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Abstract 277 

Anorexia nervosa (AN) is a complex and serious eating disorder, occurring in ~1% of individuals. 278 

Despite having the highest mortality rate of any psychiatric disorder, little is known about the 279 

aetiology of AN, and few effective treatments exist. 280 

 281 

Global efforts to collect large sample sizes of individuals with AN have been highly successful, 282 

and a recent study consequently identified the first genome-wide significant locus involved in 283 

AN. This result, coupled with other recent studies and epidemiological evidence, suggest that 284 

previous characterizations of AN as a purely psychiatric disorder are over-simplified. Rather, 285 

both neurological  and metabolic pathways may also be involved.  286 

 287 

In order to elucidate more of the system-specific aetiology of AN, we applied transcriptomic 288 

imputation methods to 3,495 cases and 10,982 controls, collected by the Eating Disorders 289 

Working Group of the Psychiatric Genomics Consortium (PGC-ED). Transcriptomic Imputation 290 

(TI) methods approaches use machine-learning methods to impute tissue-specific gene 291 

expression from large genotype data using curated eQTL reference panels. These offer an 292 

exciting opportunity to compare gene associations across neurological and metabolic tissues. 293 

Here, we applied CommonMind Consortium (CMC) and GTEx-derived gene expression 294 

prediction models for 13 brain tissues and 12 tissues with potential metabolic involvement 295 

(adipose, adrenal gland, 2 colon, 3 esophagus, liver, pancreas, small intestine, spleen, stomach).  296 

 297 

We identified 35 significant gene-tissue associations within the large chromosome 12 region 298 

described in the recent PGC-ED GWAS. We applied forward stepwise conditional analyses and 299 

FINEMAP to associations within this locus to identify putatively causal signals. We identified 300 

four independently associated genes; RPS26, C12orf49, SUOX, and RDH16. We also identified 301 

two further genome-wide significant gene-tissue associations, both in brain tissues; REEP5, in 302 

the dorso-lateral pre-frontal cortex (DLPFC; p=8.52x10
-07

), and CUL3, in the caudate basal 303 

ganglia (p=1.8x10
-06

). These genes are significantly enriched for associations with 304 

anthropometric phenotypes in the UK BioBank, as well as multiple psychiatric, addiction, and 305 
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appetite/satiety pathways. Our results support a model of AN risk influenced by both metabolic 306 

and psychiatric factors.   307 
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Introduction 308 

Anorexia nervosa (AN) is a serious neuropsychiatric disorder presenting with low body weight, a 309 

fear of weight gain or behaviours that interfere with weight gain, and a lack of recognition of 310 

the seriousness of the illness. AN has the highest mortality rate of any psychiatric disorder
1
, and 311 

ranks among the leading cause of disability in young women worldwide. Despite this, little is 312 

known about the biological mechanisms underlying AN development, and few effective 313 

therapies and medications are available.  314 

 315 

Findings from genetic and epidemiological research have encouraged broadening our 316 

conceptualization of the aetiology of AN beyond purely psychiatric causes to incorporate 317 

metabolic and other somatic factors in risk models. Recently, genome-wide association studies 318 

have revealed the first significantly associated genomic locus for anorexia nervosa
2
, as well as a 319 

number of promising sub-threshold associations
3–5

, and intriguing pathway associations. Results 320 

have implicated genes with both psychiatric and metabolic relevance, while polygenic risk score 321 

analyses and LD-Score approaches have revealed significant genetic overlap with psychiatric, 322 

metabolic and autoimmune diseases, as well as anthropometric traits.  323 

 324 

The research findings underscore clinical observations as individuals with AN have an uncanny 325 

ability to reach and maintain extraordinarily low body mass indices (BMI) and after successful 326 

renourishment, their bodies often quickly revert to what may be an abnormally low set point
2
. 327 

Other observations include that individuals with AN tend to find eating aversive, and feelings of 328 

fullness unpleasant; dieting, restricting, and binge-purge behaviours tend to alleviate 329 

uncomfortable or painful associations with fullness in these individuals and reduce anxiety
6
. 330 

Although aversion to fullness and low appetite could be driven by dysfunction of 331 

neurobiological satiety pathways or altered levels of orexigenic hormones
7
, it is also possible 332 

that specific metabolic or gastric dysfunction enables and perpetuates dieting behaviours.  333 

 334 

Transcriptomic Imputation (TI) provides an opportunity to test the involvement of metabolic, 335 

endocrine, adipose, and gastrointestinal (GI) tissues, as well as brain tissues, in the 336 
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development of AN. These approaches leverage well curated eQTL panels to create predictors 337 

of genetically regulated gene expression (GREX)
8–10

. These predictors may be applied to large 338 

groups of genotyped individuals, to identify case-control associations with predicted differential 339 

gene expression. This approach circumvents many of the complications inherent in traditional 340 

transcriptomic analysis; for example, the need to collect large number of inaccessible tissues, 341 

which is particularly complicated in studies of early-onset psychiatric disorders
11

. Further, the 342 

prediction of genetically-regulated gene expression means that there is no ambiguity in 343 

direction of effect; unlike in RNA-seq studies, where changes in gene expression may result 344 

from medication, diet, exercise, or environmental exposures, genetically regulated gene 345 

expression necessarily precedes disease onset
8
.  346 

 347 

An intriguing aspect of transcriptomic imputation is the opportunity to calculate predicted gene 348 

expression in a tissue-specific manner, and to use this to further inform our understanding of 349 

disease aetiology. In this study, we used gene expression predictor models for 13 brain regions 350 

(derived from CMC
12,13

 and GTEX
8,14

 data), as well as fifteen gastrointestinal, endocrine, and 351 

adipose tissues, and compared patterns of gene expression changes between cases and 352 

controls. We identified 37 significant gene-tissue associations, constituting eleven independent 353 

signals. These genes together explained 2.38% of the phenotypic variance in our study, 354 

including substantial proportions of variance explained by genes in brain tissues (51.5%), 355 

gastrointestinal tissues (16.01%), endocrine (18.6%), and adipose tissues (13.9%), supporting 356 

our theory of both psychiatric and metabolic contributions to AN risk. We identify genes with 357 

intriguing patterns of association with anthropometric traits; for example, seven of our gene-358 

tissue associations are also significantly associated with BMI, weight, and waist circumference 359 

in the UK BioBank. 360 

361 
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Methods 362 

Samples 363 

Genotype data were obtained from the PGC-ED collection. These data included 3,495 cases and 364 

10,982 ancestry-matched controls
2
.  Detailed diagnostic criteria used are described in the PGC-365 

ED GWAS of these data
2
. Briefly, cases include individuals with lifetime diagnoses of either AN 366 

(including both binge-purge and restrictive subtypes) or “eating disorder not other specified 367 

(EDNOS)”, AN subtype. A small number of individuals with bulimia nervosa diagnoses were also 368 

included if they also had histories of AN. Amenorrhoea was not required for diagnosis, as it 369 

does not increase diagnostic specificity
15–17

. Exclusion criteria included schizophrenia, 370 

intellectual disability, and medical and neurological conditions which may cause weight loss.  371 

