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Abstract

Gene expression is controlled by networks of transcription factors and regu-
lators, but the structure of these networks is as yet poorly understood and
is thus inferred from data. Recent work has shown the efficacy of informa-

tion theoretical approaches fornetwork reconstruction fromsingle cell transcrip-
tomicdata. Suchmethodsuse information toestimatedependencebetweenevery
pair of genes in the dataset, then edges are inferred between top-scoring pairs.
Dependence, however, does not indicate significance, and the definition of “top-
scoring” is often arbitrary and a priori related to expected network size. This
makes comparing networks across datasets difficult, because networks of a simi-
lar size are not necessarily similarly accurate. We present a method for perform-
ing formal hypothesis tests on putative network edges derived from information
theory, bringing together empirical Bayes and work on theoretical null distribu-
tions for informationmeasures. ThresholdingbasedonempiricalBayesallowsus
to control networkaccuracyaccording tohowwe intend touse thenetwork. Using
single cell data frommousepluripotent stemcells,we recoverknown interactions
and suggest several new interactions for experimental validation (using a strin-
gent threshold) and discover high-level interactions between sub-networks (us-
ing a more relaxed threshold). Furthermore, our method allows for the inclusion
of prior information. We use in-silico data to show that even relatively poor qual-
ity prior information can increase the accuracy of a network, and demonstrate
that the accuracy of networks inferred from single cell data can sometimes be im-
proved by priors from population-level ChIP-Seq and qPCR data.

Introduction

In all organisms gene expression appears to be carefully controlled. Such control is
achieved by networks of transcription factors and a whole host of regulators (Trapnell
et al., 2014; Gouti et al., 2015; Göttgens, 2015). These act in concert to determine when
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Figure 1: Using data, e.g. from single cell qPCR or RNA-seq, and any available prior information, our ap-
proach uses the Empirical Bayes local False Discovery Rate (FDR) to infer edges (i.e. statical de-
pendencies that could signal potential functional relationships) among sets of genes.

— and in higher organisms, also where — genes are turned on or off. The processes of
gene expression, together with those of degradation, activation, and, where relevant,
transport, determine the abundance and activity of proteins inside cells.

The nature and structure of these networks is only incompletely understood (Young
et al., 2014; Huang and Zi, 2014). Even for the most studied model organisms we only
have outlines and rough representations of these networks. For higher organisms, we
are becoming ever more aware how inadequate the simple network models of the past
are: regulation is a dynamical, and furthermore dynamically controlled process involv-
ing a large number of different components, that together orchestrate gene expression.

Technological advances notwithstanding, full elucidation of these extensive and com-
plex networks using principled and comprehensive experimental analysis will remain
impossible for the foreseeable future. Insteadwe require a combination of experiments
and statistical inference to tackle this problem. Statistical inference in this context is
primarily concernedwith the detection of potential candidate relationships between, for
example, gene expressionmeasurements (here typically quantitativemeasurements of
mRNA) of different genes. These may indicate the existence of either regulatory inter-
actions (between a regulatory controller, e.g. a transcription factor, and a target), or
co-regulatory interactions (where two targets are controlled by the same transcription
factor).

Biological network inference has been an active field for as long as high-throughput
experimental technologies have been available (Penfold and Wild, 2011; Penfold et al.,
2015; Bonneau et al., 2006; Villaverde et al., 2013; Vinciotti et al., 2016), and the recent
advent of single cell transcriptomic data has given rise to a resurgence (Babtie et al.,
2017). Despite this, the different techniques (and, indeed, combinations of approaches
(Marbach et al., 2012; Villaverde et al., 2015)) have typically only been applied to the
current data at hand, without paying attention to any available prior knowledge such as
previously inferred network models. Thus the effort has largely been on making best
use of the available data, but scant attention has been given to available background
information; some notable exceptions exist (Mukherjee and Speed, 2008; Olsen et al.,
2014; Studham et al., 2014).

