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Summary 35 

Genome-wide association studies (GWAS) have identified thousands of genetic variants 

associated with disease. To facilitate moving from associations to disease mechanisms, we 

leveraged the role of pathogens in shaping human evolution with the Hi-HOST Phenome Project 

(H2P2): a catalog of cellular GWAS comprised of 79 phenotypes in response to 8 pathogens in 

528 lymphoblastoid cell lines. Seventeen loci surpass genome-wide significance (p<5x10-8) for 40 

phenotypes ranging from pathogen replication to cytokine production. Combining H2P2 with 

clinical association data from the eMERGE Network and experimental validation revealed 

evidence for mechanisms of action and connections with diseases. We identified a SNP near 

CXCL10 as a cis-cytokine-QTL and a new risk factor for inflammatory bowel disease. A SNP in 

ZBTB20 demonstrated pleiotropy, partially mediated through NF𝜅B signaling, and was 45 

associated with viral hepatitis. Data are available in an H2P2 web portal to facilitate further 

interpreting human genome variation through the lens of cell biology. 

 

Keywords: genome-wide association study, lymphoblastoid cell line, immune quantitative trait 

locus, heritability, pleiotropy, phewas, electronic medical record, CXCL10, ZBTB20, eldelumab 50 
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Introduction 

The human genome has been shaped by migration, drift, admixture, and natural selection 

(1-3). One of the strongest driving forces in natural selection has been pathogens (4, 5), as first 

exemplified with A. C. Allison’s demonstration that sickle cell allele (rs334) conferred resistance 55 

to malaria (6). Red blood cells from individuals with this allele are resistant to Plasmodium 

infection (7). Similarly, human resistance to HIV infections afforded by the CCR5Δ32 allele can 

also be seen at the level of individual T cells (8-10). Therefore, identification and 

characterization of human genetic differences that impact cellular traits can help mechanistically 

link human genetic variation to disease susceptibility. 60 

Previous studies have examined the genetic basis of molecular traits in human 

populations. Expression quantitative trait loci (eQTL) studies in lymphoblastoid cell lines 

(LCLs) defined abundant associations between human SNPs and expression levels of nearby 

genes (11, 12). LCLs are EBV-transformed B cells that are highly similar to antigen-activated 

primary B cells (13). LCLs serve as a standardized resource for functional human genetic 65 

variation studies, as they have been densely genotyped by the International HapMap Project (14, 

15)  and the 1000 Genomes Project (16). As eQTLs are often shared across tissues (e.g. 88% of 

cis-eQTLs are shared among LCLs, fibroblasts, and primary T cells (17)), LCL eQTL studies 

have led to important insights not only in immunity-related diseases but also for disorders where 

B cells are not believed to be primary drivers of disease (18). 70 

Using LCLs, we developed Hi-HOST (High-throughput Human in vitrO Susceptibility 

Testing) to identify human genetic differences in pathogen-induced cellular traits, serving as a 

cell biological link between eQTL studies and GWAS of human disease (19, 20). Hi-HOST uses 

live pathogens to examine variation in innate immune recognition, but also in cell biological and 
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signaling processes that can be quantified as phenotypes for genome-wide association. This work 75 

therefore builds on a long tradition of using cellular microbiology to elucidate basic cell biology 

(21) and expands that utility to interpret the human genome. Using Hi-HOST, we leveraged LCL 

responses to Salmonella enterica to demonstrate that genetic variation in the methionine salvage 

pathway regulates pyroptosis, as well as human susceptibility to sepsis (22, 23). Similarly, we 

recently reported that a genetic variant in VAC14 is associated with both increased S. Typhi 80 

invasion into LCLs and risk of typhoid fever in a Vietnamese population (24).  

Here, we present the Hi-HOST Phenome Project (H2P2) to globally explore the genetic 

basis of cellular outcomes in response to infectious agents. Using 7 microbes and 1 bacterial 

toxin, we carried out GWAS of 79 host-pathogen phenotypes that serve as cellular readouts for 

processes such as endocytosis, endosomal trafficking, signal transduction, cell death, and 85 

transcriptional regulation. We identified 17 loci that reached the generally accepted threshold for 

genome-wide significance (p<5x10-8). We integrated H2P2 data with experimental validation 

and disease association data from the eMERGE Network PheWAS pipeline (25) to define new 

functions for genes in disease and provide new clues to disease pathophysiology. 

Results 90 

Phenotypic variation in H2P2 traits reveals biologically meaningful clusters 

We measured variation in cellular traits in 528 LCLs stimulated with 7 different microbes 

and 1 bacterial toxin (Figure 1A). These LCLs have been genotyped (16) and consist of 4 human 

populations: ESN (Esan in Nigeria), GWD (Gambians in Western Divisions in the Gambia), IBS 

(Iberian Population in Spain), and KHV (Kinh in Ho Chi Minh City, Vietnam). The LCLs used 95 

in this study were all from parent-offspring trios, allowing for heritability estimation by parent-
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offspring regression and for carrying out combined GWAS analysis with protection from 

stratification through family-based association methods (26, 27). 

The microbes and toxin we selected affect billions of people worldwide. Non-typhoidal 

Salmonella infections caused 150 million diarrheal illnesses (gastroenteritis) and 0.6 million 100 

cases of invasive enteric disease (bacteremia) in 2010 (28, 29). Approximately 20 million cases 

of typhoid fever are caused by Salmonella enterica serovar Typhi (S. Typhi) every year (30). 

Chlamydia trachomatis, the most common bacterial sexually transmitted infection in the world, 

causes 100 million cases of genital tract infection every year (31), and 1.3 million individuals are 

blind due to ocular infection with C. trachomatis (32). Staphylococcus aureus is a common cause 105 

of skin and soft tissue infections, bacteremia, and infective endocarditis, and its alpha toxin, 

which is utilized in H2P2, is a key virulence determinant (33). Candida albicans and related 

fungal species are a frequent cause of genitourinary tract infection that can cause more severe 

disease in immunocompromised individuals and are the fifth most common cause of hospital-

associated infections (34). Mucor circinelloides is another fungal species that causes severe 110 

infections, mucormycosis, in immunocompromised individuals (reviewed in (35)) and has also 

recently been connected to food-borne infections (36). Finally, over 6 billion people in the world 

have been infected with the protozoal pathogen Toxoplasma gondii, which can be fatal in infants 

and immunocompromised individuals (37). Thus the microbes and toxin used in H2P2 are 

important causes of human disease. 115 

Beyond their role in human disease, the pathogens selected also exploit a wide range of 

host cellular processes to either kill the host cell or to create replicative niches within them. C. 

trachomatis, S. enterica serovar Typhi, serovar Typhimurium (wildtype and ΔsifA mutant, which 

escapes from the pathogen-containing vacuole at a greater rate into the host-cell cytosol (38)), 
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and T. gondii are intracellular pathogens that employ diverse lifestyles. These microbes were 120 

engineered to express the green fluorescent protein (GFP) to allow quantitation of pathogen 

invasion, survival and replication, intercellular spread, and concurrent measurement of cell death 

by flow cytometry. B cells are known in vivo host cells for Salmonella invasion and replication 

(39-41) and the C. trachomatis strain that we utilize (L2) causes lymphogranuloma venereum 

(42), primarily an infection of the lymph nodes, where there is ample opportunity for interaction 125 

with B cells. Cell death was also measured as the readout for Staphylococcus aureus alpha toxin, 

a pore-forming toxin that causes cell lysis (33). Microbes were also tested for induction or 

suppression of cytokines (selected based on pilot studies of 41 cytokines) in infected LCLs. S. 

Typhimurium and C. trachomatis-infected cells were measured for 3 and 17 cytokines, 

respectively. The fungal pathogens M. circinelloides and C. albicans were included for their 130 

ability to induce FGF-2 in LCLs (43). Definitions for all 79 phenotypes as well as histograms for 

phenotypes are provided in the supplemental data (Table S1 and Figure S1). Importantly, 76 of 

79 H2P2 phenotypes showed significant experimental repeatability based on measurements on 

LCLs from three different passages (Figure S2).  