 372 

Transcriptomic Imputation 373 

We imputed genetically regulated gene expression (GREX) using the CommonMind Consortium 374 

derived Dorso-lateral pre-frontal cortex (CMC DLPFC) predictor database
12

, as well as GTeX-375 

derived predictor databases including 12 brain regions, four endocrine tissue, eight 376 

gastrointestinal/digestive tissues, and subcutaneous adipose tissue
8,14

 (Table 1). We imputed 377 

GREX in all cohorts for which we had access to raw data using PrediXcan
8
. 378 

 379 

We tested for association between GREX and case-control status in each cohort separately, 380 

using a standard linear regression test in R. We included ten principal components as covariates 381 

to correct for population stratification. Principal components were calculated from genotype 382 

data. Raw genotype-based and summary-statistics based cohorts were meta-analysed using an 383 

odds-ratio based approach in METAL
18

.  384 

 385 

Establishing a threshold for genome-wide significance 386 

We applied two significance thresholds to our data. First, we applied a threshold for each 387 

tissue, correcting for the number of genes tested within that tissue (Table 1). Second, we 388 

applied a stricter, overall threshold, correcting for all genes tested across all tissues 389 

simultaneously (234,896 tests in total, p=2.31x10
-7

).  390 
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GREX is highly correlated across tissues
14,19

, and consequently the tests across different tissues 391 

are not independent. A Bonferroni correction may therefore be overly conservative, and under-392 

estimate the true degree of association in this study.  393 

 394 

Identifying independent associations 395 

We identified a number of genomic regions with multiple associations, as well as genes with 396 

significant associations across multiple tissues. In particular, we identified a very large number 397 

of gene-tissue associations (35 significant gene-tissue associations), in the same chromosome 398 

12 locus identified in a recent GWAS by the PGC-ED group
20

.  399 

 400 

We applied two methods to identified independent signals in these complex genomic regions. 401 

First, in regions with a small number of associated gene-tissue pairs (<5), we used “CoCo”, an 402 

extension to GCTA-CoJo
21

. Briefly, CoCo applies the same stepwise forward conditional analysis 403 

as in GCTA-CoJo, but allows specification of a custom linkage disequilibrium (LD) or correlation 404 

matrix instead of obtaining LD from a reference panel. Here, we calculated a GREX correlation 405 

matrix used this as the correlation matrix input to CoCo.  406 

 407 

We used FINEMAP
22

, a shotgun stochastic search algorithm which identifies and ranks plausible 408 

causal configurations for a region, to disentangle the complex gene-tissue association patterns 409 

on chromosome 12. As for CoCo, we substituted a GREX correlation matrix in place of the 410 

standard LD-matrix input file. We constructed a 95% credible set from probable configurations 411 

specified by FINEMAP in order to identify significant gene-tissue associations within the region. 412 

 413 

Additionally, we visually inspected patterns of correlation among the 35 gene-tissue 414 

associations in the chr12 locus using the ‘heatmap.2’ function in the ‘gplots’ R package
23

, and 415 

identified distinct clusters of GREX within this heatmap using a dendrogram cut at height 4.  416 

 417 

 418 

 419 
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Proportion of variance explained by tissue 420 

We calculated the proportion of phenotypic variance in our study jointly explained by all genes 421 

reaching p<1x10
-04

 in our analysis. We corrected for ten principal components and study 422 

variables using a nested model.  423 

 424 

We divided gene-tissue associations into four categories; brain, endocrine, 425 

gastrointestinal/digestive, and subcutaneous adipose tissue. We used a series of nested models 426 

to calculate the variance explained by gene-tissue associations for each category. For example, 427 

the amount of variance explained by adipose-gene associations was calculated as the difference 428 

between the variance explained by all genes, and the variance explained by all genes except 429 

those associated in adipose tissue (eqn 1).  430 

 431 

Equation 1: Nested model to calculate proportion of variance explained by adipose tissue 432 

Var������� �  Var��� 
���� � Var��� 
���� ����� �������. 

 433 

UK BioBank analysis 434 

We obtained publicly available GWAS summary statistics for the UK BioBank sample
24,25

. We 435 

analyzed summary statistics relating to three anthropometric traits; BMI (336,107 individuals), 436 

weight (in kg; 336,227 individuals), and waist circumference (in cm; 336,639 individuals).  We 437 

obtained distributions of each trait from the UK BioBank search portal
26

 (Suppl. Table 1). 438 

 439 

Descriptions of phenotype curation, quality control, and association models used for the UK 440 

BioBank sample are available elsewhere
25

. Briefly, quantitative traits within the sample were 441 

normalized using a rank-based inverse normal transform (INRT) prior to analysis, and analysis 442 

was carried out using a linear regression. Beta values from these associations correspond not to 443 

the ‘unit’ of the original trait (e.g., cm or kg), but to the ‘unit’ of the INRT, i.e., the standard 444 

deviation of the original trait distribution. We confirmed this by simulating distributions 445 

matching the UK Biobank traits in R, and performing an INRT on each trait.  446 

  447 
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We used MetaXcan
27

, a summary statistic based software analogous to PrediXcan, to compute 448 

gene-tissue associations for genes with p<1x10
-04

 in our prediXcan PGC-ED analysis. In order to 449 

compare association statistics between our PGC-ED and UK BioBank studies, we normalized 450 

betas to account for the variance of a gene’s GREX within each study.  451 

 452 

Pathway Analysis 453 

Pathway analysis was carried out using an adaptation to MAGMA
28

. We manually assigned 454 

prediXcan genic p-values to genes in order to carry out only the gene-set enrichment analysis in 455 

MAGMA. We used Bonferroni-corrected prediXcan p-values as input for our MAGMA analyses, 456 

in three stages; first, a Bonferroni-correction for the overall best p-value for each gene across 457 

tissues; second, for the best p-value across brain regions; third, for the best p-value across non-458 

brain tissues. 459 

 460 

We carried out two sets of pathway analysis. First, we tested a subset of pathways for which we 461 

had prior hypotheses of involvement with psychiatric disorders
29,30

, as well as genesets related 462 

to orexigenic hormones, hunger, and satiety. Second, we carried out an agnostic pathway 463 

enrichment test including ~8,500 pathways obtained from publicly available databases, 464 

including KEGG
31,32

, GO
33

, REACTOME
34

, PANTHER
35,36

, BIOCARTA
37

, and MGI
38

. We included 465 

only gene sets with at least 10 genes. Gene set enrichment results from the “competitive” 466 

MAGMA analysis were used, and an FDR-correction applied within each stratum of our analysis.  467 

 468 

 469 

  470 
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Results 471 

Association Tests  472 

We calculated predicted gene expression for thirteen brain regions, four endocrine tissues, 473 

eight gastrointestinal and digestive tissue, and subcutaneous adipose tissue (derived from CMC 474 

and GTEx data
8,14,19,39

) in 3,495 cases and 10,982 controls from the PGC-ED consortium, and 475 

tested for association between predicted gene expression (GREX) and case-control status.  476 

 477 

We identified 37 significant gene-tissue associations, and a further 22 sub-threshold 478 

associations (p<1x10
-04

; Suppl. Table 2). The majority of the significant associations (35/37) 479 

correspond to the only known genome-wide significant locus for AN
20

. We used FINEMAP
22

 to 480 

identify independent signals within this region. We identified 12 likely gene-tissue associations 481 

within this region, including four unique genes; SUOX, RPS26, RDH16, and C12orf49 (Suppl. 482 