Information theoretical (IT) approacheshavegainedprominenceas tools fornetwork re-
construction complementing an array of other approaches from statistics and control
engineering (Krishnaswamy et al., 2014; Zhao et al., 2016; Villaverde et al., 2016; Chan

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2018. ; https://doi.org/10.1101/264853doi: bioRxiv preprint 

https://doi.org/10.1101/264853
http://creativecommons.org/licenses/by/4.0/


3

et al., 2017). Theymakeminimal assumptions; have desirable statistical properties (es-
pecially in situationswhere different scenarios should be a prioriweighted equally prob-
able) (Cover andThomas, 2012;McMahonet al., 2014;KinneyandAtwal, 2014); and they
seem to be particularly promising for many applications inmolecular and cellular biol-
ogy, where noise and potential non-linearities are expected to be pervasive (Mc Mahon
et al., 2015; Uda et al., 2013). Current single cell transcriptomic data challenge many
of the existing network reconstruction approaches due to technical and biological het-
erogeneity (as reviewed elsewhere (Babtie et al., 2017)). Recent applications, e.g. in the
context of gene regulatory network reconstruction, are beginning to suggest that the in-
formation theoretical framework is ideal for dealingwith single cell transcriptomic data
(Chan et al., 2017). But it has been notoriously difficult to standardize the interpretation
of these information theoreticalmeasures, since they depend on the size and treatment
of the dataset and hence vary widely between studies (Altay and Emmert-Streib, 2010;
Chan et al., 2017).

Herewe attempt to address this problem: we showhow it is possible to employ an empir-
ical Bayes (EB) approach in the statistical interpretation of information theoretical mea-
sures in the context of network inference. This has two advantages: first, we can apply
formal hypothesis testing/model selection criteria in order to determine significant re-
lationships; and second, we can introduce a post hoc adjustment to the EB prior in order
to incorporate any available prior information (fig. 1).

Below we introduce information theoretical measures used in network inference, be-
fore outlining the EB framework, and our testing and evaluation procedure. The advan-
tages of the EB+IT approach become clear in applications to simulated (where we know
the truenetwork) and real data: wefind thatwe can control the accuracy of ournetworks
according to the use case. Supplementing experimental datawith available background
information can improve the performance of network inference compared to the case
whereonly thedata inhandareconsidered, andwewill provide somequantitativeguide-
lines as to how reliable prior informationhas to be in order tomake apositive difference.
Interestingly, we find that single cell data are so informative – and higher-order infor-
mation theoretic measures sufficiently powerful – that the best results are sometimes
gained using single cell data alone.

Information Measures for Network Reconstruction

Themutual information (Kraskov et al., 2004; Steuer et al., 2002) captures the decrease in
the uncertainty about random variable (RV), X, if the state of RV Y is known (or vice versa
as I(X;Y) = I(Y;X)),

I(X;Y) = H(X)− H(X|Y) = H(X) + H(Y)− H(X,Y), (1)

whereH(X)andH(X|Y)denote the entropyof randomvariableX, and the conditional entropy
of X given the state of Y, respectively. I(X;Y) is the generic measure to detect statistical
dependencies between pairs of random variables (e.g. expression levels of genes).

Going beyond pairwise measures of information has proved difficult, but recently the
partial information decomposition (PID), and related measures have shown considerable
promise (Chan et al., 2017;Williams and Beer, 2010). Thesemeasures dissect the statis-
tical dependence between a target RV, e.g. Z, and a set, S, of explanatory variables, e.g.
S = {X,Y}, which can help with filtering out indirect and spurious interactions.

PID is defined as (Williams and Beer, 2010)

I(Z;X,Y) = Synergy(Z;X,Y) +UniqueY(Z;X) +UniqueX(Z;Y) + Redundancy(Z;X,Y),
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where I(Z;X) = UniqueY(Z;X) + Redundancy(Z;X,Y); with the specific information, as
defined byWilliams and Beer (Williams and Beer, 2010),

Ispec(z;X) =
∑
x∈X

p(x|z)
[
log2

1

p(z)
− log2

1

p(z|x)

]
. (2)

We can write for the different terms in (),

Redundancy:
Redundancy(Z;X,Y) =

∑
z∈Z

p(z)min
S

Ispec(z; S).