Hierarchical clustering of traits based on inter-individual variation confirmed the 135 

robustness of our measurements (Figure 1B). Levels of three cytokines (CXCL10 (IP-10), IL-10, 

and MDC) measured in uninfected cells with two different methods (ELISA at 24hrs and 

Luminex at 70hrs) showed strong correlation (R = 0.78 for CXCL10, R= 0.46 for IL-10, R=0.90 

for MDC; Spearman correlation). The clustering of responses to Salmonella infection is 

consistent with previous findings: S.  Typhimurium, Typhi, and Typhimurium ΔsifA cluster for 140 

the phenotype of invasion, as all utilize a similar type-3 secretion system for entry (44) 

(correlation to S. Typhimurium, R=0.69 for S. Typhi and R=0.90 for S. Typhimurium ΔsifA). In 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/202325doi: bioRxiv preprint 

https://doi.org/10.1101/202325
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

contrast, the correlation is weaker for intracellular survival and replication phenotypes 

(correlation to S. Typhimurium replication from 3.5 hrs to 24 hrs, R=0.36 for S. Typhi and 

R=0.34 for S. Typhimurium ΔsifA), reflecting the different replications niches for ΔsifA (host 145 

cell cytoplasm) and wild-type Typhimurium (membrane bound vacuole) (38) or the use of a 

different repertoire of effectors by S. Typhi (45). In contrast, we observed almost no correlation 

between EBV copy number (from (46) for 284 LCLs also used in H2P2) and H2P2 traits (Figure 

S3; Table S2), indicating these phenotypes are not being driven by the LCL immortalization 

method. Thus, clustering based on phenotypic diversity verified the reliability of measurements 150 

and confirmed biological relatedness established by previous work from multiple groups. 

H2P2 traits are heritable based on parent-offspring regression and SNP-based heritability 

If genetic differences regulate variation in cellular phenotypes, then the additive 

contributions of these differences to phenotypic variance can be estimated. We measured 

narrow-sense heritability (h2) with two independent and complementary methods: parent-155 

offspring regression and SNP-based h2. Heritability based on parent-offspring regression is 

estimated as the slope of the regression line for offspring phenotypes vs. mid-parent phenotypes 

(47). We observed h2 estimates from -0.06 to 0.85 (average h2=0.33), with the largest h2 

observed for S. Typhimurium-induced levels of IL-10 (h2=0.85±0.19, p=3.5x10-15) (Figure 1C; 

Figure S4; Table S3). The majority (64/79) of phenotypes showed significantly non-zero h2 by 160 

this method (p<0.05). In contrast, SNP-based h2, as implemented in the GCTA software package 

(48) with the Zaitlen modification for related individuals (49), calculates the proportion of 

variance that can be explained by all genotyped SNPs. With this method, we observed pedigree 

h2 ranging from 0.04 to 0.76 (average h2=0.36), and SNP-based h2 ranging from 0.02 to 0.66 

(average h2=0.19) (Figure 1C; Table S3). 165 
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 We observed high correlation between h2 estimated using the two different methods 

(R=0.58; p=2.9x10-8; Figure 1D). The strong correlation between the two estimates of h2, based 

on distinct statistical frameworks, provides additional evidence that LCLs provide a robust 

system to identify human SNPs that contribute to the heritability of cellular phenotypes. 

H2P2 reveals 17 genome-wide significant associations and enrichment for genic SNPs and 170 

regions of active chromatin 

We performed a family-based GWAS in PLINK (26, 27) on 79 traits for 528 LCLs using 

dense genotyping information (15.5 million SNPs after imputation; see Methods). Across 79 

traits, we observed 17 loci that reached a genome-wide significance threshold of p<5x10-8 

(Figure 2A; Table 1; Figure S5). H2P2 demonstrated enrichment of associated SNPs for 175 

functional genome annotations. We used the GARFIELD package to calculate and visualize 

fold-enrichment of SNPs associated in H2P2 at variable p-value thresholds with different 

genomic features (50). In regards to SNP location, the greatest enrichment was observed for 

exonic SNPs (Figure 2B). The fold-enrichment was highest at the most stringent p-value 

threshold (p<1x10-8) for H2P2 traits (9.2-fold enrichment; p=0.10 by Fisher’s exact test) and was 180 

statistically significant when using a p<5x10-8 threshold for H2P2 traits (3.9 fold-enrichment; 

p=0.047). In contrast, there was depletion for intergenic SNPs at the p<5x10-8 threshold (0.66 

fold-enrichment). H2P2-associated SNPs showed even greater enrichment for regions of active 

chromatin as annotated by DNase hypersensitivity peaks from the ENCODE project (51) (Figure 

2C). Consistent with H2P2 being conducted in LCLs, the 2nd greatest enrichment was observed 185 

for DNAase hypersensitivity peaks measured in the LCL GM06990 out of 424 cell types 

measured (at p<5x10-8, 5.7 fold-enrichment; p=3.8x10-3). Even stronger enrichment was noted at 

this threshold for human Th2 cells (7.3 fold-enrichment; p=3.5x10-4), and enrichment was 
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observed for cells derived from most tissues (Figure 2C), consistent with LCLs being a relevant 

model for genetic analysis for multiple human cell types. 190 

A large-effect cis-regulatory variant regulates CXCL10 levels 

The strongest association in the H2P2 dataset was observed for rs2869462 with levels of 

the chemokine CXCL10 (also known as IP-10) following Chlamydia infection (p=2x10-9; Figure 

2D, E). This SNP is located 7.5kb 3’ of the CXCL10 coding sequence (Figure 2D) in a region 

that also encodes for two related chemokines, CXCL9 and CXCL11. These chemokines bind to 195 

CXC-chemokine receptor 3 (CXCR3), a G-protein coupled receptor that mediates inflammation 

by coordinating T-helper 1 (Th1) recruitment and activating effector cells during infection and 

autoimmunity (reviewed in (52)). Many cell types produce CXCL10 during infection, including 

activated B cells (53-56). Notably, the effect of this SNP is large: rs2869462 accounts for 13.7% 

of the variance in CXCL10 protein levels. While no dataset is available to replicate this 200 

association at the protein level, this SNP also demonstrated an association with CXCL10 mRNA 

(p=7x10-7) in an independent set of 465 uninfected LCLs ((57); none of the LCLs overlap the 

H2P2 LCLs) (Figure S6). 

 Although rs2869462 was identified using genome-wide association of all 528 LCLs in 

our dataset, there were large differences in allele frequencies among the populations. The derived 205 

allele of rs2869462 (G) is present at the highest frequencies in Europe (28% in IBS) and Asia 

(28% in KHV) and is substantially lower in Africa (1.5% in ESN, 1% in GWD; Figure 2F). 

Strikingly, all populations demonstrated the same directionality of effect for the rs2869462 allele 

on CXCL10 levels (C > G) (Figure 2G). 

SNPs lead to pleiotropic effects on multiple pathogen-induced traits 210 
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 Different pathogens can target common signaling pathways to establish an intracellular 

niche or to modulate immune responses. Therefore, we examined whether genome-wide 

significant hits were associated with just one trait or if they were associated with multiple traits, 

using either a threshold of p<0.05 or with Bonferroni multiple-test correction (p<6.3x10-4). All 

of the 17 genome-wide significant hits were associated with at least 4 H2P2 traits with the 215 

p<0.05 threshold (Figure 3A). However, several phenotypes are closely related and therefore 

these cross-phenotype associations do not reflect true pleiotropy, multiple unrelated effects due 

to the same gene (58). For example, rs2869462 had 5 cross-phenotype associations but 4 of these 

traits are based on CXCL10 levels (Figure 3B). Beyond the existence of pleiotropy, the pattern 

of which traits shared genetic associations provided additional insight (Figure 3C). A circle plot 220 

of cross-phenotype associations showed most cross-phenotype associations in H2P2 connect 

invasion, establishment of an intracellular niche, and intercellular spread. Traits that had high 

phenotypic correlation (Figure 1B) were more likely to have cross-phenotypic associations as 

expected (Figure 3D). 