Table 3). Visual inspection (Suppl. Figure 1) and hierarchical clustering (Suppl. Figure 2) of GREX 483 

correlation patterns within this region indicate three distinct groups of associated genes, and 484 

follow our FINEMAP results closely.  485 

 486 

We identified two additional genome-wide significant gene-tissue associations (Table 2). First, a 487 

region on chromosome two with three gene-tissue associations; increased expression of CUL3 488 

in the caudate basal ganglia (p=1.86 x10
-06

), and increased expression of WDFY1 and FAM124B, 489 

in adipose tissue (p=6.11x10
-05

, 6.73x10
-05

, respectively). We applied a stepwise forward 490 

conditional analysis in CoCo (following GCTA-COJO), using GREX correlations for all three genes 491 

(Suppl. Table 4). Neither adipose tissue association remained significant after conditioning on 492 

CUL3-Caudate (p=0.042, 0.25, respectively). Second, we identified decreased expression of 493 

REEP5 in the DLPFC (p=8.34x10
-07

), and in the adrenal gland (p=6.68x10
-05

); conditioning REEP5-494 

adrenal on REEP5-DLPFC completely ameliorates the signal (p=0.085). 495 

 496 

Additionally, we identified 22 sub-threshold associations (p<1x10
-04

), including 17 independent 497 

associations after stepwise conditional analysis (Table 2). In particular, we identified two genes 498 

on chromosome 10 with decreased expression in the small intestine and colon (MGMT-small 499 
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intestine, MGMT-pituitary, and FOXI2-colon), and two genes with increased brain expression on 500 

chromosome 17 (Supplementary table 2; YWHAE-hypothalamus, NTN1-nucleus accumbens).  501 

 502 

Comparing Tissue types 503 

Jointly, the genetically regulated gene expression (GREX) of our 28 gene-tissue associations 504 

(p<1x10
-04

) explain 2.38% of the phenotypic variance in our study.  The majority of this variance 505 

(51.5%) was explained by brain-gene associations, followed by endocrine (18.6%), 506 

gastrointestinal/digestive (16.01%), and adipose tissues (13.9%).  507 

 508 

Associations with anthropometry 509 

We used publicly available GWAS summary statistics from the UK BioBank to test whether our 510 

AN associated genes were associated with anthropometric phenotypes such as BMI, weight, 511 

and waist circumference. We used a summary-statistics based approach analogous to 512 

predixcan
40

 (“MetaXcan”) to identify gene-tissue associations across all three traits, for all 513 

genes reaching p<1x10
-04

 in our analysis.  514 

 515 

Three genes within our chromosome twelve locus were significantly associated with at least 516 

one anthropometric phenotype in the UK BioBank sample (Table 3). The direction of effect was 517 

epidemiologically consistent with our prediXcan analysis across all genes. For example, 518 

increased expression of SUOX in the colon, esophagus and spleen results in increased BMI 519 

(~0.04 BMI units/unit of gene expression; p<1.28x10
-07

), increased weight (~0.135kg/unit of 520 

gene expression; p<5.8x10
-08

) in the UK BioBank, and decreased risk of AN in PGC-ED 521 

(OR=0.98/unit of gene expression; p<5x10
-07

) (Figure 2A). Similarly, increased expression of 522 

RPS26 and RDH16 across multiple tissues is associated with increased AN risk, decreased BMI, 523 

decreased waist circumference, and decreased weight (Figure 2B).  524 

 525 

Increased expression of REEP5 is associated with increased weight (p<2x10
-08

) and decreased 526 

AN risk. Three sub-threshold AN genes (BARX1, MGMT, TRIM38) are also associated with BMI 527 

(p<2 x10
-13

), weight (p<2x10
-07

), and waist circumference (p=1.35x10
-08

), again with highly 528 
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significant concordance of direction of effect between studies. Three sub-threshold associated 529 

genes, BARX1, MGMT, TRIM38, also follow this pattern of association.  530 

 531 

This degree of shared signal and concordance of direction of effect is highly unlikely to occur by 532 

chance (binomial test p=2.39x10
-270

). Interestingly, of the seven genes within our study that are 533 

associated with BMI, weight, and waist circumference within the UK BioBank, six are associated 534 

with AN in gastrointestinal tissues. The only brain-tissue based associated gene, REEP5, is an 535 

olfactory gene with a potential role in taste and appetite. Although it is difficult to draw firm 536 

conclusions given the small set of genes tested and the limited sample size of our study, these 537 

results suggest that gene expression changes in metabolic tissues are more likely to have 538 

general relevance for anthropometry and weight maintenance.  539 

 540 

Pathway analysis 541 

We performed pathway analyses on our AN prediXcan results across (1) all tissues, (2), brain 542 

tissues, and (3) all non-brain tissues. For each set of results, we tested 174 gene sets with prior 543 

hypotheses for involvement in psychiatric disorders, and ~8,500 pathways obtained from 544 

publicly available databases.  545 

 546 

Using the best p-value across all tissues, we identified 17 significantly enriched pathways (fdr-547 

corrected p-value<0.05; Table 4). These include multiple calcium-gated voltage channel 548 

pathways (p<0.002), axon guidance (p=1.07x10
-04

), Wnt signalling (9.93x10
-04

), the post-549 

synaptic density (0.003), targets of the FMRP protein
41–45

 (p=0.003), as well as gene sets 550 

corresponding to neurological disease such as Alzheimer’s, Huntington’s, and Prion Disease 551 

(p<0.007). We also noted enrichment of a pathway related to circadian entrainment 552 

(p=0.0013).  553 

 554 

Interestingly, genes involved in synthesis secretion and deacylation of ghrelin were significantly 555 

enriched within our results (p=0.0011). Examining individual genes within this pathway 556 

indicates that no single gene is driving the association; rather, the pathway includes multiple 557 
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sub-threshold associations across KLF4, BCHE, IGF1, SPCS2, ACHE, PCKS1, and SPSC3. Taken 558 

together, these associations indicate lower baseline ghrelin expression in individuals with AN 559 

than in controls. For example, AN cases have lower GREX of KLF4, SPCS2 and SPCS3, all of which 560 

stimulate ghrelin secretion
46

. AN cases also have increased expression of ACHE, IGF1, PCSK1, 561 

and BCHE, which inhibit ghrelin expression
47–49

. We also noted that GREX of ghrelin (GHRL) was 562 

lower in AN cases than controls across 11/12 tissues tested.    563 

 564 

Using exclusively brain-gene association statistics as an input to our MAGMA analysis resulted 565 

in 51 significantly enriched pathways. 35/51 pathways were from the hypothesis-driven test; 566 

these included circadian entrainment (p=2.6x10
-04

), addictive behaviors (nicotine, alcohol, 567 

cocaine, and morphine dependence, p<0.0045), calcium-gated voltage channels, and a large 568 

number of pathways related to processes in the post-synaptic density (Table 4), in line with 569 

pathway results from other psychiatric disorders
10,30,50,51

. A further 25 significantly enriched 570 

pathways were identified in the agnostic analysis, including further evidence of circadian 571 

entrainment (p=1.39x10
-06

), long-term potentiation (p=4.44x10
-06

), as well as multiple pathways 572 

implicating ear and neuronal system development in mice (p<1.2x10
-04

). We noted enrichment 573 

in cyclic-AMP metabolism pathways (p<9.3x10
-05

). This pathway includes dopamine receptor 574 

gene DRD1 (p=8.85x10
-05

), and DRD5 (p=3.5x10
-04

), two receptors which are part of the 575 

dopaminergic pathways affected by ghrelin in the VTA and nucleus accumbens
52,53

, as well as 576 

GCG (Glucagon; p=1.3 x10
-03

), and APOE (p=1.0 x10
-03

) which is associated with risk for 577 

Alzheimer’s disease. CREB phosphorylation through activation of CaMKII pathway was enriched 578 