Unique:
UniqueY(Z;X) = I(X;Z)− Redundancy(Z;X,Y)

Synergy:
Synergy(Z;X,Y) = I(X;Y|Z)− I(X;Y) + Redundancy(Z;X,Y).

The proportional unique contribution (PUC) between two nodes X and Z is the sum of the
ratio of unique information to mutual information, calculated over every other node Y
in a network (where S is the complete set of nodes) (Chan et al., 2017),

uX,Z =
∑

Y∈S\{X,Z}

UniqueY(X;Z)
I(X;Z)

+
∑

Y∈S\{X,Z}

UniqueY(Z;X)
I(X;Z)

;

and it forms a promising and powerful way of assessing the relative weight in favor of
an interaction between RVs X and Z.

MI, PUC, and similar quantities give continuous measures for the statistical dependen-
cies between pairs of nodes in a network. Their interpretation is oftenmade difficult by
the fact that thesemeasures are not normalized; nor are they easily linked to statistical
significance of edges. Instead heuristics or arbitrary thresholds are used to score edges.
A further shortcoming is that this framework does not cater for the inclusion of any a pri-
ori knowledge (including indirect evidence for the existence) of edges: all that is taken
into account is the available data, which although increasingly this may seem plentiful,
potentially ignores much of what is already known. Here we use the EB framework to
address these problems.

An Empirical Bayes Framework for Information Theoreti-
cal Network Reconstruction

With the increased availability of high-throughput data, it is not uncommon to test hun-
dreds or thousands of hypotheses at once, be it in gene expression analysis or GWAS
studies. Hypothesis testing relies on the formulation of a meaningful null distribution,
but for many complicated problems these may be hard to come by. Even when we can
come up with plausible null hypotheses and distributions, the distribution of the ob-
served test statistics can deviate from the theoretical null, even when it is expected
that the null hypothesis is true in the vast majority (e.g. over 90%) of cases. Such de-
viations can be explained (for example, unobserved covariates may lead to overdisper-
sion (Efron, 2004)), but if ignoredmay lead to incorrect interpretations of significance.

EB provides a framework for large-scale simultaneous hypothesis testing, in which an
empirical null distribution is derived from the observed test statistics, under the as-
sumption that non-null cases are rare. Network inference can be viewed as such a prob-
lem: for every pair of genes in the dataset, we have a null hypothesis that there is no
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interaction (i.e. that vectors of their expression across the cells are statistically indepen-
dent). Thus, for a dataset of n genes, we have

(n
2

)
hypotheses, and from the knowledge

that we do have about gene regulatory networks (Marbach et al., 2012), we expect the
null hypothesis to hold for the vast majority of pairs.

We followEfron’s approach (Efron et al., 2003; Efron, 2007) anddetermine the local false
discovery rate (FDR), fdr(x), where x here denotes the measures of interest (i.e. either
the MI or PUC). Values of x are drawn from a two component mixture model,

f(x) = π0f0(x) + π1f1(x), (3)

where f0(x) and f1(x) denote the probability densities corresponding to the null and non-
nullmodels, respectively (Efron, 2004). In the present context, to be concrete, all values
corresponding to non-interacting/dependent pairs of nodes are assumed to be drawn
from a probability model with associated density, f0.

We seek to determine the local FDR,

fdr(x′) = Pr[there is no edge between nodes i and j|xij = x′].

This probability is given, for N observations as π0f0(x′)/f(x′), which leaves us with the
problems of estimating the null, f0(x), and empirical, f(x), densities. Even for medium-
sized networks the size of the available IT estimates is sufficiently large for us to esti-
mate these densities from the data (see the following section for details). These are, of
course, not statistically independent, but the expectations of the estimates depend only
weakly on such correlations in the data; the sampling variance, by contrast, can vary
considerably due to the presence of correlations (Efron, 2008).

This yields the estimate

f̂dr(x′) = π0
f̂0(x′)
f̂(x′)

, (4)

and the p-value
p = 1− f̂dr(x′). (5)

Note that p indicates the fraction of tests with MI (or PUC) x′ expected not to be false
discoveries.