The greatest number of associated traits at p<0.05 occurred for rs953897, a SNP in the 225 

gene encoding the transcriptional repressor ZBTB20. Based on GTEx data, rs953897 is 

associated with ZBTB20-AS1 transcript abundance (p=1x10-9) (59). While rs953897 is most 

strongly associated with high C. trachomatis burden at 46 hrs (p = 1.3x10-8), this SNP was 

associated with 20 H2P2 traits (p<0.05) and 5 traits using a multiple-test corrected threshold of 

p<6.3x10-4. A QQ plot comparing p-values for all traits for rs953897 confirmed the high degree 230 

of pleiotropy for this SNP, demonstrating strong deviation from neutrality towards lower p-

values (Figure 3D). These associations even included other pathogens and biological processes, 

as the third most strongly associated trait was S. Typhimurium-induced pyroptosis (p=7.5x10-5; 
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Figure 3D). Overall, out findings indicate that genetic variation in ZBTB20 is linked to 

pleiotropic effects on multiple host-pathogen traits. 235 

Genetic variants impacting ZBTB20 expression affect the outcome of Chlamydia and Salmonella 

infections 

The T allele of rs953897 was associated with both higher levels of Chlamydia replication 

(Figure 4A) and Salmonella-induced pyroptosis (Figure 4B). Reduction of ZBTB20 expression 

by RNAi increased Chlamydia replication and pyroptosis, mimicking the effect of the T allele 240 

(Figure 4C, D). RNAi-mediated depletion of ZBTB20 also indicated that some phenotypes that 

did not reach statistically significant associations with rs953897 after multiple-test correction 

were nonetheless mediated by ZBT20. Specifically, expression of IL-6 after infection with 

Chlamydia (p=0.03), was reduced after ZTB20 RNAi treatment, again mimicking the effect of 

the T allele (Figure 4E). The effect of ZBT20 depletion on IL-6 expression is not the result of 245 

decreased bacterial burden since Chlamydia replication was enhanced under these conditions. 

Thus, the association data and functional validation point to a role for ZBTB20 in the regulation 

of multiple infection-related phenotypes. 

ZBTB20 has been characterized as a transcriptional repressor during prenatal 

development in the liver and the brain (60-62). Rare protein-coding mutations in ZBTB20 are 250 

responsible for Primrose syndrome, which has features as disparate as mental retardation, 

ossified external ears, and distal muscle wasting (63). We hypothesized that one ZBTB20 target 

gene could regulate a pathway that impacted multiple biological processes related to pathogen 

immunity. An attractive target, I𝜅B (NFKBIA), the canonical suppressor of NF𝜅B signaling, is 

subject to ZBTB20 transcriptional repression (64). Reduction of ZBTB20 expression in LCLs by 255 

RNAi causes increased expression of I𝜅B (Figure 4F). An increase of I𝜅B should cause 
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inhibition of NF𝜅B signaling, resulting in increased Chlamydia replication but decreased 

expression of pro-inflammatory cytokines including IL-6. Consistent with this prediction, 

depletion of I𝜅B by RNAi decreased Chlamydia replication and increased IL-6 production 

(Figure 4C, E). In contrast, depletion of I𝜅B did not impact Salmonella-induced pyroptosis, 260 

indicating an I𝜅B-independent mechanism (Figure 4D).  These observations point to multiple 

roles for ZBTB20 in regulating cellular functions during infection, both through suppression of 

regulators of signaling pathways, such as NF𝜅B (Figure 4J), but also through regulation of other 

unidentified targets. 

SNPs linked to CXCL10 expression are also associated with inflammatory bowel disease 265 

 We determined if SNPs associated with cellular traits in H2P2 were associated with 

human disease. Consistent with the rs2869462 C allele being associated with increased CXCL10 

and inflammation, we discovered that this allele is a previously unrecognized inflammatory 

bowel disease (IBD) risk allele. CXCL10 inhibitory antibodies have undergone phase II clinical 

trials for both sub-types of IBD, Crohn’s disease (CD) and ulcerative colitis (UC) (65, 66), based 270 

on evidence from animal models (67-69) and of elevated CXCL10 in patients with CD (70) and 

UC (71).  Comparison to GWAS summary statistics from the IBD Genetics Consortium meta-

analysis of 12882 IBD cases and 21770 controls (72) demonstrated that rs2869462 is associated 

with IBD (p=1.7x10-4; OR=1.08), as well as with CD (p=1.9x10-3; OR=1.09) and UC subtypes 

(p=0.016; OR=1.06). The cases in the subtype analysis are exclusive of one another and 275 

therefore demonstrate an association of rs2869462 with two different cohorts of IBD cases 

(though most controls are shared). Furthermore, the direction of association is consistent with 

high levels of CXCL10 (the C allele) being associated with greater risk of IBD. 
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The availability of GWAS summary statistics from this dataset allowed us to conduct a 

formal colocalization analysis to determine whether the CXCL10 protein level signal was the 280 

same as the IBD signal. We utilized the COLOC package which uses a Bayesian framework to 

determine whether GWAS signals in the same region are likely due to the same causal variant 

(73). The posterior probability that both CXCL10 protein level and IBD share the same causal 

variant is as high as 0.80 for the region, with rs2869462 being singled out as the SNP with the 

greatest posterior probability as being causal (Table S4). Comparison of regional plots of 285 

association along with the colocalization analysis indicate that the same LD block is associated 

with both CXCL10 levels and risk of IBD (Figure 5A). 

We independently tested for this association using electronic medical record (EMR) data 

from the eMERGE Network (74). The eMERGE dataset holds genotype-phenotype correlations 

of >80,000 individuals with phenotypes assigned based on ICD-9 patient billing codes (25). We 290 

tested for association with the codes for “inflammatory bowel disease and other gastroenteritis 

and colitis” and the more restrictive code for “ulcerative colitis.” rs2869462 was associated with 

both phenotypes in the predicted direction (p=0.003; OR=1.12, C allele for IBD, p=0.02; 

OR=1.12, C allele for UC) (Figure 5B). Therefore by first identifying a SNP as associated with 

CXCL10 levels following an LCL model of C. trachomatis infection, we have discovered and 295 

replicated a new IBD risk allele. 

H2P2 SNPs are associated with disease in PheWAS of electronic medical record traits 

Next, we systematically generated hypotheses regarding the effects of the H2P2 genome-

wide significant hits on human disease by employing a PheWAS (phenome-wide association 

study) approach, looking for associations across a large set (1338) of clinical measurements and 300 

diseases cataloged in eMERGE (25). We found 5 of 16 H2P2 genome-wide significant hits 
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surpassed the multiple test corrected significance threshold with at least 1 EMR phenotype 

(Figure 6A; Table S5; 1 H2P2 SNP was not in the eMERGE dataset and had no good proxy 

based on LD). 

The SNP that had the greatest number of PheWAS associations was rs7566597. This 305 

SNP, associated with the H2P2 phenotype of Chlamydia-infected levels of the chemokine MIP-

1β (macrophage inflammatory protein-1beta; CCL4), was associated with five clinical traits. The 

most significant association (p =1.76x10-6; p=0.0024 after Bonferroni; OR=1.40) was observed 

with otorrhea (Figure 6B). Otorrhea is ear drainage most commonly caused by an ear infection. 

Notably, MIP-1β is elevated in fluid from patients with middle ear infections (75), mice with 310 

genetic predisposition to middle ear infections (76), and primary middle ear epithelial cultures 

infected in vitro with either influenza or Streptococcus pneumoniae (77). The directionality of 

this association (G allele associated with both higher MIP-1β levels and increased risk of 

otorrhea), and the fact that genotype is fixed prior to disease, lead to the hypothesis that the 

rs7566597 G allele causes higher levels of MIP-1β to increase risk of otorrhea. 315 

Similarly, rs953897 in ZBTB20 was associated with viral hepatitis (Figure 6C; 

p=3.17x10-5; p=0.025 after Bonferroni; OR=1.20). Most of the 1654 viral hepatitis cases in this 

cohort are due to hepatitis C virus (HCV). To further test this association experimentally, we 

performed RNAi against ZBTB20 in Huh7 human hepatocytes. Depletion of ZBTB20 mRNA 

(Figure 6D) increased the percentage of HCV infected cells over time (Figure 6E) and increased 320 

the amount of infectious virus by 7-fold (Figure 6F). Future mechanistic and clinical studies will 

be required to further validate the association and determine how genetic variation in ZBTB20 

affects risk of viral hepatitis. However, this example demonstrates that coupling H2P2 with 
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PheWAS of clinical traits can lead to hypotheses that can be quickly tested in the most clinically 

relevant cell type for that particular disease. 325 

Discussion 

With H2P2, we have coupled the ability of pathogens to influence genetic diversity in 

human populations to their use as cellular probes to elucidate mechanisms of disease. This 

cellular GWAS approach provides: 1) biomolecules and proteins that could serve as possible 

biomarkers and therapeutic targets and 2) a cellular model to validate and dissect mechanisms of 330 

how the genetic variant regulates the cell biological process now connected to disease. We have 

developed an H2P2 database and web interface to allow for exploration of this rich dataset by the 

research community (http://h2p2.oit.duke.edu). 