in our results (p=5.25 x10
-05

). This pathway includes AKAP9 (p=2.1x10
-04

), which regulates levels 579 

of cAMP activity in the brain, and co-localizes with NMDA receptor NR1 which in certain brain 580 

regions is involved in appetite and weight regulation
54–56

, as well as GRIN2B (p=5.1x10
-04

), which 581 

is associated with neurite outgrowth and risky decision making
57,58

.  582 

 583 

Excluding brain-gene associations statistics from our pathway analysis results in only one 584 

subthreshold association (p=3.2x10
-04

; fdr-corrected p-value 0.06) in our hypothesis-driven 585 

pathway analysis, concerning circadian rhythms (albeit through a different pathway than 586 
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identified in the brain-only analysis). Our agnostic pathway analysis identified only one 587 

significant association, with hyaluronic acid binding (p=2.32x10
-08

). 588 

  589 

 590 

 591 

 592 

 593 

 594 

 595 

  596 
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Discussion 597 

AN is a complex and serious neuropsychiatric disorder, with one of the highest mortality rates 598 

of any psychiatric disorder. As our research into the aetiology of AN develops and grows, we 599 

identify increasing levels of complexity and heterogeneity; for example, recent GWAS studies, 600 

LDScore analysis, and epidemiological evidence indicates both psychiatric and metabolic risk 601 

factors for the disorder. 602 

 603 

Here, we used gene expression prediction models for brain, gastrointestinal/digestive, 604 

endocrine, and adipose tissues to predict genetically regulated gene expression (GREX) in 3,495 605 

individuals with anorexia nervosa (AN) and 10,982 controls. We identified 12 independent 606 

gene-tissue associations reaching tissue-specific significance, the majority of which lie in the 607 

same chromosome 12 locus identified in a recent AN GWAS
20

. In line with our hypothesis of 608 

both psychiatric and metabolic risk having a role in AN, we identified genes with differential 609 

expression in endocrine and gastrointestinal/digestive tissues, as well as in brain.  610 

 611 

We calculated the phenotypic variance explained by the genetically regulated expression of 612 

these 28 genes, and used a nested model to partition the variance according to tissue type. 613 

Jointly, these explain 2.38% of the phenotypic variance in our study.  The majority of this 614 

variance (51.5%) was explained by brain-gene associations, followed by endocrine (18.6%), 615 

gastrointestinal/digestive (16.01%), and adipose tissues (13.9%). The proportion of variance 616 

explained by brain- and endocrine-gene associations is in line with the proportion of tests 617 

carried out in each tissue (46.3% and 16.8%, respectively). Gastrointestinal/digestive genes 618 

explain significantly less variance than we would expect given the large proportion of test 619 

performed (16.01% vs. 32.3%, binomial test, p=3.6x10
-04

), while adipose tissue-genes explain 620 

significantly more variance than we would expect (13.9% vs. 4.6%, p=2x10
-04

). This enrichment 621 

of signal within adipose tissue is of particular interest given the demonstrated overlap between 622 

adiposity and disordered eating patterns
59

, AN risk factors
60–62

, and clinical outcomes
63,64

, as 623 

well as our findings relating AN risk genes to anthropometric traits in the UK Biobank.  624 

 625 
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However, these calculations are based on the assumption that all gene-tests are independent; 626 

in fact, we note high correlation of GREX between tissues, including a large number of co-linear 627 

genes and tissues. The number of independent tests carried out is therefore likely to be 628 

substantially lower than the number of tests used in our estimate, perhaps explaining why 629 

gastrointestinal/digestive genes explain less variance than we would expect.  630 

 631 

Among our gene-tissue associations are a number of genes which may be of particular interest. 632 

For example, decreased expression of REEP5 in the DLPFC is associated with increased risk of 633 

AN. REEP5 is a receptor accessory protein which promotes expression of olfactory receptors
65

. 634 

Reep5, together with RTP1 and RTP2, is required for cell surface expression of odorants, and is 635 

primarily expressed in olfactory neurons. The DLPFC has a high localized concentration of 636 

olfactory neurons, and DLPFC volume is decreased in anosmic individuals
66

. Olfaction is of 637 

particular interest in eating disorders given its role in taste and desire for food, as well as in a 638 

number of neurological disorders such as Alzheimer’s and Parkinson’s
67,68

. Individuals with AN 639 

have high rates of reported hyposmia and anosmia
67,69–72

, and perform poorly in odor 640 

discrimination tests, compared to healthy controls. Importantly, odor discrimination ability and 641 

hyposmic status correlates more strongly with BMI than with any specific disordered eating 642 

behavior, even among individuals with AN
73

. Previous studies have also demonstrated 643 

differential expression of olfactory genes following eight restoration in individuals with 644 

Anorexia Nervosa
74

. In line with this, we identified a direct correlation between REEP5 645 

expression and body weight in the UK BioBank; each additional unit of gene expression 646 

corresponds to ~140 g additional body weight, and an AN OR of 0.85. Taken together these 647 

results suggest that REEP5 may have a general role in body size and BMI through altered 648 

olfactory cues, and may be of interest to researchers studying appetite and satiety, as well as 649 

obesity, normal variation in BMI, and AN. REEP5 has also been implicated in major depressive 650 

disorder and antidepressant response in previous studies
75

. 651 

We identified four significantly associated genes within our complex chromosome 12 locus. 652 

Three of these genes (SUOX, RPS26, RDH16) are significantly associated with AN across a range 653 

of gastrointestinal tissues (Figure 1), and have highly correlated expression across almost all 654 
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non-brain tissues tested.  All three of these genes are significantly correlated with 655 

anthropometric traits in the UK BioBank analysis (Figure 2), and all have consistent directions of 656 

effects with our AN prediXcan analysis: that is, the change in expression which increases body 657 

size also decreases AN risk.  658 

Little is known about the function of C12orf49, the fourth gene in this locus, although SNPs 659 

within the gene have also previously been associated with BMI, waist circumference, and waist-660 

hip ratio
76

. Taken together, this evidence implies that the locus on chromosome 12 is likely to 661 

be generally associated with BMI and body size, rather than any specific eating disordered 662 

behaviours. The fine-mapping and characterization of this locus supports our hypothesis of a 663 

role for metabolic dysregulation in AN.  664 

 665 

Increased expression of CUL3 (Cullin 3) in the caudate basal ganglia was associated with 666 

increased risk of AN in our study (OR=1.07). Dysregulation of CUL3 is associated with 667 

pseudohypoaldosteronism
77

, a disorder characterized by sodium imbalance in the body and 668 

often presenting with low body weight. Mutations in CUL3 are associated with schizophrenia
78