Estimation of Empirical Bayes Distributions

In large-scale hypothesis testing the observed null distribution often diverges from the
theoretical null; hence it is often appropriate to use a null of the correct theoretical form,
with empirically-derived parameters (Efron, 2004). Even determining the appropriate
theoretical null model for informationmeasures is problematic, however.

It has been shown that the MI between independent random variables is gamma dis-
tributed (Goebel et al., 2005), and our simulations support this (fig. 2). The theoretical
null of PUC has not previously been characterized, but following arguments e.g. in (Hut-
ter, 2002) we find it can satisfactorily be approximated by a normal distribution (fig. 2).

We estimate empirical null distributions of MI and PUC using a regression-basedmode-
matching method outlined by (Efron, 2007) and extended for the exponential family
by (Schwartzman, 2008). The method relies on the zero-assumption, that within a cer-
tain interval around themode the contribution of f1(x) is negligible; a density is fitted to
a histogram of the MI (or PUC) scores falling within this interval. The zero-assumption
interval and width of histogram bins must be chosen; we find that the method is fairly
robust to both andmore reliable than permutation and direct fitting methods (fig. S1).

We estimate the mixture density, f(x), by fitting a cubic smoothing spline to the full set
of MI or PUC scores (Efron, 2004).
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Figure 2: Distribution of MI and PUC for all pairs from a randomly generated dataset with 100 genes and
1000 cells. The gene expression measurements are independent and normally distributed, and
discretized using the Bayesian blocks algorithm. The lines show the null distributions fit by mode-
matching, using all of the data, since it is all expected to be null-distributed.

InformationTheoreticalNetwork InferenceusingPrior In-
formation

The mixture weights, or prior probabilities π0 and π1 = 1 − π0, have thus far been left
unspecified. They represent our prior belief that any pair of genes in the network are
unconnected or connected, respectively. We can (i) estimate these from the data (how-
ever, mode-matching methods tend to overestimate π0 (Efron, 2004)); (ii) set π0 = 0.9
(a good approximation, e.g. for biological networks which tend to be sparse, and our
default here, unless otherwise stated); or (iii) specify them from prior information.

Prior information, as described below (and elsewhere), comes in different forms, and
ranges fromspecific informationaboutpairwise interactions to informationaboutglobal
network characteristics (which in turn range from the expected number of edges in a
network, to large scale hierarchical organization). π0 and π1 specify our prior belief
about network sparsity, a global characteristic; however, with gene regulatory networks,
we often have information about specific pairwise interactions (for example, we may
know a particular transcription factor can bind to a particular target, in which case we
may only require a weaker dependency in our transcriptomic data to infer an edge).

Unlike for conventional Bayesian inference, there is currently no straightforwardmech-
anism within the empirical Bayes framework for incorporating such specific priors, so
insteadwe introduce a post hoc adjustment to π0. For each potential edge eij wemay have
different typesofprior information,withdifferentdegreesof confidence,ω(1)

ij ,ω
(2)
ij , . . . ,ω

(κ)
ij .

We can combine these, while simultaneously maintaining proper normalization, via

π0 =
exp(ω0)

exp(ω0) + exp
(∑κ

k=1 ω
(k)
ij

) (6)

where ω0 does not depend on the particular edge; we find this functional form conve-
nient and flexible, but this is not the only possible way of fusing different sources of
prior information. With Eq. (6) we thus have for any candidate edge for which there is
neither prior information for or against its presence,

π0 =
exp(ω0)

exp(ω0) + 1
.

For most cases π0 is determined by the value of ω0, which we set to 2.2 to give π0 = 0.9
(fig. S2).
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In silico networks

Data

Wegeneratedsimulateddatasetsusingasingle-cell adaptationof thewidely-usedbench-
marking toolGeneNetWeaver (Schaffter et al., 2011) as previously described (Chanet al.,
2017). We simulated transcriptomic data for six networks with varying sparsity from S.
cerevisiae, three with 50 genes and three with 100 genes (described in detail in (Chan
et al., 2017)). Each dataset corresponds to 21 sample times and 2100 cells in total.

Inferring Networks & Evaluation

The MI and PUC algorithms assign a score to all possible pairwise edges among a set of
nodes, which are then transformedusingEq. 4 and5. Theoutput is a list of edges ranked
frommost likely to least likely to exist (as predicted by EB+IT).