Cellular GWAS studies have also been performed on inter-individual variation in levels 

of immune cell subtypes, cell surface protein expression, and cytokine levels (78-80). However, 335 

Hi-HOST is unique in using live pathogens to induce complex cellular phenotypes, such as cell 

death and invasion, providing surrogate phenotypes that are intermediate between molecular 

phenotypes of gene/protein expression and human population studies of disease. Additionally, 

H2P2 utilizes cells derived from multiple human populations. Notably, allele frequencies for 

rs2869462 and rs953897 vary greatly across the globe. These differences may play an important 340 

role in susceptibility of different populations in cellular responses and disease. Finally, our use of 

parent-offspring trios allowed us to make estimates of h2 through both parent-offspring 

regression and SNP-based methods.  

Our h2 estimates are consistent with a large fraction of variation in cellular responses as 

being genetically determined. For parent-offspring regression 64 of 79 traits had significantly 345 
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non-zero h2 (p<0.05). While relatively small sample size led to large standard errors for SNP-

based estimates of h2, the two estimates correlated quite strongly (r=0.58; p=2.9x10-8). Our 

estimates of h2 are similar to other reports for immune-related traits. Orru et al. examined levels 

of 95 immune cell types and found a mean h2 of 41% (range 3-87%) (79). Our estimates of h2 for 

cytokine levels as well as for more complex host-pathogen phenotypes such as Chlamydia 350 

intracellular replication (46hr % high GFP; 33% by parent-offspring regression and 20% by 

SNP-based heritability) are consistent with a strong genetic basic for variation in immune cell 

traits and host-pathogen interactions, though environment also has a large effect. Furthermore, 

our ability to identify SNPs strongly associated with these traits that can explain a sizable portion 

of the h2 further confirms the importance of common SNPs in contributing to the h2 of molecular 355 

and cellular pathogen-induced traits. 

Integrating H2P2 with human genetic association data from published studies and the 

eMERGE Network revealed how genetic variants impacting cellular traits also influenced human 

disease. For rs2869462, we found that this SNP associated with CXCL10 levels is also a 

previously unrecognized risk factor for IBD. While over a hundred IBD risk alleles have been 360 

identified (72), the fact rs2869462 was associated with levels of CXCL10 in H2P2 may make 

genotyping of this SNP clinically actionable if coupled to anti-CXCL10 therapy. While anti-

CXCL10 demonstrated some benefit in phase 2 trials, neither study met statistical significance 

for its primary endpoint (65, 66). We hypothesize that rs2869462 genotype might be a predictive 

biomarker for identifying the genetic subtype of patients who show the greatest benefit. This 365 

example, spanning molecular phenotype, human disease, and clinical utility serves as a template 

for how we envision the H2P2 web portal being used to make similar discoveries. 
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 For CXCL10, ZBTB20, and other genes implicated by H2P2, there are numerous 

associations that do not reach genome-wide significance but are undoubtedly true-positives 

based on highly related phenotypes or experimental evidence. Indeed, our lab has previously 370 

pursued non-genome-wide significant hits revealed by Hi-HOST, resulting in a new metabolite 

biomarker for sepsis (23) and a new potential therapeutic strategy for typhoid fever (24). 

However, to fully illuminate how genetic variation contributes to the pathophysiology of disease 

will require the engagement of the research community with the H2P2 web portal and other 

similar datasets. These users, already experts on particular genes and/or cellular pathways, would 375 

be well-equipped to then validate and discover the mechanisms underlying these associations. 

Thus, H2P2 provides a hypothesis-generating engine for identifying new biomarkers and 

therapeutic strategies. Future studies will expand the panel of stimuli and the cell types used to 

create a more complete picture of how cellular traits impact human health and disease, an 

important step towards a future of more personalized care.  380 
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Figures 

 660 

Figure 1. Inter-individual variation in H2P2 traits reveals clustering of phenotypes and 

heritable variation in cellular responses to infection. (A) Diagram of the H2P2 workflow for 

connecting genetic variation to cell biology. Lymphoblastoid cell lines (LCLs) from 528 people 
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(parent-offspring trios) from 4 populations were exposed to 8 different stimuli for 79 phenotypes. 

Over 10 million SNPs were tested for association with each phenotype using family-based 665 

association implemented in PLINK (26, 27). (B) Clustering of H2P2 phenotypes reveals a map 

of trait similarity. Heatmap and dendrograms of hierarchical clustering based on inter-individual 

phenotypic variation. Spearman correlation is color-coded in the heatmap from blue (negative 

correlation) to red (positive correlation). Phenotypes are color-coded by stimuli (outer band) and 

biological category of phenotype (inner band). Several clusters of related traits are highlighted.  670 

(C) Narrow-sense heritability (h2) estimates for H2P2 phenotypes based on GREML vs. parent-

offspring regression. h2 was estimated using genome-wide SNP data using the Zaitlen method of 

GREML for family data in GCTA or by parent-offspring regression. Both methods utilized a 

covariate for batch effects. The GREML method gives a SNP-based h2 (green) as well as a total 

h2 (yellow; the sum of SNP-based h2 (green) plus the non-SNP-based h2). Both methods indicate 675 

a large range of h2 estimates for different H2P2 traits and are consistent with many traits having 

a significant genetic component. (D) h2 estimates from parent-offspring regression vs. GREML 

SNP-based h2 are well correlated. Linear regression for all 79 H2P2 traits demonstrate the two 

methods give similar h2 estimates. 
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 680 

Figure 2. GWA of H2P2 reveals 17 genome-wide significant loci including a cis-cytokine-

QTL near CXCL10. (A) A meta-Manhattan plot for 79 traits shows 17 peaks (red) with p<5x10-

8 (dotted line). –log(p-values) were calculated using QFAM-parents in PLINK. (B) GARFIELD 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/202325doi: bioRxiv preprint 

https://doi.org/10.1101/202325
http://creativecommons.org/licenses/by-nc/4.0/


30 
 

enrichment plot of SNP location demonstrates enrichment of SNPs associated with H2P2 

phenotypes in exons, and 5’ and 3’ UTRs. SNPs associated with H2P2 traits at various p-value 685 

thresholds were plotted in the indicated colors and the height of the peak within each category 

indicates fold enrichment from 0 to 10. (C) GARFIELD enrichment plot of DNase 

hypersensitivity peaks demonstrates enrichment of SNPs associated with H2P2 phenotypes in 

active chromatin regions in multiple cell/tissue types. SNPs associated with H2P2 traits at 

various p-value thresholds were plotted in the indicated colors and the height of the peak within 690 

each category indicates fold enrichment from 0 to 14. (D) Regional plot around the CXCL10 

gene demonstrates association of rs2869462 with CXCL10 levels from C. trachomatis-infected 

cells. SNPs are plotted by position on chromosome 4 and –log(p-value) and color-coded by r2 

value to rs2869462 from 1000 Genomes European data. (E) Genotypic medians, first and third 

quartiles (box), and maximum and minimum values (whiskers) for rs2869462 for CXCL10 695 

levels from C. trachomatis-infected LCLs from all LCLs. (F) Map of rs2869462 allele 

frequencies (C = orange; G = blue) from Geography of Genetic Variants Browser (81). (G) 

Individual population genotypic median plots for rs2869462 for CXCL10 levels demonstrate C > 

G in all populations. P-values are from QFAM-parents in PLINK. 
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 700 

Figure 3. Cross-phenotype associations and pleiotropy are abundant among cellular host-

pathogen traits. (A) Histograms of the number of cross-phenotype associations for the 17 H2P2 

genome-wide significant hits. For the most strongly associated SNP in each GWAS peak, the 
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number of traits with associations at p<0.05 and p<6.33x10-4 is shown. (B) QQ-plot and 

