bioRxiv preprint first posted online Feb. 12, 2018; doi: http://dx.doi.org/10.1101/263590. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Kmer-db: instant evolutionary distance estimation

Genome analysis

Kmer-db: instant evolutionary distance estimation

Sebastian Deorowicz '*$, Adam Gudys '-®, Maciej Dlugosz !, Marek Kokot,

Agnieszka Danek '

"Institute of Informatics, Silesian University of Technology, Gliwice, Poland

*To whom correspondence should be addressed. $ The authors contributed equally to the article

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Summary: Kmer-db is a new tool for estimating evolutionary relationship on the basis of k-mers extracted
from genomes or sequencing reads. Thanks to an efficient data structure and parallel implementation, our
software estimates distances between 40,715 pathogens in less than 4 minutes (on a modern workstation),

44 times faster than Mash, its main competitor.

Availability and Implementation: https://github.com/refresh-bio/kmer-db

Contact: sebastian.deorowicz@polsl.pl

Supplementary information: Supplementary data are available at publisher’s Web site.

1 Introduction

Large volumes of data generated during the course of sequencing thou-
sands of different organisms (100K Pathogen Genome Project (Weimer
el al., 2017), NCBI Pathogen Detection (https://www.ncbi.nlm.
nih.gov/pathogens)), require fast analysis methods. Short sub-
strings of nucleotide sequences, called k-mers, are commonly used in
this area as they can be extracted either from genomes or sequencing
reads, allowing assembly-free approach. They enable accurate approxi-
mation of evolutionary distances between organisms, thus are used for
phylogeny reconstruction (Mash (Ondov et al., 2016)), bacteria identifica-
tion (StrainSeeker (Roosaare el al., 2017)), or metagenomic classification
(MetaCache (Miiller el al., 2017)). Importantly, if genomes are closely
related, small subsets of k-mers are sufficient for obtaining acceptable
accuracy, significantly reducing processing time. Nevertheless, as the num-
ber and the diversity of sequenced genomes continuously increases, the
throughput of existing algorithms will soon become a bottleneck.

We introduce Kmer-db, a tool for k-mer-based analysis of large col-
lections of sequenced samples. Thanks to a novel compressed k-mers
representation and parallel implementation, our software is able to process
thousands of bacteria genomes in minutes on a modern workstation.

2 Methods

As an input, Kmer-db takes k-mers extracted with KMC software (Kokot
et al., 2017) either from assembled genomes or read sets. The k-mers can
be optionally filtered with a use of minhash (Broder, 1997) to save memory
and time at the cost of accuracy.

The main analysis starts from build step, i.e., construction of a database
for a set of samples on the basis of k-mers. A naive approach could be
storing for each sample the corresponding k-mer set. Excessive time and
memory requirements make this representation prohibitve for large sample
sets, unless k-mer filtering method is used. Presented strategy is different.
It is based on k-mer templates, i.e., lists of sample ids (siq). Such a list is
defined for each k-mer. The idea behind is that multiple k-mers may occur
in exactly same samples, thus they share a template. Moreover, templates
are often similar which allows further compression. As a result, Kmer-db
consists of two basic structures: (i) a hashtable K27 mapping k-mers to
corresponding template ids (tiq), (if) a table C'T' of compacted templates.

Samples are added to the database incrementally, with increasing iden-
tifiers. Let S indicate analyzed sample identified by s;q. For each k-mer
from S, we record corresponding template identifier, tig, from K27 in an
auxiliary array A (k-mers not present in K27 are inserted with special
value tig = 0). Array A is used to determine whether all k-mers with par-
ticular tig are present in sample S. If so, template tiq from C'T is extended
with s;q. If not, a new template is added to C'T" and corresponding entries
in K2T are updated. The new template should contain all samples from
considered ¢jq and additionally siq. To reduce redundancy, C'T is a hiera-
rchical structure—a new template stores only siq on its list together with
an identifier pjq to its parental template. For this reason CT is referred
to as compacted templates. Since samples are added to the database with
increasing identifiers, lists of sjq in C'T" table are also increasing, thus they
can be stored with a use of Elias gamma code (Elias, 1975), with about an
order of magnitude space reduction compared to storing plain ids. The state
of Kmer-db structures after adding five samples is presented in Figure 1.
The intermediate states can be found in Supplementary Figures 1-5.

The complete database can be further used for estimating evolutionary
relationship between samples by determining numbers of common k-mers.

http://dx.doi.org/10.1101/263590

bioRxiv preprint first posted online Feb. 12, 2018; doi: http://dx.doi.org/10.1101/263590. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Deorowicz et al.

K 2T (k-mers to templates) CT (compacted templates)

ACTGG | 4 GCAGT | 8 110 —
AGTTG | 8 GCTGG | 2 2 |1 —
ATGCA | 7 GGATG | 5 3 |1 1
ATGGA | 6 GTTGG | 8 4 |2 1
CAGTIT | 8 TGCAG | 7 5 |2 3
CGCAG | 9 TGGAG | 2 6 |2 2
CTGGA | 5 TGGAT | 6 7 |3 1
GATGC | 1 TTGGT | 8 8 [3,4

GATGG | 6 9 |4 —

Fig. 1. Database state after adding five samples: ACTGGATGCAG, GCTGGATGGAG,
ACTGGATGGAG, ATGCAGTTGGT, CGCAGTTGGT. The structures can be used for obtai-
ning list of samples for given k-mer. E.g., k-mer GGATG is assigned with template (tiq) 5,
whose parent (pjq) is template 3, whose parent is template 1. Thus, GGATG is present in all
samples (sjq) from templates {5, 3, 1}, which are {2, 1, 0}.