We evaluate the accuracy of our ranked lists using the area under the precision-recall
curve (AUPR), an appropriate measure for unbalanced binary classification problems
such as network inference (Marbach et al., 2012). Higher AUPR scores correlate to bet-
ter rankings, with more of the true edges ranked higher than false edges. To evaluate
the performance for a particular network (instead of a ranked list), we calculate the pre-
cision, i.e. the proportion of predicted edges that are present in the true network.

Significance testing

Creating a candidate network from a ranked list of information scores is problematic,
because there is no formal framework for significance testing in an information theo-
retic context. A commonly-used thresholding method for information-based network
inference is to include only the top n% of edges (Marbach et al., 2012; Chan et al., 2017).
Since networks vary in connectivity, however, the most appropriate n is likely to differ
between networks (e.g. in different organisms, or even cell-types); it is difficult to con-
trol network accuracy across studies using such a blunt approach. EB+IT seeks to allevi-
ate this issue by assigning to each edge a p-value obtained from large-scale hypothesis
testing. This exploits the information available in the data more fully, and allows us to
obtain more consistent criteria by which to decide whether an edge is present or not.
Among other things, this also provides some insight into the density or connectedness
of a GRN (which is impossible if fixed fractions of edges are considered).

Figure 3 compares the spread in precision across different networks, varying the em-
pirical Bayes threshold for including an edge in the network. Precision varies more
predictably across networks and across algorithms when empirical Bayes is used, com-
pared to keeping the top n%.

Prior information

Since in the simulations the true networks are known, we can construct priors of known
accuracy to test the effects of prior information. Our priors take the form of 1/0 values
indicating the presence or absence of an edge. This set of values is generated using the
methods mentioned in (Wang et al., 2013), taking some proportion, q, of random edges
from the true network and then adding random incorrect edges tomake a prior network
of predetermined size. For example, a prior networkwith 100 edges and q = 0.3 consists
of 30 true edges and 70 incorrect edges.
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Figure 3: Variation in the precision of inferred networks across the six simulated datasets and the two in-
ference algorithms, when using empirical Bayes thresholds (left) and the top n% of edges (right).
Precision is more consistent across different networks when the empirical Bayes score is used.

Figure 4: MeanAUPRacross the simulated datasets when priors of varying knownprecision are used. Dashed
horizontal lines indicate mean AUPR with no priors, for comparison.

Figure 4 shows how AUPR varies with prior quality. Even relatively poor priors can im-
prove the inference results, but very poor priors can worsen them. Without any prior
information, PUC’s inferences are more accurate than those based on MI (and, corre-
spondingly, prior information needs to be of a higher quality to improve PUC than MI
networks).

Biological pluripotency networks

Data

Weuse single-cell transcriptiondata frommousepluripotent stemcells (PSCs) undergo-
ingneural differentiation (Stumpf et al., 2017). PSCswere initially grown in fully defined
conditions (2i) and differentiation was stimulated by growth in N2B27media. 508 cells
were quantified in total across 6 different time points for 168 hours.
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Evaluation

The difficulty with assessing the quality of a GRN inferred from experimental data is
that we do not know the ground truth network; instead we rely on expert knowledge to
assess plausibility of the inferred network. Current knowledge of GRNs is, of course,
incomplete; nevertheless we have a set of observations and expectations that we can
use to assess the inferred networks.

Weknow, for example, that biological networks are hierarchical andmodular; we expect
that a large fraction of interactions will be between nodes within the same module; we
also knowwhich genes should belong to the samemodule; andwehave a good idea as to
whichmodules are important in a given cell type or at a given developmental or physio-
logical stage. An inferred network which does not capture these hallmarks of biological
network organization must be viewed with suspicion. And we can use this indirect ev-
idence together with the ability to detect known interactions to judge the quality of an
inferred network.