PheWAS plot for the association of rs2869462 with the 79 H2P2 phenotypes shows deviation 705 

from neutral expectation only for the 4 CXCL10 phenotypes. This is an example of cross-

phenotype associations but not pleiotropy. (C) Circle plot of 79 phenotypes by category and lines 

connecting traits that share the same genome-wide significant hit at p< 1x10-5. (D) Plot of 

pairwise trait phenotypic similarity (Spearman correlation) vs. similarity of shared SNPs (Jaccard 

index). Traits that are more phenotypically similar have more shared SNPs with p< 1x10-3 for 710 

both traits. (E) QQ-plot and PheWAS plot for the association of rs953897 with the 79 H2P2 

phenotypes shows deviation from neutral expectation for dozens of phenotypes, including traits 

in different biological categories in the PheWAS plot. This is an example of pleiotropy. 
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Figure 4. Genetic variation influencing ZBTB20 regulates multiple host-pathogen traits. (A) 715 

Regional plot for ZBTB20 demonstrates an association of rs953897 with C. trachomatis high 

GFP infected cells at 46 hrs (p=1.3x10-8). Genotypic medians plot of rs953897 with high GFP 

infected cells at 46 hrs in IBS LCLs. (B) Regional plot for ZBTB20 demonstrates an association 

of rs953897 with S. Typhimurium-induced pyroptosis (p=7.5x10-5). Genotypic medians plot of 
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rs953897 with S. Typhimurium-induced pyroptosis in all LCLs. (C-F) LCL GM1761 was treated 720 

with non-targeting, ZBTB20 (53±9% knockdown), or I𝜅B (83±2% knockdown) Accell RNAi for 

three days prior to infection. All cellular phenotypes measured were normalized to non-targeting 

values (treatment/non-targeting) prior to statistical analysis. (C) ZBTB20 and I𝜅B regulate C. 

trachomatis replication. By 46hrs, C. trachomatis replication has resulted in a high GFP+ 

population of cells with an enlarged GFP+ Chlamydia-containing vacuole. ZBTB20 knockdown 725 

results in a greater percentage of high GFP+ cells, similar to what is seen with the T allele, while 

IB knockdown produces fewer GFP+ enlarged vacuoles. Mean (±SEM) percentage of high 

GFP+ cells in non-targeting samples is 1.63% (±0.07%).  (D) ZBTB20 regulates Salmonella-

induced pyroptosis independent of I𝜅B. ZBTB20 knockdown results in a greater percentage of 

pyroptotic cells, similar to what is seen with the T allele, while IB knockdown shows no 730 

significant change in pyroptosis. Percentage of pyroptotic cells in non-targeting samples is 

35.1% (±1.4%).  (E) Both the T allele and ZBTB20 knockdown result in reduced IL-6. 

Genotypic median plot of rs953897 with C. trachomatis-induced IL-6 in all LCLs. ZBTB20 

knockdown reduces IL-6 levels, while knockdown of IB leads to increased levels measured at 

70 hours. IL-6 levels from non-targeting LCLs were 186 pg/mL (±31.6 pg/mL). (F) ZBTB20 735 

knockdown results in increased I𝜅B mRNA. RNA was collected from nontargeting and ZBTB20 

RNAi treated LCLs, cDNA was synthesized, and qPCR was conducted using TaqMan probes for 

18s (control) and I𝜅B (target). The ∆∆CT method was used to determine fold change of I𝜅B. (G) 

Proposed model for ZBTB20 effect on proinflammatory targets. C-F were from 8-12 biological 

replicates from 2-4 experiments. p-values for C-E were generated from one-way ANOVA 740 

analysis while F was calculated by an unpaired parametric t-test. 
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Figure 5. SNPs associated with high CXCL10 in H2P2 are also associated with increased 

risk of IBD. (A) Overlaid association plots of the CXCL10 region on chromosome 4 

demonstrates colocalization of signals for Chlamydia-infected CXCL10 levels from H2P2  745 

(grey) and IBD GWAS (blue) (72). rs2869462 from the two studies is highlighted in red and 

yellow. Colocalization analysis indicates an 80% probability that the peaks for CXCL10 level 
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and IBD are due to the same causal variant (Table S4). (B) OR plot for rs2869462 and IBD, CD 

and UC based on data generated in (72) and replication of the association with “IBD and other 

gastroenteritis and colitis” and UC from the eMERGE Network. The high CXCL10 allele (C) is 750 

associated with increased odds of IBD. 
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Figure 6. PheWAS of H2P2 hits reveals connections to human disease including an 

association of ZBTB20 and viral hepatitis. (A) Chromosome landscape of H2P2 genome-wide 

significant hits that demonstrate significant associations with eMERGE phenotypes, after 755 
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Bonferroni correction for the number of eMERGE phenotypes. The five SNPs demonstrating 

significant associations are described in Table S5. (B) (C) eMERGE PheWAS plots of 

rs7566597 and rs953897. eMERGE phenotypes are grouped into functional categories. Y-axis is 

–log(p-value), with the red line indicating Bonferroni corrected p-value = 0.05. (D) Huh7 cells 

were transfected with non-targeting or ZBTB20 siRNA for two days prior to infection. qPCR 760 

demonstrated significant knockdown of ZBTB20. (E) ZBTB20 suppresses HCV infection. The 

percentage of cells infected with HCV was assessed at 24 and 48 hpi by immunofluorescence for 

HCV protein NS5A (green) and staining with DAPI (blue) for total cells, with automated 

quantification by Cellomics. ZBTB20 depletion causes the percentage of HCV-infected cells to 

increase more rapidly over time. (F) ZBTB20 suppresses HCV production. Supernatants 765 

collected at 72 hpi were used in a HCV focus forming assay to determine the concentration of 

productive HCV particles. ZBTB20 depletion causes a 7-fold increase in HCV focus forming 

units (FFUs/ml). For D-F, mean (±SEM) are shown and p-values are from a paired t-tests from 

three separate experiments. 
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Table 1. Genome-wide-significant H2P2 SNPs. A single SNP with the lowest p-value is listed 

for each peak. SNPs described in detail in the text are in bold. 

SNP ID Chr Position Cellular trait p-value 
risk 
allele gene* 

Parent-
offspring 

h2 for 
trait 

SNP-
based 

h2 for 
trait 

variance 
explained 
by SNP 
(parental 
LCLs only) 

rs7566597 2 56289463 MIP1B_Chlamydia 4.67E-08 G CCDC85A 58.2% 33.3% 4.4% 

rs9883818 3 337848 
MDC_Uninfected_
ELISA 1.70E-08 A CHL1 28.6% 9.8% 1.2% 

rs150230900 3 38822664 
Chlamydia_70hr_G
FP 3.50E-08 - 

near RP11-
134J21.1 21.1% 12.9% 1.0% 

rs953897 3 114349113 
Chlamydia_46hr_
highGFP 1.30E-08 T ZBTB20 33.0% 20.1% 2.4% 

rs11287866 4 39317796 IL4_Chlamydia 2.60E-08 TA RFC1  36.8% 22.7% 1.6% 

rs2869462 4 76013566 IP10_Chlamydia 2.00E-09 
C 

ART3; near 
CXCL10 48.3% 25.2% 13.7% 

rs28540901 4 184492384 
IL10_Uninfected_L
uminex 1.60E-08 T near IRF2 10.8% 9.2% 2.9% 

rs11957501 5 149250737 
MDC_S_typhimuriu
m 3.25E-08 C ABLIM3 43.3% 10.7% 4.9% 

rs6555828 5 157066729 
Chlamydia_70hr_m
edian_GFP 1.60E-08 G 

near 
HAVCR1 27.3% 22.6% 2.8% 

rs139408032 8 8882324 FGF2_Mucor 1.65E-08 A MFHAS1 38.2% 21.9% 2.7% 

rs61836093 10 14235152 FGF2_Candida 3.80E-08 G FRMD4A 43.7% 16.3% 2.0% 

rs74142986 10 81018235 TNFb_Chlamydia 1.85E-08 T - 35.6% 18.2% 2.5% 

rs10750312 11 99526242 

S_typhimurium_Intr
acellular_ 
Replication_24_3_
5hr_median_GFP 3.00E-09 G CNTN5 22.7% 10.2% 3.2% 

rs4905049 14 93121941 
Chlamydia_46hr_hi
ghGFP 3.30E-08 G near ITPK1 33.0% 20.1% 0.3% 

rs4949082 16 63851836 
IP10_S_typhimuriu
m 3.70E-08 A - 40.1% 9.1% 1.2% 

rs16956501 17 48419912 
Chlamydia_70hr_m
edian_GFP 1.10E-08 C SKAP1 27.3% 22.6% 0.2% 

rs4121804 18 59790252 
Chlamydia_46hr_hi
ghGFP 4.11E-08 G - 33.0% 20.1% 0.6% 

          
*gene the SNP is located in or "near" (within 20kb) 
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Methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