, 669 

autism
79

 and non-response to anti-depressants
80

. Variants lying near to CUL3 were identified in 670 

the first GWAS of AN, although these did not reach genome-wide significance
81

.  671 

 672 

Among our subthreshold gene-tissue associations, we identified a number of genes previously 673 

associated with psychiatric
13,78

 and neurological disorders (for example, FURIN
13,78,82

, 674 

ADAMTS9
83–86

, MGMT
86,87

, SMDT1
78

, TMEM108
88

), as well as with abnormal behavioural 675 

responses in knock-out mice models
38,89–91

  (ADAMTS9, CITED4, FOXI2, FURIN, SMDT1, 676 

TMEM108).  We also noted a number of genes with prior associations with anthropometric 677 

traits, both in humans (ADAMTS9
92,92–96

, MGMT
94,97,98

) and in mice
38,89–91

 (CITED4, FOXI2, 678 

FURIN, RDH16, SMDT1, TMEM108), as well as genes associated with gastric and esophageal 679 

complaints (BARX1
99

) in humans, and abnormal defecation patterns in mice
38,89–91,100

 (RDH16, 680 

CITED4),  and with disorders and traits known to be comorbid with AN (TMEM108
101–104

).  681 

 682 
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Our pathway analysis identified a large number of significantly enriched pathways. In particular, 683 

multiple pathways indicate a role for the post-synaptic density (including PSD95, targets of the 684 

FMRP protein, glutamate receptor genes, among others), which has previously been implicated 685 

in other psychiatric disorders. Four pathways are associated with addiction and addictive 686 

behaviours, including nicotine addiction, alcoholism, cocaine addiction, and amphetamine 687 

addiction. Illicit drug use is significant enriched among individuals with eating disorders, in 688 

particular AN
105

, although this is, to our knowledge, the first study identifying shared genetic 689 

risk factors.  690 

 691 

Circadian entrainment and clock genes are highly enriched among our data. Longstanding 692 

hypotheses implicated disrupted circadian rhythms in a range of mood disorders, particularly 693 

depression and bipolar disorder
106–108

. Further, behavioural patterns in individuals with AN (for 694 

example excessive exercise
109–111

 and lack of sleep) have long provided epidemiological 695 

evidence for circadian rhythm disruption in AN. Circadian rhythms may also have a role is 696 

regulating appetite and satiety pathways
7,112,113

.  697 

 698 

Our analysis also implicates pathways concerning taste and olfactory transduction, as well as 699 

ghrelin secretion. Ghrelin is an orexigenic hormone with a documented role in appetite and 700 

satiety
114–118

 as well as in gut motility
117–119

. Our results suggest that individuals with AN may 701 

have decreased circulating ghrelin levels due to increased genetically regulated expression of 702 

ghrelin inhibitors, and decreased GREX of Ghrelin stimulators. Ghrelin enhances appetite and 703 

increases food intake in humans; lowered baseline circulating ghrelin levels may begin to 704 

explain decreased hunger and desire for food in individuals with AN. Previous studies have 705 

documented dysregulation of ghrelin, leptin and glucagon in individuals with AN
120

. However, 706 

these studies are by definition performed after long periods of starvation or food restriction, 707 

meaning that causation is difficult to disentangle from consequences of eating disordered 708 

behaviours; it is likely that the increased ghrelin levels seen in these studies is a consequence of 709 

long-term fasting, rather than causative. In this study, we assess only genetically regulated gene 710 

expression (GREX), meaning that any associations identified are not affected by diet or 711 
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environment. Instead, these results may indicate an altered “baseline” level of circulating 712 

ghrelin in individuals with AN. 713 

There are a number of limitations that should be taken into account. First, the sample size of 714 

our study is small, especially compared to GWAS sample sizes in other psychiatric 715 

disorders
121,122

. It is likely that increasing sample size substantially will yield many new insights 716 

into the aetiology of anorexia nervosa, and that current sub-threshold associations may lose 717 

significance as sample size increases. Similarly, transcriptomic imputation approaches rely on 718 

large, well-curated reference panels in order to build GREX predictor models; here, we have 719 

used reference panels constructed from GTeX
8,14

 and CommonMind Consortium data
10,13

, 720 

including the largest collections of publicly available post-mortem brain tissues. We have shown 721 

previously that there is a significant correlation between the sample sizes used to construct 722 

these predictors and the number of genes included in each predictor database, and that a 723 

number of these databases are therefore likely underpowered
10

.   724 

 725 

Our analysis highlights the need for greater investigation into the complex aetiology of anorexia 726 

nervosa. Transcriptomic Imputation allows us to identify significant gene-tissue associations 727 

with anorexia nervosa, and indicates an excess of signal in adipose tissue. It is clear from these 728 

results that both psychiatric and metabolic risk factors play a role in AN risk; these factors 729 

should be carefully considered in the design of future studies, as well as in how AN is perceived 730 

and considered by clinicians treating individuals with AN.  731 

  732 
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Figure	1:	Genic	associations	in	Anorexia	Nervosa	
A)	We	identify	37	significant	gene-tissue	associations	across	brain,	
GI/digestive,	endocrine,	and	adipose	tissues
B)	14	gene-tissue	associations	remain	significant	after	applying	
CoCo and	FINEMAP.
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Figure	2A:	Genetically	regulated	expression	of	RPS26 is	
significantly	associated	with	BMI,	weight	and	waist	
circumference	in	the	UK	BioBank,	and	with	AN	in	PGC-ED
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Figure	2B:	Genetically	regulated	expression	of	SUOX	is	
significantly	associated	with	BMI	and	weight	in	the	UK	
BioBank,	and	with	AN	in	PGC-ED
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Tissue Source Ngenes P-val	threshold
Adipose	Subcutaneous GTEX 10861 4.60E-06
Adrenal	Gland GTEX 9222 5.42E-06
Anterior	Cingulate	Cortex	BA24 GTEX 8717 5.74E-06
Caudate	Basal	Ganglia GTEX 9113 5.49E-06
Cerebellar	Hemisphere GTEX 9441 5.30E-06
Cerebellum GTEX 9983 5.01E-06
Colon	Sigmoid GTEX 9323 5.36E-06
Colon	Transverse GTEX 9464 5.28E-06
Cortex GTEX 9132 5.48E-06
DLPFC CMC 9571 5.22E-06
Esophagus	Gastroesophageal	Junction GTEX 9306 5.37E-06
Esophagus	Mucosa GTEX 10700 4.67E-06
Esophagus	Muscularis GTEX 10336 4.84E-06
Frontal	Cortex	BA9 GTEX 9009 5.55E-06
Hippocampus GTEX 8510 5.88E-06
Hypothalamus GTEX 8555 5.84E-06
Liver GTEX 8528 5.86E-06
Nucleus	Accumbens	Basal	Ganglia GTEX 8887 5.63E-06
Pancreas GTEX 9732 5.14E-06
Pituitary GTEX 9138 5.47E-06
Putamen	Basal	Ganglia GTEX 8728 5.73E-06
Small	Intestine	Terminal	Ileum GTEX 8838 5.66E-06
Spleen GTEX 9324 5.36E-06
Stomach GTEX 9352 5.35E-06
Thyroid GTEX 11126 4.49E-06