Wemeasure the ability of an inferrednetwork to recover our knowledgeof gene function
using network assortativity (Newman, 2003). Briefly, if we associate each genewith a la-
bel (herewe use the functional labels thatwere published alongside the original dataset,
e.g. naive pluripotency, neuroectoderm), assortativity measures the extent to which
nodes with the same label preferentially connect to each other, on a scale of -1 to 1,
where 0 indicates no preference and 1 indicates that all edges connect similarly-labeled
nodes. Assortativity also assigns a score to each label group, offering insight into which
functional sub-networks arewell-connected and also higher-level interactions between
functional groups.

Since assortativity is influenced by network topology, (Bianconi et al., 2009) we also cal-
culate the assortativity of 100 random graphs generated from each network using con-
figurationmodels (Thorne and Stumpf, 2007) to determine whether the assortativity of
the inferred network is higher than expected.

Significance testing

In order to test the use of EB+IT for controlling the accuracy of networks inferred from
experimental data, we inferred networks from the PSC data and calculated the assorta-
tivity, as the threshold for accepting an edge in the network was varied. Null distribu-
tions fit reasonablywell forMI andPUC (fig. 5A). In agreementwith the in siliconetworks,
accuracy tends to increase as the threshold becomes more stringent with both MI and
PUC, and accuracy is higher in general in the PUC networks (fig. 5B).

We consider three PUC networks with thresholds of 0.9, 0.95 and 0.99 (for MI networks
see fig. 6). The network with the highest threshold has an assortativity of 1.0, involving
core pluripotency and naive pluripotency genes. We detect experimentally validated
direct interactions, including Pou5f1-Fgf4 andEsrrb-Nr0b1, aswell as new interactions
that are strong candidates for future experimentation. However, with a 0.99 threshold
there are very few edges. Reducing the threshold to 0.95 yields a larger network that
captures the extensive interaction amongnaivepluripotency components in addition to
genes involved in chromatinmodulation (fig. 5B andC). Assortativity is lower, reflecting
expected interactions between primed pluripotency and signalling, and, presumably,
the lower FDR. These effects continue further at a threshold of 0.9 and now there is a
strong chromatin modulation sub-network (fig. 5C).
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Figure 5: Application of EB+IT to PSC data. (A) Null and mixture distributions fitted to MI and PUC scores
from the PSC data, and corresponding FDRs. A gamma distribution was fit to the MI scores and
a normal distribution to the PUC scores, discretized into 20 bins and 15 bins respectively, using
the lowest 90% for both scores. (B) Assortativity of PSC networks based on different empirical Bayes
thresholds, usingMI (orange) andPUC (blue). (C) Features of networks obtained fromPSCs using the
PUCmeasure, at empirical Bayes thresholds of 0.9, 0.95 and0.99. Heat-maps show the assortativity
of each network by group. Histograms show the distribution of assortativity when each network is
randomly reconfigured 100 times using random configuration models (red lines indicate the assor-
tativity of the inferred network). Network plots show connectivity between functional groups, with
node color indicating function label and darker edges between similarly-labeled nodes.
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Prior information

Weconsidered two typesofprior information: population transcriptomicdataproduced
alongside the single cell data (Stumpf et al., 2017), and protein-gene promoter binding
interactions from the ESCAPE andCODEXdatabases, collated fromchromatin immuno-
precipitation (ChIP-chip/seq) studies (Xu et al., 2013; Sánchez-Castillo et al., 2014). The
ChIP priors provide information for and against pairwise interactions, scored 1 and -1
respectively. Data are limited to the proteins tested thus far in PSCs and as such most
interactions were untested; these were given a score of 0. Population networks were
ranked lists, as discussed above, so we scored the top 5% of interactions 1, the lowest
5% -1, and the rest 0. Different prior weights were tested (see also fig. S2).

None of the priors appear to improve networks inferred using PUC (fig. 6A and B), and
theChIPpriorswithhigherweights in factworsenperformance according to the criteria
set out above. There is more room for improvement with the MI networks, however; for
example, assortativity increases over the highest thresholds when low-medium weight
ChIP priors are used (fig. 6A), though at the cost of lower assortativity at lower thresh-
olds. A marginal improvement over most thresholds can be gained using high-weight
population transcriptomicpriors (fig. 6B), andbycombining thesewith low-weightChIP
priors (fig. 6C).