   

Bacterial and Virus Strains  

S. enterica Typhi (strain Ty2) +pMMB67GFP This paper N/A 

S. enterica Typhimurium (strain 14028s) 

+pMMB67GFP 
Dennis Ko (19) 

S. enterica Typhimurium (strain 14028S ΔsifA) 

+pMMB67GFP 

This paper N/A 

Chlamydia trachomatis LGV-L2, RifR + 

pGFP::SW2 

Raphael Valdivia 
(82) 

Mucor circinelloides f. lusitanicus R7B (leuA-) Soo Chan Lee (83) 

Candida albicans SC5314  Joseph Heitman (84) 

Toxoplasma gondii strain RHgfpluc John Boothroyd (85) 

Biological Samples 
  

   

Chemicals, Peptides, and Recombinant Proteins 

alpha-hemolysin (Staph. aureus alpha toxin) Sigma H9395-.5MG 

7-AAD Enzo Life Sciences BML-AP400-0001 

Critical Commercial Assays 

Human FGF basic DuoSet R&D Systems DY233 

Human IL-10 DuoSet R&D Systems DY217B 

Human CXCL10 DuoSet R&D Systems DY266 

Human MDC Duoset R&D Systems DY336 

Human IL-6 Duoset R&D Systems DY206 

Milliplex MAP Human Cytokine Custom 17-

plex panel 

Millipore EMD HCYTOMAG 
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Deposited Data 

Illumina HumanOmni 2.5M array 1000 Genomes ftp://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/relea

se/20130502/supportin

g/hd_genotype_chip/ 

H2P2 database and web portal This paper h2p2.oit.duke.edu 

Experimental Models: Cell Lines 

1000 Genomes LCLs Coriell GWD, ESN, IBD, 

KHV 

Experimental Models: Organisms/Strains 

   

Oligonucleotides 

Accell siRNA for non-targeting #1, ZBTB20, 

NFKBIA 

Dharmacon D-001910-01-50; E-

020529-00-0010; E-

004765-00-0010 

Taqman human gene expression assays for 

ZBTB20, NFKBIA, 18S RNA,  

ThermoFisher Hs00210321_m1; 

Hs00355671_g1; 

Hs03928990_g1 

Recombinant DNA 

   

Software and Algorithms 

PLINK v1.9 (86) https://www.cog-

genomics.org/plink/1.9

/  

LocusZoom (87) http://locuszoom.sph.u

mich.edu/  

IMPUTE v2.3.2 (88) http://mathgen.stats.ox

.ac.uk/impute/impute_

v2.html  

SHAPEIT v2.r790 (89) https://mathgen.stats.o

x.ac.uk/genetics_softw

are/shapeit/shapeit.htm

l  
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Samtools v1.5 (90) http://samtools.sourcef

orge.net/  

GCTA v1.26 (48) http://cnsgenomics.co

m/software/gcta  

GARFIELD  (50) http://www.ebi.ac.uk/b

irney-srv/GARFIELD  

CIRCOS v0.69 (Krzywinski et al. 

2009) 

http://circos.ca/softwar

e/download/circos/ 

ANNOVAR v2016FEB01 (91) http://annovar.openbio

informatics.org/  

GGV Browser (81) http://popgen.uchicago

.edu/ggv/  

R v3.3.2 (92) https://cran.r-

project.org/ 

ggplot2 The R Foundation https://cran.r-

project.org/web/packa

ges/ggplot2/index.html  

data.table The R Foundation https://cran.r-

project.org/web/packa

ges/data.table/index.ht

ml  

dplyr The R Foundation https://cran.r-

project.org/web/packa

ges/dplyr/index.html  

biomaRt Bioconductor https://bioconductor.or

g/packages/release/bio

c/html/biomaRt.html  

stringr The R Foundation https://cran.r-

project.org/web/packa

ges/stringr/index.html  

RColorBrewer The R Foundation https://cran.r-

project.org/web/packa

ges/RColorBrewer/ind

ex.html  

reshape2 The R Foundation https://cran.r-

project.org/web/packa

ges/reshape2/index.ht

ml  

GenomicRanges Bioconductor https://bioconductor.or

g/packages/release/bio

c/html/GenomicRange

s.html 

PheWAS The R Foundation https://phewascatalog.

org/  
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Other 

   

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for reagents should be directed to and will be fulfilled by the 780 

Lead Contact, Dennis Ko (dennis.ko@duke.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cells 

1000 Genomes LCLs (528; all trios) from ESN (Esan in Nigeria), GWD (Gambians in Western 785 

Divisions in the Gambia), IBS (Iberian Population in Spain), and KHV (Kinh in Ho Chi Minh 

City, Vietnam) populations were purchased from the Coriell Institute. LCLs were maintained at 

37˚C in a 5% CO2 atmosphere and were grown in RPMI 1640 media (Invitrogen) supplemented 

with 10% fetal bovine serum (FBS), 2 mM glutamine, 100 U/ml penicillin-G, and 100 mg/ml 

streptomycin.  790 

Human hepatoma Huh7 cells were grown in DMEM (Mediatech) supplemented with 10% fetal 

bovine serum (HyClone), 2.5 mM HEPES, and 1× non-essential amino acids (complete, 

cDMEM; Thermo Fisher Scientific). The identity of the Huh7 cell line was verified using the 

Promega GenePrint STR kit (DNA Analysis Facility, Duke University), and cells were verified 

as mycoplasma free by the LookOut Mycoplasma PCR detection kit (Sigma). Infectious stocks 795 

of a cell culture-adapted strain of genotype 2A JFH1 HCV were generated and titrated by focus-

forming assay (FFA), as described (93). 
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METHOD DETAILS 

LCL screening 800 

LCLs were received from Coriell and cultured for 8 days prior to assays. LCLs were counted 

with a Guava Easycyte Plus flow cytometer (Millipore). LCLs were washed once with RPMI 1% 

FBS and then plated out in RPMI 10% FBS at 200,000 cells/200µl for Salmonellae, 100,000 

cells/100µl for fungi, and 40,000 cells/100µl for S. aureus alpha toxin, C. trachomatis, and T. 

gondii. Cells were passaged at 150,000/ml in 20ml total volume for three days. 805 

C. trachomatis infection 

C. trachomatis LGV-L2 RifR pGFP::SW2 was grown and purified as previously described (94). 

C. trachomatis was added at MOI 5 in 100µl assay media, mixed by multichannel pipetting, and 

centrifuged onto cells at 3000 RPM for 30min at 4ºC. At 27, 46, and 70hrs, cells were mixed and 

25µl was taken for flow cytometry measurement (4000 cells). 25µl of supernatant at 70hrs was 810 

measured by Luminex assay for 17 cytokines. 