234896 2.13E-07
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gene gene	name tissue beta se p dirs
ENSG00000179862CITED4 Putamen	Basal	Ganglia0.021 0.0051 3.63E-05 +++++--+++-+
ENSG00000163155LYSMD1 Cerebellar	Hemisphere-0.068 0.0166 4.78E-05 +--+--------
ENSG00000143494VASH2 	Adipose	Subcutaneous-0.152 0.0345 1.10E-05 --+--+--+-+-
ENSG00000036257CUL3 Caudate	Basal	Ganglia0.072 0.0151 1.86E-06 +-++++++++++
ENSG00000163638ADAMTS9 Adrenal	Gland 0.078 0.02 9.56E-05 ++--+--+-+++
ENSG00000169379ARL13B Pancreas 0.382 0.0929 3.84E-05 ++-++-++++++
ENSG00000109452INPP4B Pancreas -0.160 0.0407 8.30E-05 ------+--+--
ENSG00000129625REEP5 DLPFC -0.160 0.0325 8.34E-07 ---------++-
ENSG00000112343TRIM38 	Adipose	Subcutaneous0.091 0.0231 8.05E-05 ++++++-++-++
ENSG00000182325FBXL6 Liver -0.133 0.0323 3.58E-05 -+++-+-+----
ENSG00000131668BARX1 Adipose	Subcutaneous0.085 0.0211 6.38E-05 +--+++-+++-+
ENSG00000186766FOXI2 Colon	Transverse -0.650 0.1667 9.73E-05 --+-------+-
ENSG00000170430MGMT Small	Intestine	Terminal	Ileum-0.031 0.0076 5.22E-05 -----++-----
ENSG00000197728RPS26 Spleen 0.120 0.0215 2.70E-08 ++++++-+++++
ENSG00000139531SUOX Esophagus	Gastroesophageal	Junction-0.059 0.0107 3.41E-08 ------+-----
ENSG00000139531SUOX Spleen -0.053 0.0098 5.61E-08 -----++-+---
ENSG00000139531SUOX Putamen	Basal	Ganglia-0.077 0.0147 1.42E-07 -----+------
ENSG00000197728RPS26 Esophagus	Gastroesophageal	Junction0.141 0.0274 2.54E-07 ++++++-+++++
ENSG00000139531SUOX Pancreas -0.035 0.007 4.95E-07 ------+-----
ENSG00000139531SUOX Colon	Transverse -0.059 0.0117 5.47E-07 ------+-----
ENSG00000139547RDH16 Small	Intestine	Terminal	Ileum0.098 0.0199 9.09E-07 ++-++--+++++
ENSG00000111412C12orf49 Thyroid 0.352 0.0779 6.49E-06 -+--+-++-+++
ENSG00000140564FURIN Putamen	Basal	Ganglia0.114 0.0287 7.64E-05 +++-++-+++++
ENSG00000040531CTNS Hippocampus 0.028 0.0071 6.90E-05 +++-++++++-+
ENSG00000065320NTN1 Nucleus	Accumbens	Basal	Ganglia0.395 0.1008 8.88E-05 ++-+++-+--++
ENSG00000179029TMEM108 Cortex 0.602 0.1475 4.47E-05 ++--+--++-++
ENSG00000108953YWHAE Hypothalamus 0.050 0.0119 2.37E-05 ++++++-+++++
ENSG00000010244ZNF207 Anterior	Cingulate	Cortex	BA24-0.026 0.0063 4.55E-05 ----+-+-----
ENSG00000256294ZNF225 Spleen 0.104 0.0252 3.92E-05 ++++++++-+++
ENSG00000159917ZNF235 Frontal	Cortex	BA9 0.433 0.1014 1.96E-05 ++-+++-+-+++
ENSG00000183172SMDT1 Cerebellar	Hemisphere0.018 0.0043 2.29E-05 +++-+++++-++
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chr pos1 pos2
1 41326729 41328018
1 151132224 151138424
1 213123862 213165379
2 225334867 225450110
3 64501333 64673676
3 93698983 93774512
4 142944313 143768585
5 112212084 112258236
6 25963030 25987384
8 145579091 145583036
9 96713905 96717654
10 129535499 129539450
10 131265448 131566271
12 56435637 56438116
12 56390964 56400425
12 56390964 56400425
12 56390964 56400425
12 56435637 56438116
12 56390964 56400425
12 56390964 56400425
12 57345219 57353158
12 117153593 117175875
15 91411822 91426688
17 3539762 3564836
17 8924859 9147317
17 8076555 8079717
17 1247566 1303672
17 30677136 30708905
19 44616334 44637027
19 44732882 44809199
22 42475695 42480288
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Trait Gene Gene	Name
Body_mass_index_(BMI) ENSG00000131668BARX1
Body_mass_index_(BMI) ENSG00000131668BARX1
Body_mass_index_(BMI) ENSG00000139547RDH16
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000197728RPS26
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000139531SUOX
Body_mass_index_(BMI) ENSG00000112343TRIM38
Body_mass_index_(BMI) ENSG00000112343TRIM38
Waist_circumference ENSG00000131668BARX1
Waist_circumference ENSG00000131668BARX1
Waist_circumference ENSG00000197728RPS26
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
Weight ENSG00000170430MGMT
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Weight ENSG00000139547RDH16
Weight ENSG00000129625REEP5
Weight ENSG00000129625REEP5
Weight ENSG00000129625REEP5
Weight ENSG00000129625REEP5
Weight ENSG00000129625REEP5
Weight ENSG00000197728RPS26
Weight ENSG00000197728RPS26
Weight ENSG00000197728RPS26
Weight ENSG00000197728RPS26
Weight ENSG00000197728RPS26
Weight ENSG00000197728RPS26
Weight ENSG00000197728RPS26
Weight ENSG00000197728RPS26
Weight ENSG00000139531SUOX
Weight ENSG00000139531SUOX
Weight ENSG00000139531SUOX
Weight ENSG00000139531SUOX
Weight ENSG00000139531SUOX
Weight ENSG00000139531SUOX
Weight ENSG00000139531SUOX
Weight ENSG00000112343TRIM38
Weight ENSG00000112343TRIM38
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Tissue Z Beta P
Colon-Transverse -7.7773617 -0.0738614 7.41E-15
Artery-Coronary -7.375406 -0.0468271 1.64E-13
SmallIntestine-TerminalIleum -6.4889742 -0.0593701 8.64E-11
Heart-AtrialAppendage -7.5878365 -0.0824355 3.25E-14
Breast-MammaryTissue -6.3491046 -0.0346515 2.17E-10
Skin-SunExposed-Lowerleg -6.2404842 -0.0575258 4.36E-10
Cells-EBV-transformedlymphocytes -6.0618266 -0.0634271 1.35E-09
Adipose-Subcutaneous -5.9677586 -0.0508896 2.41E-09
DLPFC -5.8095616 -0.0229857 6.26E-09
Liver -5.6989127 -0.0674398 1.21E-08
Lung -5.626001 -0.0401266 1.84E-08
Spleen -5.58502 -0.058693 2.34E-08
Skin-NotSunExposed-Suprapubic 5.85012331 0.02616247 4.91E-09
Spleen 5.84007447 0.02813843 5.22E-09
Esophagus-Muscularis 5.74811528 0.03123837 9.02E-09
Esophagus-GastroesophagealJunction 5.74185611 0.03005111 9.36E-09
Cells-EBV-transformedlymphocytes 5.43805266 0.0320962 5.39E-08
Skin-SunExposed-Lowerleg 5.31919323 0.02376405 1.04E-07
Colon-Sigmoid 5.3137019 0.04097991 1.07E-07
Ovary 5.29633119 0.0319386 1.18E-07
Colon-Transverse 5.28102353 0.03099286 1.28E-07
Thyroid 5.2735135 0.02241977 1.34E-07
Pancreas 5.21840847 0.03451622 1.80E-07
Colon-Transverse -5.6792371 -0.0484106 1.35E-08
Artery-Coronary -5.2353944 -0.0297862 1.65E-07
Heart-AtrialAppendage -5.9156355 -0.0575675 3.31E-09
Stomach 6.03116147 0.01516222 1.63E-09
Adipose-Subcutaneous 5.8432158 0.01219944 5.12E-09
Heart-LeftVentricle 5.75450038 0.01803554 8.69E-09
Liver 5.618464 0.02565575 1.93E-08
Thyroid 5.5459707 0.01493591 2.92E-08
Esophagus-Mucosa 5.48046854 0.0136585 4.24E-08
Testis 5.41629516 0.01918677 6.08E-08
Colon-Transverse 5.40371016 0.01607542 6.53E-08
Esophagus-Muscularis 5.31591259 0.01452058 1.06E-07
Brain-Nucleusaccumbens-basalganglia 5.31093287 0.02756249 1.09E-07
WholeBlood 5.28285769 0.01756255 1.27E-07
Nerve-Tibial 5.27563136 0.01348915 1.32E-07
Brain-Anteriorcingulatecortex-BA24 5.26659324 0.0193856 1.39E-07
Skin-SunExposed-Lowerleg 5.24941963 0.01402023 1.53E-07
AdrenalGland 5.20926148 0.01385548 1.90E-07
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SmallIntestine-TerminalIleum -5.8900719 -0.0474498 3.86E-09
Artery-Tibial 6.11566191 0.03833574 9.62E-10
WholeBlood 5.73480599 0.08610324 9.76E-09
Skin-NotSunExposed-Suprapubic 5.63609068 0.03540437 1.74E-08
Esophagus-Mucosa 5.63078519 0.04224336 1.79E-08
Testis 5.52861547 0.0502847 3.23E-08
Breast-MammaryTissue -6.530904 -0.0315872 6.54E-11
Skin-SunExposed-Lowerleg -6.2850329 -0.0513608 3.28E-10
Heart-AtrialAppendage -6.2593475 -0.0602814 3.87E-10
DLPFC -5.5731241 -0.019474 2.50E-08
Liver -5.4913367 -0.0573873 3.99E-08
Spleen -5.4182093 -0.0502923 6.02E-08
Cells-EBV-transformedlymphocytes -5.4039068 -0.0498926 6.52E-08
Adipose-Subcutaneous -5.2552273 -0.0399848 1.48E-07
Brain-Anteriorcingulatecortex-BA24 6.41507712 0.04309815 1.41E-10
Skin-NotSunExposed-Suprapubic 6.03928432 0.02410321 1.55E-09
Cells-EBV-transformedlymphocytes 5.9137031 0.03136303 3.35E-09
Heart-LeftVentricle 5.80708153 0.04596199 6.36E-09
Esophagus-Muscularis 5.68045296 0.02726121 1.34E-08
Esophagus-GastroesophagealJunction 5.55841118 0.02569696 2.72E-08
Spleen 5.42427892 0.02307607 5.82E-08
Thyroid 7.79117755 0.02939098 6.64E-15
Pancreas 7.34532675 0.0430497 2.05E-13
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SYSTEM SOURCE
All	Tissues Drug	targets
All	Tissues Drug	targets
	
