaches. In the main text, results are
presented without applying PCA as a preprocessing step. This is motivated because PCA735

does not significantly improve the classification performance for the MLR. Results about
classifier with PCA are discussed in Supplementary Figures S5 to S8.

In all cases, the accuracy of a classifier is evaluated by its prediction of samples in the
test set, as a cross-validation. We used Dataset A1 to study the effect of increasing the
samples in the train set, and Dataset B for increasing the number of subjects. The curves in740

Fig. 3B and C were obtained after iterating over different sessions and subjects 100 times with
this cross-validation (mean and standard deviation are plotted). The same method was also
applied to Dataset C by training two MLR classifiers, one for subjects and one for conditions.
Both classifiers are available in the scikit-learn package (http://scikit-learn.org, python
language).745

1NN classifier
A kNN classifier is a technique that assigns to a new sample the class to which belong the

majority of its k closest neighbors. In our case, we use k = 1 with a single nearest neighbor.
Moreover, we use the PCC-based similarity measure in Eq. (12) as the metric to evaluate
the inverse distance between two samples (here sessions). Like with clustering algorithm in750

general, closest samples (i.e., most similar sessions) are grouped together. Because the PCC
similarity is not linear, it can be considered as a non-linear classifier, in comparison to a linear
classifier such as a perceptron or a MLR. In practice, the database has an equal number of
sessions per subject —either vectorized and z-scored corrFC or EC— ranging from 1 to 40 for
Dataset A1 in Fig. 2B. The identity of the each target session k from the test set is predicted755

by the identity of the most similar session from the test set (Sk,1, Sk,2, · · · , Sk,D) with D the
size of the database, as illustrated in Supplementary Figure S4 for 1 session per subject as
database (and corresponding to the results presented in Fig. 3B and C).

MLR classifier
The MLR classifier is a classical tool in machine learning. The parameters (or regressors)760

of the model are adjusted in order to predict the probabilities of new samples of belonging to
each category or class. It relies on the following logistic function that relates to the probability
for the vectorized connectivity measure vk (with elements indexed by i) for session k to be
in the subject class s:

Pr(vk ∈ s) = φ
(∑

i

ws
i v

k
i

)
, (17)
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where φ is the sigmoid function (ranging from 0 to 1). The training is performed by a765

regression to find the classification weight ws
i such that Pr(vk ∈ s) discriminates the class s

against the last subject s′. A refinement that does not appear in Eq. (17) is that there is an
extra weight to correct for the possibly non-zero mean of the samples vk. Note also that for
there are M − 1 regressors for M subjects, such that the weights are well constrained. In
practice, we used train sets with equal numbers of sessions per subject.770

Preprocessing using PCA
PCA is a preprocessing step commonly used in machine learning to remove noise while

keeping the dimensions that capture most of the variability of the data. This implies that the
largest part of the data variances captures the relevant information for the classification. After
applying PCA, the original high-dimensional z-scored vectors v̂k from Eq. (16) are projected775

into a space of lower dimension determined by a number of PCs. The performance of the
classification with PCA thus increases with the number of PCs until saturation (Figure S6),
which indicates the point when subsequent PCs contain redundant or irrelevant information
for the classification.

Extraction of discriminative support networks780

We examined which links strongly contributed to the classification, in a similar fashion
to PCs as mentioned above. The motivation was that individual links might be mixed in
PCs and appear redundantly in several PCs that significantly contributed to the classifica-
tion (Figures S7 and S8). Therefore, we evaluated the contribution of individual links that
supported the classification, forming networks of most discriminative elements in EC (as rep-785

resented in Figures 3D and 4C). In order to extract these support networks, we employed a
commonly used method in machine learning, recursive feature elimination (RFE), to rank the
links —taken as features— according to their relevance for the classification [Guyon et al.,
2002].

For each application of the RFE algorithm, the train set was composed of 90% randomly790

chosen samples (to capture the full variability of the data) and test set of the 10% remaining
samples. After fitting the MLR classifier, RFE removes the link with the smallest classifica-
tion weight ws

i in the MLR formula in Eq. (17), which measures the contribution of the link
to the classification. The removing procedure is repeated recursively on the shrinking subset
of links until only one is left. This gives a ranking for the links according to their relevance for795

the classification. We then evaluated the accuracy of MLR on the test set when increasing
the number of features following the order given by the RFE ranking. This training and
testing procedure was repeated 100 times with different train and test sets each time. We
selected the number of features for which the mean test set accuracy was maximum. In order
to find the maximum we chose the number of features for which the numerical derivative800

of the mean was less than 10−6. In order to reduce the impact of fluctuations due to the
random selection of samples, we smoothed the curve of means with a rolling average of width
2 features. Since the accuracy is expected to increase initially as a function of the number
of features and then either saturate or decrease, this method allows for finding the number
of features for which the classifier performance is maximum or adding more features has no805

practical benefit.
In contrast, kNN cannot be easily used for RFE since it does not estimate weights as-

sociated to links. Therefore, for kNN to be used with RFE, one needs to put the model in
a wrapper to compare the effect of removing each combination of links on the performance.
However, given the high amount of features of our setting, wrappers cannot be evaluated on810

all subsets of features (∼ 10300 tests would be required for 1000 features). Wrappers may rely
on approximate greedy algorithms, for example, eliminating the feature that scores worst. It
is well known that greedy algorithms might produce inappropriate solutions if the problem
does not have optimal substructure. In addition the computation time almost scales as p2
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with p the number of links, while for RFE it is linear in p.815

4.3.6 Software tools

The computer code for the model optimization and classification is available online with
Dataset C at github.com/MatthieuGilson/WBLEC_toolbox. It is written in the open-source
language python and uses the numpy and scipy libraries, as well as scikit-learn library for
machine-learning routines (http://scikit-learn.org).820

Connectivity measures and estimates, as well as similarity analyses were performed in
MATLAB 2016 (TM). Network plots in Fig. 6 of the main text were done in Gephi 0.9.1
(http://gephi.org).
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