We do not know the precision of prior information gained from experimental data; how-
ever, these results suggest that, according to our metrics, single cell data are more in-
formative of functional relationships at a cellular level between genes than population
transcriptomic or ChIP data (see also fig. S3). The slight improvement seen in the MI
networks when prior information is used (albeit when carefully weighted) suggests that
these types of experiments offer some useful information about the behavior of func-
tional relationships that cannot bediscoveredbyMI in single cell data. MI finds the chro-
matinmodulation network but fails to discovermuch of the naive pluripotency network
until the ChIP priors – which are primarily sourced from ChIP experiments of pluripo-
tency transcription factors – are used (fig. 6D). On the other hand, the PUCmeasure ap-
pears to be sufficiently powerful to recover this information from single cell data alone:
it discovers the naive pluripotency and chromatin modulation networks without prior
information, and using prior information either has no impact or is detrimental to net-
work quality.

Discussion

Here, we have introduced EB+IT, a method for applying formal large-scale hypothesis
testing to information theoretic network inference, which also allows prior informa-
tion about specific edges to be incorporated. Using in silico test cases, we show that
EB+IT provides greater consistency in accuracy between networks inferred from dif-
ferent datasets, compared to the traditional approach of taking an arbitrary percentage
of the highest scoring edges (fig. 3), and we offer guidance for when prior information
might behelpful (fig. 4 and6). Wedemonstrate theseprinciples in abiological setting by
inferring and analyzing networks from single cell transcriptomic data fromdifferentiat-
ingmouse pluripotent stem cells; using EB+IT to control network accuracy, we propose
a small number of candidate gene regulatory relationships, and discover higher-level
interactions between sub-networks (fig. 5).

Several recent studies have inferred networks from single cell transcriptomic data, of-
ten as part of a wider analysis. These networks are inferred for a variety of purposes,
including some that require a high edge confidence, such as identifying direct relation-
ships for experimental validation (Moignard et al., 2013) and inferring detailed mech-
anistic models for making simulation-based predictions (Moignard et al., 2015; Mat-
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Figure 6: The effect of prior information on networks inferred from PSC data. Assortativity as threshold is
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show assortativity when no priors are used. (D) Networks inferred using MI at an empirical Bayes
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network histograms and assortativity heat-maps.
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sumoto et al., 2017). Others examine the higher-level structural properties of the net-
work and can therefore tolerate individual edge inaccuracies, such as supporting evi-
dence of different cell states identified through clustering (using either global network
connectivity (Pina et al., 2015) or the connectivity between groups of genes with known
functions (Moignard et al., 2013; Stumpf et al., 2017)) and hypothesizing about particu-
lar genes’ rolesbasedon theirnodecharacteristicswithin thenetworkstructure (Stumpf
et al., 2017). With no mechanism for controlling network accuracy, it is difficult to use
information-theory derived networks for purposes that require a high confidence (with-
out making assumptions about the expected number of significant edges), and impos-
sible to examine properties such as changes in global network activity (as in (Pina et al.,
2015)), since the number of regulatory interactions is defined arbitrarily a priori.

Although single-cell data pose considerable challenges in the form of both technical
noise and biological confounding factors (e.g. transcription stochasticity, population
heterogeneity, cell cycle influences, etc.), they potentially offer a number of advantages
over population-level datasets; these include larger sample sizes, and insights from
(and into the potential causes of) cell-to-cell variability (Munsky et al., 2009). Here we
find that single cell data are on balancemore informative about the interactivity of func-
tionally relatedgenegroups thanpopulation-level transcriptomicorChIP-chip/seqdata
(fig. 5 and S3). Using EB+IT we improve MI networks using ChIP-chip/seq priors, but
find that PUC infers evenmoreaccuratenetworks fromsingle cell data alone, suggesting
that there are useful statistical signals within these noisy datasets that can be detected
with sufficiently powerfulmethods. While this is encouraging for future single cell stud-
ies, we are unlikely to gain a full understanding of gene regulatory networks using only
transcriptomic data (invariant or rapidly fluctuating relationships are not expected to
be captured in this way, for example), so an interesting prospect is the development of
single cell ChIP-seq techniques (Rotem et al., 2015) and similar developments in single
cell epigenomics (Clark et al., 2016); it is conceivable that such experiments could pro-
vide informative priors even for PUC-based network inference.