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
All	Tissues GWAS	gene	sets
	
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
All	Tissues Hypothesis	Driven
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SET NGENES COMP	P FDR
ANABOLIC	STEROIDS 34 0.0011139 0.08075775
PROGESTOGENS 44 0.00089785 0.08075775

Polycystic	ovary	syndrome 14 2.84E-05 0.0040274
Schizophrenia,	schizoaffective	disorder	or	bipolar	disorder 33 0.00027732 0.01968972
LDL	cholesterol 116 0.00052673 0.02493189
Hemoglobin 35 0.0013392 0.03803328
Sex	hormone-binding	globulin	levels 26 0.0012608 0.03803328
Fasting	glucose-related	traits 31 0.0052364 0.05724238
Fibrinogen 35 0.0050973 0.05724238
Hematocrit 35 0.0030755 0.05724238
Hematology	traits 33 0.0052405 0.05724238
Mean	corpuscular	volume 56 0.0036234 0.05724238
Non-albumin	protein	levels	 12 0.0044993 0.05724238
Protein	C	levels 13 0.004335 0.05724238
Schizophrenia	or	bipolar	disorder 26 0.0044133 0.05724238
Iron	status	biomarkers 24 0.0057116 0.05793194
Cardiovascular	disease	risk	factors 35 0.0074585 0.07060713
Mean	corpuscular	hemoglobin 59 0.010082 0.08947775

Cav2::modulators	&	sma... 20 6.75E-05 0.01012985
Axon	guidance 119 0.00010663 0.01012985
MID 10409 0.00020205 0.0127965
HIGH 2715 0.00056599 0.0253175
Wnt	signaling	pathway 134 0.00099255 0.0253175
Prion	diseases 33 0.0010036 0.0253175
Cav2::ion	channels	tra... 43 0.0010086 0.0253175

701224 16 0.001066 0.0253175
Circadian	entrainment 94 0.0012742 0.02689978
Cav2::ion	channels	tra... 36 0.0020532 0.0390108
Huntington's	disease 163 0.0027021 0.04620483
ARC+NMDAR+PSD95+mGluR5 122 0.0029182 0.04620483
FMRP-targets 735 0.0032083 0.04689054
MAPK	signaling	pathway 239 0.004037 0.05478786
Gap	junction 86 0.0062529 0.07862759
Nucleus 127 0.0068123 0.07862759
Alzheimer's	disease 148 0.0070351 0.07862759
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GENE	SET NGENES
ANTIEPILEPTICS 221
OTHER	DERMATOLOGICAL	PREPARATIONS 204

Mean	corpuscular	volume 56
Polycystic	ovary	syndrome 14
Sex	hormone-binding	globulin	levels 26
Mean	corpuscular	hemoglobin 59
Lipid	metabolism	phenotypes 35
Dehydroepiandrosterone	sulphate	levels 29
LDL	cholesterol 116
Calcium	levels 17
Hematology	traits 33

Circadian	entrainment 94
Cav2::modulators	&	sma... 20
HIGH 2714
Long-term	potentiation 62
Gap	junction 86
Nicotine	addiction 35
FMRP-targets 735
Alcoholism 151
Retrograde	endocannabi... 94
Pre	post	synaptic	genes 429
Glutamatergic	synapse 108
Neuroactive	ligand-rec... 286
Ionotropic	Glutamate	R... 14
GABAergic	synapse 80
Cocaine	addiction 46
Porphyrin	and	chloroph... 36
Amphetamine	addiction 64
Synaptic	vesicle 309
Taste	transduction 48
All	Ion	Channels 220
Glutamate	Receptor	Genes 21
ARC 24
Cav2::ion	channels	tra... 43
Pre-synapse 387
Neurotransmitter	recep... 69
Cav2::ion	channels	tra... 36
CLOCK-CONTROLLED	WEAK 399
Nucleus 127
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GABA	Receptor	Genes 17
ASD 65
Amyotrophic	lateral	sc... 49
Olfactory	transduction 292
Cholinergic	synapse 109
Morphine	addiction 85
MAPK	signaling	pathway 238