Salmonella infection 

Salmonellae were tagged with an inducible GFP plasmid [pMMB67GFP from (95)]. sifA 

deletion mutants was constructed with lambda red (96)  and verified by PCR. Assaying LCLs for 

Salmonellae infection was conducted as previously described (19). Overnight bacterial cultures 815 

were subcultured with a 1:33 dilution and grown for 2 hr 40 min at 37˚C. Invasion was 

conducted for 1hr at a multiplicity of infection (MOI) of 10 for S. Typhi and MOI 30, followed 

by addition of gentamicin (50µg/ml) for 1hr, and then culture was split into two separate cultures 

of 60µl of cells with 140µl of media to dilute gentamicin (15µg/ml) and allow for collection at 

two timepoints. IPTG (1.4mM) was added to turn on GFP expression for 75 min prior to 3.5hr 820 

and 24hr timepoints. For the 3.5hr timepoint, 150µl of cells were stained with 7-AAD (7-
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aminoactinomycin D; Enzo Life Sciences) and green and red fluorescence of 7000 cells was 

measured on a Guava Easycyte Plus flow cytometer (Millipore). For the 24hr timepoint, cells 

were spun down and 2 aliquots of 55ul of supernatant was removed and stored at -80C for 

subsequence IL10 (25µl), CXCL10 (25µl), and MDC (4µl) ELISAs (R&D Systems). 55µl of 825 

cells were stained with 7-AAD and measured by flow cytometry. 

Fungal infection 

The Mucor circinelloides f. lusitanicus R7B (leuA-) (83) strain and Candida albicans SC5314 

(84) strain were used as wild-type to test the expression of FGF-2 from the LCLs. Leucine 

autotropism (leuA-) was found not to impact virulence (97). To prepare Mucor spores, potato 830 

dextrose agar (PDA, 4 g potato starch, 20g dextrose, and 15 g agar per liter) was inoculated and 

incubated for 4 days at 26C in the light. To collect spores, sterile deionized distilled water was 

added onto the plates and spores were released by gently scraping the colonies with a cell 

spreader. Spores were counted by using a hemocytometer. To prepare C. albicans yeast, yeast 

dextrose broth (10 g yeast extract, 20 g peptone, 20 g glucose per liter) was inoculated and 835 

incubated at 30C by shaking at 250 rpm overnight. The yeast cells were quantified by using a 

hemocytometer.  To co-culture with LCLs, all fungal cells were washed with sterile PBS twice. 

Fungi were added at MOI 1 in 10l and incubated for 24 hrs. Culture supernatant was collected 

and stored at -80C for later FGF-2 ELISA analysis (R&D Systems). 

S. aureus toxin treatment 840 

LCLs were treated with alpha-hemolysin (Sigma) at 1µg/ml for 23hrs. Cells were mixed and cell 

death quantified by 7-AAD staining (concentration) and flow cytometry. 

T. gondii infection 
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T. gondii strain RHgfpluc was grown on confluent human foreskin fibroblast cells. The infected 

cells were then scraped and transferred to a 50ml polystyrene tube and centrifuged at 500 x g for 845 

10 minutes at 4°C. Pellet was resuspended in 3 ml of PBS and the suspension was aspirated three 

times using a 20g needle attached to a 10ml syringe. 30 ml of PBS was added and centrifuged at 

500 x g for 10 min at 4°C. Supernatant was removed, and pellet resuspended in 5ml of PBS. 

Concentration of a 1:200 dilution was determined by flow cytometry and added at MOI 2 to 

cells. At 5, 30, and 48 hrs infection, cells were mixed, and 25µl taken for measuring 4000 cells 850 

by flow cytometry. 

LCL RNAi experiments 

LCLs (2x105 cells) were treated for three days in 500μl of Accell media (Dharmacon) with either 

non-targeting Accell siRNA #1 or an Accell SmartPool directed against human ZBTB20 or  

NFKBIA (1μM total siRNA; Dharmacon). Prior to infection, cells were plated at 1x105 in 100μl 855 

RPMI complete media (without antibiotics) in 96-well plates. Infections were conducted as 

described above. 

HCV infection experiments 

Huh7 cells were seeded in 12-well plates at a density of 1x105 cells per-well in cDMEM and 

transfected the next day using 9μL RNAiMAX (Thermo) and 3μL of the indicated 10μM siRNA 860 

(siGenome Smartpool (Dharmacon)), in Optimem (Thermo). Four hours post-transfection, the 

transfection mixture was removed and 1ml fresh cDMEM was added. HCV infections were 

performed at an MOI of 0.3 for 24, 48, or 72 hr. For each condition, duplicate wells were either 

infected or mock-infected, RNA was harvested from one well and the other utilized for 

visualization of infected cells. Supernatant was collected from both wells for virus titration.  865 
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HCV focus forming assay. Serial dilutions of supernatants collected from non-targeting or 

ZBTB20-targeting siRNA treated cells collected 72hpi were used to infect naive Huh7.5 cells in 

triplicate wells of a 48-well plate. At 48 hpi, cells were fixed, permeabilized, and immunostained 

with HCV NS5A antibody (1:500; gift of Charles Rice, Rockefeller University). Following 

binding of horseradish peroxidase (HRP)-conjugated secondary antibody (1:500; Jackson 870 

ImmunoResearch), infected foci were visualized with the VIP Peroxidase Substrate Kit (Vector 

Laboratories) and counted at 40× magnification. 

Visualization of HCV infected cells. 48 hours post-transfection, Huh7 cells treated with non-

targeting or ZBTB20-targeting siRNA were infected with HCV (MOI 0.3) or mock-infected. 24 

or 48 hours post-infection, cells were fixed in 4% paraformaldehyde in PBS, permeabilized with 875 

0.2% Triton X-100 in PBS, and blocked with 3% BSA in PBS, then immunostained with HCV 

NS5A antibody (1:1,000), washed 3x in PBS-Tween, then visualized with AlexaFluor- 488 

Donkey anti-Mouse secondary antibody (1:1000, Thermo). Cell nuclei were stained with DAPI 

in the first of three PBS-Tween washes following the addition of secondary antibody. Two-color 

images were collected with the Cellomics ArrayScan VTI HCS (Thermo), at 20x magnification 880 

in the Duke Functional Genomics Shared Resource. 10 fields of per-well, per-condition were 

acquired and the percentage of identified nuclei with detectable NS5A staining was quantified 

using VHSview software (Thermo).  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 885 

Phenotype repeatability 

Repeatability of each cellular trait was calculated to measure the variation among 3 independent 

experiments. The inter- and within-individual component of variance was calculated by fitting to 
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one-way ANOVA. The estimated within-individual component of variance gave the repeatability 

coefficient. 890 

Testing effect of EBV copy number on H2P2 cellular phenotypes 

EBV relative copy numbers were retrieved for 1753 LCLs (46), of which 284 cell lines 

overlapped with H2P2 samples (73 ESN; 105 GWD; 106 IBS). Prior to analysis, H2P2 cell 

phenotypes were averaged from the three experiment replicates and then transformed to Z-scores 

within each experimental batch. EBV loads were standardized to Z-score within each population. 895 

Correlation between H2P2 cellular traits and EBV loads were tested using linear regression with 

population as a covariate. 

Genotype and imputation 

Genotypes for 1000 Genome LCLs (16) were from Illumina HumanOmni 2.5M array (905,788 

SNPs; see details in STAR resource table). Genome-wide imputation of autosomal genotypes 900 

with 1000 genome Phase 3 haplotype as reference panel were performed through two steps, a 

pre-phasing step using SHAPEIT2 (89) and an imputation step using IMPUTE2 (98). Imputed 

genotype was further filtered by imputation accuracy score (IMPUTE’s INFO) < 0.9 and minor 

allele frequency < 0.01. A total of 339 samples overlap with 1000 genome Phase 3 individuals. 

We merged those direct sequenced genotypes from 1000 genome Phase 3 project into our 905 

imputed genotypes. We eventually obtained 15,581,278 SNPs (8,817,925 SNPs have minor 

allele frequency ≥ 0.05). The human genome reference assemble (GRCH37/hg19) was used for 

all analysis.  

Phenotype- and SNP-based heritability analysis 

Two different methods were applied to estimate heritability. The parent-offspring (PO) 910 

regression method estimated additive heritability exclusively using phenotypic values. Linear 
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regression of child against average of parents was performed, and the slope was used as a 

heritability estimator. Batch was incorporated as a covariate. Genotype-based heritability was 

estimated using the GCTA GREML method (Yang et al. 2012). Autosomal SNPs with minor 

allele frequency filtering of 0.05 were used to create a genetic relationship matrix (GRM). 915 

Zaitlen and colleagues developed a method, “big K/small K”, which enables to precise estimate 

heritability by jointly using closely related and unrelated individuals (49). Following Zaitlen’s 

method, variance explained by genome-wide SNPs (𝜎𝑔
2) was then estimated for each cellular 

trait. The Zaitlen modification provides joint estimates of 1) h2 based on pedigree relatedness and 

2) h2 based on inferred relatedness from genome-wide SNPs.  920 

While the standard error for SNP-based h2 estimates were quite large, we nonetheless observed 

very strong correlation between these estimates and the parent-offspring h2 estimates (see Figure 

1D). We estimated h2 based on the analysis of LCLs from all populations in H2P2 to increase the 

precision of our estimates by including more individuals. Although h2 is a population-specific 

parameter, h2 are often quite similar across different populations and even species (99). 925 

Nonetheless, we include estimates and standard errors for the combined analysis as well as 

individual populations in Table S2. 