One of the available Kmer-db modes is all2all which determines matrix
of common k-mer counts for all samples in a database. When tens of
thousands of samples are analyzed, matrix M of common k-mers counts
requires gigabytes of memory. Therefore, maintaining cache locality when
updating M elements is of crucial importance. For each template ¢;q from
C'T, the algorithm iterates over its sjq list and generates a collection of
(sid, tia) pairs, stored in a cache-fitting buffer. Then, groups of pairs with
same first element are identified. Note, that each group corresponds to a
single M row: first element of a pair (sjq) is a row number, while second
element (t;q) points to a template, whose entries indicate columns. The
groups can be used to increment corresponding elements of M by template
cardinality.

An alternative mode is one2all which produces vector V' of common
k-mer counts between new sample S’ and all samples in a database. For
all k-mers from S’ the algorithm selects corresponding templates, using
K2T hashtable, and updates V" accordingly.

The output of all2all and one2all stages are textual files with numbers
of shared k-mers between pairs of samples and the total numbers of k-mers
in each sample. They can be used to calculate various distance measures,
e.g., Jaccard index, Mash distance. This is made by the distance mode.

3 Results

The experiments concerned calculation of distances between 40,715 geno-
mes from NBCI Pathogen Detection on the basis of 20-mers. Samples were
sorted w.r.t. species tax id (see Supplementary Material for other orde-
rings). As the main competitor we selected Mash (Ondov et al., 2016) since
it implements essentially the same strategy as used in the NBCI Pathogen
Detection project. Mash was configured to use 10,000 k-mers per sample
(sketch size parameter), while Kmer-db was run in two configurations: (i)
with minhashing at 2% threshold (to retain approximately same number
of k-mers as Mash), (ii) on full k-mer set. To evaluate software scalability,
the subsets of 1k, 2k, 5k, 10k, and 20k samples were randomly selected
from the full dataset. Table 1 presents the results of determining distance
matrix on the basis of filtered k-mers (Mash dist step; Kmer-db build +
all2all steps). Detailed results are presented in Supplementary Material.
Kmer-db, when using 2%o of k-mers was astonishingly fast. Evaluated
on full dataset it was 44 times faster than Mash (212s vs. 9,414 5s) and
needed less memory (5.7 GB vs. 9.8 GB). Analyzing all k-mers by Kmer-
db (unfeasible to Mash due to computational requirements), took same time
for all samples as running Mash on ~ 500 times smaller representation.
Importantly, our solution scaled well, especially in terms of memory
usage. E.g., increasing sample set twofold from 20k to ~40k resulted in

only 6% growth of RAM, which is thanks to the internal representation
of Kmer-db (when database is large, a lot of k-mers from new samples

Table 1. Determining distance matrix on the basis of k-mers.

No. samples Mash Kmer-db Kmer-db
sketch size 10,000 fraction 2%o all k-mers
Time RAM Time RAM Time RAM
1,000 6 0.9 4 41 276 16.8
2,000 24 1.1 7 3.8 463 30.0
5,000 145 1.7 15 52 970 32.0
10,000 573 2.7 37 50 1,911 59.7
20,000 2,265 4.8 84 55 3,766 63.0
40,715 9,414 9.8 212 57 9,300 66.7

Times are given in seconds, memory in GBs.

share existing templates or their parts). We also noticed, that for increasing
sets of samples, execution time of Kmer-db became dominated by matrix
estimation, i.e., all2all step (see Supplementary Tables 1-2).

The approximate times of calculating similarity vector between a new
k-mer set and the already-build database (Kmer-db one2all step; Mash
dist step) were: 1s (Kmer-db 2%o), 1 min (Kmer-db all) and 5s (Mash).

4 Conclusions

Superior running times and scalability of Kmer-db opens new opportuni-
ties in k-mer-based estimation of evolutionary distances. Our algorithm
analyzed resampled k-mer set of 40,715 bacterial genomes in less than
4 minutes—two orders of magnitude faster than Mash, confirming the rea-
diness of Kmer-db for processing much larger datasets which are to appear
in near feature. Presented approach was also able to compare distantly
related genomes with few k-mers in common, where minhashing is ina-
ccurate. Kmer-db was able to process all k-mers of analyzed bacteria in a
time needed by the competitor for 500 times smaller k-mer set.

Funding

This work was supported by National Science Centre, Poland under proje-
cts DEC-2015/17/B/ST6/01890, DEC-2016/21/D/ST6/02952. The infra-
structure was supported by POIG.02.03.01-24-099/13 grant: “GeCONil—
Upper Silesian Center for Computational Science and Engineering”.
Conflict of Interest: none declared.

References

Broder, A.Z. (1997) On the resemblance and containment of documents. In
Proceedings of the Compression and Complexity of Sequences, pp. 21-29

Elias, P. (1975) Universal codeword sets and representations of the integers. JEEE
Trans Inf Theory 21(2): 194-203.

Kokot, M. Dtugosz, M. Deorowicz, S. (2017) KMC 3: counting and manipulating
k-mer statistics. Bioinformatics 33(17): 2759-2761.

Miiller, A. et al. (2017) MetaCache: context-aware classification of metagenomic
reads using minhashing. Bioinformatics 33(23): 3740-3748.

Ondov, B.D. et al. (2016) Mash: fast genome and metagenome distance estimation
using MinHash. Genome Biology 17: 132.

Roosaare, M. et al. (2017) StrainSeeker: fast identification of bacterial strains from
raw sequencing reads using user-provided guide trees. PeerJ 5: 3353.

Weimer, B.C. (2017) 100K Pathogen Genome Project. Genome Announc 5(28):
€00594-17.

http://dx.doi.org/10.1101/263590