KEGG	CIRCADIAN	ENTRAINMENT 94
positive	regulation	of	cAMP	metabolic	process	 59
KEGG	LONG-TERM	POTENTIATION	 66
positive	regulation	of	cAMP	biosynthetic	process 58
positive	regulation	of	cyclic	nucleotide	metabolic	process 69
interstitial	matrix	 15
positive	regulation	of	cyclic	nucleotide	biosynthetic	process	 65
positive	regulation	of	nucleotide	biosynthetic	process 67
positive	regulation	of	nucleotide	metabolic	process	 72
positive	regulation	of	purine	nucleotide	biosynthetic	process	 67
positive	regulation	of	purine	nucleotide	metabolic	process 71
protein	palmitoylation 13
ear	development	 184
inner	ear	morphogenesis	 91
ear	morphogenesis	 112
retinoid	X	receptor	binding	 13
	CREB	phosphorylation	through	the	activation	of	CaMKII	 14
	Neuronal	System	 269
abnormal	brain	white	matter	morphology 118
KEGG	VASCULAR	SMOOTH	MUSCLE	CONTRACTION	 116
KEGG	GAP	JUNCTION	 86
regulation	of	cAMP	metabolic	process 96
inner	ear	development	 157
	Unblocking	of	NMDA	receptor	glutamate	binding	and	activation 15
Muscarinic	acetylcholine	receptor	2	and	4	signaling	pathway	 51
regulation	of	cAMP	biosynthetic	process	 88
KEGG	PANCREATIC	SECRETION	 90
	Ras	activation	uopn	Ca2+	infux	through	NMDA	receptor 16
morphogenesis	of	embryonic	epithelium	 127
abnormal	embryonic	tissue	morphology 638
Metabotropic	glutamate	receptor	group	I	pathway	 22
5HT1	type	receptor	mediated	signaling	pathway	 39
abnormal	optic	nerve	morphology 63
regulation	of	oxidoreductase	activity	 61
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	CREB	phosphorylation	through	the	activation	of	Ras 24
thin	cerebellar	molecular	layer 16
KEGG	NICOTINE	ADDICTION	 35
increased	circulating	aspartate	transaminase	level 33
KEGG	NEUROACTIVE	LIGAND-RECEPTOR	INTERACTION 246
magnesium	ion	transmembrane	transporter	activity 11
magnesium	ion	transport	 13
abnormal	cranial	nerve	morphology 142
Metabotropic	glutamate	receptor	group	III	pathway	 59
abnormal	chemoreceptor	morphology 19
	Activation	of	NMDA	receptor	upon	glutamate	binding	and	postsynaptic	events 33
	GPCR	downstream	signaling	 648
	Pausing	and	recovery	of	Tat-mediated	HIV	elongation	 26
	Tat-mediated	HIV	elongation	arrest	and	recovery	 26
KEGG	GLUTAMATERGIC	SYNAPSE 110
	Post	NMDA	receptor	activation	events 30
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SELF	P COMP	P FDR
1 0.00054783 0.03971768
1 0.00038437 0.03971768

0.75095 0.00011617 0.00818999
1.83E-05 9.77E-05 0.00818999
0.022136 0.00047961 0.02254167
0.92453 0.00090675 0.03196294
0.99103 0.0018655 0.0526071
0.98229 0.0034203 0.06889461

1 0.0030833 0.06889461
0.99597 0.0048546 0.08556233
0.31855 0.0056112 0.0879088

0.99713 1.39E-06 0.00026328
5.07E-05 1.46E-05 0.00137913

1 4.67E-05 0.00242511
0.99998 5.13E-05 0.00242511
0.99999 8.62E-05 0.00325662
0.99996 0.00034877 0.01098626

1 0.00058824 0.01588248
1 0.00071347 0.01685573
1 0.0014176 0.02860257
1 0.0015625 0.02860257
1 0.0016647 0.02860257
1 0.0019511 0.03072983

0.99898 0.0021656 0.03148449
1 0.0024029 0.03243915
1 0.0031707 0.03895763

0.94846 0.003298 0.03895763
1 0.0045245 0.04857897
1 0.0046422 0.04857897
1 0.0048836 0.04857897
1 0.005179 0.04894155

0.99999 0.0063647 0.05688814
0.85231 0.0066219 0.05688814
0.99986 0.0073367 0.06028853

1 0.0077512 0.0610407
1 0.0089817 0.06790165

0.99929 0.0093868 0.06823482
1 0.010253 0.07015275
1 0.010393 0.07015275
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0.89702 0.011027 0.07186562
1 0.011959 0.0753417
1 0.014531 0.08859223
1 0.01544 0.09060545
1 0.01582 0.09060545
1 0.016661 0.09261556
1 0.018149 0.0980046

0.99713 1.39E-06 0.00906001
0.98723 2.12E-06 0.00906001
0.99988 4.44E-06 0.0094967
0.99384 3.77E-06 0.0094967
0.99983 8.43E-06 0.01201703

1 7.57E-06 0.01201703
0.99976 9.98E-06 0.01218925
0.99995 1.72E-05 0.0143912
0.99998 1.68E-05 0.0143912
0.99995 1.72E-05 0.0143912
0.99998 1.85E-05 0.0143912
0.47858 2.13E-05 0.01517981 	

1 2.31E-05 0.01521966
1 3.34E-05 0.02037954
1 3.94E-05 0.0224352

0.88099 4.92E-05 0.02626988
0.66681 5.25E-05 0.02640441

1 5.68E-05 0.02695815
1 6.50E-05 0.02926935
1 8.80E-05 0.03584404

0.99999 8.62E-05 0.03584404
1 9.30E-05 0.03616223
1 0.00012491 0.04449919

0.85806 0.00012411 0.04449919
0.88138 0.00013926 0.04762692

1 0.00015287 0.05027071
0.99999 0.00020155 0.06382417
0.95278 0.00021 0.064125

1 0.00026817 0.07225017
1 0.00027041 0.07225017

0.94933 0.00025314 0.07225017
0.99204 0.00026744 0.07225017

1 0.00028995 0.07279226
0.99946 0.00029798 0.07279226
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0.99576 0.00029221 0.07279226
0.99955 0.00030681 0.07286738
0.99996 0.00034877 0.0804555
0.86126 0.00035758 0.0804555

1 0.00039331 0.08186923
0.97551 0.00041174 0.08186923
0.9824 0.00039927 0.08186923

1 0.00037751 0.08186923
0.99994 0.00040289 0.08186923

0.0082276 0.00048983 0.09157941
0.99972 0.00047394 0.09157941

1 0.00049294 0.09157941
0.25191 0.00051413 0.09157941
0.25191 0.00051413 0.09157941

1 0.00056017 0.09684585
0.99967 0.00056635 0.09684585
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SYSTEM SOURCE
Gastro-Intestinal	and	Peripheral	Tissue Drug	targets

Gastro-Intestinal	and	Peripheral	Tissue GWAS	gene	sets

Gastro-Intestinal	and	Peripheral	Tissue Hypothesis	Driven

Gastro-Intestinal	and	Peripheral	Tissue Agnostic
Gastro-Intestinal	and	Peripheral	Tissue Agnostic
Gastro-Intestinal	and	Peripheral	Tissue Agnostic
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SET NGENES SELF	P COMP	P
ANABOLIC	STEROIDS 34 0.56804 0.00026816

Schizophrenia,	schizoaffective	disorder	or	bipolar	disorder 32 0.66707 0.00029124

CLOCK-CONTROLLED	PERVA... 121 1 0.00032294

hyaluronic	acid	binding	 20 0.95248 2.32E-08
KEGG	PATHWAYS	IN	CANCER	 310 1 1.87E-05
abnormal	nervous	system	development 736 1 1.55E-05
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FDR
0.0388832

0.04135608

0.06103566

0.00019827
0.05352215
0.05352215
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