Genome-wide association analysis 

Genome-wide association analysis was conducted with PLINK v1.9 (26).  Analysis was carried 

out using the QFAM-parents approach with adaptive permutation and a maximum of 109 930 

permutations. The QFAM procedures implemented in PLINK use linear regression to test for 

association while employing permutation of within- and between-family components separately 

to control for family structure (27). 

Enrichment analysis 
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Enrichment analyses were carried out using GARFIELD (50). GARFIELD has predefined a total 935 

of 1005 features from ENCODE and the NIH Roadmap project, and applies generalized linear 

regression models while accounting for the effects of linkage disequilibrium (LD), minor allele 

frequency, and local gene density. The GWAS summary statistics were used to quantify fold-

enrichment against predefined annotation features at different GWAS p-value thresholds.  

PheWAS Analysis 940 

Testing for association of H2P2 genome-wide hits with clinical phenotypes was performed with 

the eMERGE biobank dataset of 83,717 individuals from 12 contributing medical centers (1-4) 

with ICD-9 derived PheWAS codes (5, 6). A merged set of unified variant genotypes across 78 

batches of samples with different genotype platforms (e.g. various Illumina and Affymetrix 

arrays) was produced by imputation using the Michigan Imputation Server (MIS) with the 945 

HRC1.1 haplotype reference set (7-9). Sixteen variants were selected for PheWAS based on 

association in H2P2 and their inclusion in the imputed eMERGE biobank dataset. The PheWAS 

codes were defined by query of the ICD-9 electronic medical record datasets of the contributing 

medical centers. Two types of PheWAS code phenotypes were used in the association to 

ascertain more chronic versus singleton diagnoses: the minimum code count of one (mcc1) ICD-950 

9 code to define an individual as a PheWAS code case, and minimum code count of two (mcc2) 

instances to define an individual as a chronically represented case. In the mcc2 cases, individuals 

were excluded from analysis if they only had one instance of the ICD-9 code. If there were less 

than 500 cases we did not include the ICD-9 derived PheWAS code in analysis because it would 

likely be underpowered and impact the multiple testing correction. We also did not include 955 

medical centers that had low ascertainment of the ICD-9 by excluding medical centers which had 

less than 10 cases. This resulted in 1,338 for mcc1 and 788 for mcc2 phenotypes being included 
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in the analysis. We used the PLINK1.9 identity by descent genome file to find the set of 

unrelated individuals to bring forward for analysis. PheWAS association was implemented in the 

R glm() logistic regression of the case-control data and plotting was carried out using the 960 

PheWAS R package (5). The covariates of gender and the PLINK1.9 computed 1 and 2 principal 

components from the pruned (>5% minor allele frequency, genotype and sample missingness > 

0.1 and LD r-square<0.7.) genome wide imputation variant genotypes were included in the 

regressions. The p.adjust() R function with Bonferroni methods was used to adjust p-values of 

the tested PheWAS codes within a particular SNVs sets of tests for multiple comparisons. 965 

Bonferroni of less than 0.05 was used as a significance threshold. 

Colocalization analysis 

Colocalization analysis was performed using R “coloc” v2.3.1 package (available at http://cran.r-

project.org/web/packages/coloc). This software applies a Bayesian framework to estimate the 

posterior probability of genomic variants affecting both cellular trait and disease based on pre-970 

computed GWAS p values, odds ratios, and minor allele frequencies. We ran colocalization on a 

400-kb region centered on the focus SNP rs2869462 using default COLOC parameters 

(P1=P2=1x10-4; P12=1x10-5). Summary statistics of IBD GWAS (72) were obtained from 

www.ibdgenetics.org. 

Gene expression analysis on 1000 genome RNAseq project 975 

Gene expression data of 465 individuals (57) were obtained from the EBI website 

(https://www.ebi.ac.uk/Tools/geuvadis-das/). The rs2869462 genotype data was downloaded 

from the 1000 genome project (16). Effects of rs2869462 on CXCL10 gene expression were 

tested by linear regression on both combined populations and individual population.  

Descriptive statistics and visualization 980 
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Descriptive statistics were performed with GraphPad Prism 6 (GraphPad Software, US) and with 

R (92). QQ plots were plotted using quantile-quantile function in R. Regional Manhattan plot 

were made using LocusZoom (87). Circos v0.69 was used to visualize the shared SNPs among 

different groups. The size of each study or number of replicates, along with the statistical tests 

performed can be found in Figure Legends. All numerical data are presented as the mean ± SEM 985 

(standard error of mean). 

 

DATA AND SOFTWARE AVAILABILITY 

All H2P2 data is available for browsing and download at http://h2p2.oit.duke.edu 

The H2P2 application server is running Red Hat Enterprise Linux Server v7.4, Apache v2.4.6, 990 

Shiny Server v1.5.3.838, R v3.4.1, and Microsoft ODBC Driver 13 for SQL Server. 

Implemented R packages include shiny v1.0.3, RODBC v1.3-15, ggplot2 v2.2.1, d3heatmap 

v0.6.11, and DT v0.2.  The H2P2 database server is running MS Windows Server 2016 and MS 

SQL Server 2016. Large volume tables and indexes (2.5 billion GWAS observations and 8.5 

billion genotype observations) were partitioned for improved query performance. Parallelized 995 

query implementation was also used to improve performance.  
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Supplemental Information 

Table S1. Phenotype definitions and representative flow cytometry plots. 

Figure S1. Histograms of 79 H2P2 traits. For flow cytometric data, raw phenotype values are 

used. For cytokine data, concentrations are log2 transformed. 1000 

Figure S2. Repeatability of 79 H2P2 traits. Repeatability was calculated as the inter-individual 

component of variance from ANOVA of 3 measurements of LCLs taken on sequential cell 

passages. Phenotypes are color-coded by stimuli. All traits have significant repeatability (p<0.05 

marked by asterisk), except for three of the toxoplasma traits. 

Figure S3. Minimal correlation between EBV copy number and H2P2 traits. The regression 1005 

slopes of EBV copy number (from (46)) vs. the phenotypic values of each H2P2 trait 

(transformed into a Z-score and with population as a covariate) were determined. For all H2P2 

traits grouped by biological category, slopes were rank ordered and plotted with the 95% 

confidence interval. Only two traits (IL12P70_Chlamydia and S_typhi_3_5hr_median_GFP) had 

slopes that were significantly non-zero at a nominal p<0.05 threshold, and even for these traits, 1010 

EBV copy number accounted for only a small proportion of total variance (r2=0.028 and 0.025). 

Table S2. Linear regression of EBV copy number and H2P2 traits. 

Figure S4. Heritability of 79 H2P2 traits by parent-offspring regression. Individual plots for all 

H2P2 traits are shown with parent-offspring regression lines with (blue) and without (red) batch 

covariate. Estimated h2 and p-value for parent-offspring regression with batch covariate are listed 1015 

on each plot.  
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Table S3. Heritability of 79 H2P2 traits by parent-offspring regression and SNP-based 

heritability. 

Figure S5. QQ plots of 79 H2P2 traits. All SNPs with MAF > 5% are shown. 

Figure S6. Association of rs2869462 with CXCL10 mRNA. rs2869462 is associated with 1020 

expression of the CXCL10 mRNA (p=7x10-7) from the RNAseq data in (57)) in the same 

direction as the H2P2 CXCL10 protein data. 

Table S4. COLOC analysis of the CXCL10 region. 

Table S5. eMERGE PheWAS results for 16 H2P2 hits. All eMERGE phenotypes with 

Bonferroni corrected p < 0.05 are shown. 1025 
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