When inferring a network from a new single cell dataset for purposes that require ac-
curacy to be controlled, we advise using EB+IT with the more powerful PUC algorithm.
The most appropriate threshold will depend on the use-case, but we find that higher-
level network structures become apparent when using a threshold of 0.9. In some cases
it will be more appropriate to use MI; for example, when inferring a very large network
(on the scale of several thousands of genes), PUC will become noticeably slower due to
its cubic complexity. Although we would expect MI networks to be less accurate, we
might be able to improve them using appropriate prior information. Here, we found
ChIP-chip/seq priors offered more of an improvement than network priors based on
population transcriptomic measurements, perhaps because of the complementary na-
ture of ChIP and single cell data (whereas population and single cell transcriptomic data
would be subjected to many of the same biases and limitations). We note that these pri-
ors, although they improve MI networks at low-medium weights, can become mislead-
ing or detrimental when weighted too highly. We further note that low-weighted priors
tend to do no harm in general (fig. 6A and B); hence we advise using low prior weights,
and if several separate sources agree on the same interaction, then the weight will in-
crease accordingly due to Eq. 6.

There is a need for statistical methods that can fully exploit the larger, more complex
datasets produced by ever-improving experimental technologies. PUC and the related
PIDC algorithms analyzing single cell transcriptomic data are examples of this (Chan
et al., 2017; Stumpf et al., 2017). EB+IT enables a more intelligent, controlled approach
to biological network inference frommultiple sources of data, bringing together recent
work inmultivariate information theory, empirical null estimation, and large-scale em-
pirical hypothesis testing. Our open-source software package EmpiricalBayes.jl imple-
menting this approach is available, along with instructions and test data, from https:
//github.com/ananth-pallaseni/EmpiricalBayes.jl.
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Availability of data andmaterials

The EmpiricalBayes.jl package is available from
https://github.com/ananth-pallaseni/EmpiricalBayes.jl.

A Julia package for running the PUC and MI algorithms is available from
https://github.com/Tchanders/NetworkInference.jl.

Network inference tutorials and simulated datasets are available from
https://github.com/Tchanders/network_inference_tutorials.
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Figure S1: The effect of the number of bins and the zero-assumption interval on empirical null estimates for
MI. We generated random test statistics using the mixture model in Eq. 3, assuming a gamma dis-
tribution for f0(x) and a normal distribution for f1(x), with π0 = 0.9 and π1 = 0.1, with varying
degrees of overlapbetween thedistributions (line plots, left). We thenusedourmode-matching soft-
ware to infer shape and scale parameters for f0(x) (true parameters were α = 13 and θ = 0.03
respectively). Errors are shown with (i) the number of bins and assumption interval varying to-
gether (heat-maps), (ii) the zero-assumption interval fixed at the lowest 90% of test statistics, and
(iii) the number of bins fixed at 15 (line plots, right). Errors are on the whole small, except when
the zero assumption is violated (i.e. the zero-assumption interval is too large).
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Figure S2: The effect of prior informationweighting on π0 can be controlled by the choice ofω0 (Eq. 6). Priors
for different sources can be weighted according to our confidence in the type of experiment. Here
we takeω0 = 2.2, yieldingπ0 = 0.9 in the absence of edge-specific prior information, andmeaning
that prior information in favor of an interaction (weighted positively) can have a greater impact
than prior information against an interaction (weighted negatively). This is appropriate since our
prior belief in general is that the network is sparse, and any given potential edge is more likely not
to be present. For comparison, taking ω0 = 0.0 would result in π0 = 0.5 by default, and prior
information could have an equally large impact either way.
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Figure S3: Prior networks using (A) the top 5% of edges from a network inferred using the PIDC algorithm
from the population data (top 1% shown for easier comparison with single cell networks in fig. 5
and 6, right), and (B) protein-gene promoter binding interactions from the ESCAPE and CODEX
databases. Assortativity of the three networks is 0.07 (population, top 5%), 0.06 (population, top
1%) and -0.07 (protein-gene promoter binding).
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