1 Identifying tissues implicated in Anorexia Nervosa using Transcriptomic Imputation

2

3 Author List:

4 Laura M. Huckins, PhD 1,2,3,4,5, Amanda Dobbyn, PhD 1,2,4, Whitney McFadden, MD 1,2,3, 5 Douglas Ruderfer, PhD 6, Weiging Wang, BSc 1,2, Eric Gamazon, PhD 6,7, Virpi Leppä, Phd 8, 6 Roger Adan, PhD 9,10, Tetsuya Ando, MD, PhD 11, Jessica Baker, PhD 12, Andrew Bergen, PhD 7 13, Wade Berrettini, MD, PhD 14, Andreas Birgegård, PhD 15,16, Claudette Boni, PhD 17, Vesna 8 Boraska Perica, PhD 18, Harry Brandt, MD 19, Roland Burghardt, MD 20, Matteo Cassina, MD 9 21, Carolyn Cesta, 22, Maurizio Clementi, MD 21, Joni Coleman, MSc 23, Roger Cone, PhD 24, 10 Philippe Courtet, MD 25, Steven Crawford, MD 26, Scott Crow, MD 27, James Crowley, PhD 11 28,29, Unna Danner, PhD 10, Oliver Davis, MSc, PhD 30, Martina de Zwaan, MD 31, George Dedoussis, PhD 32, Daniela Degortes, PhD 21, Janiece DeSocio, PhD, RN, PMHNP-BC 33, 12 13 Danielle Dick, PhD 34, Dimitris Dikeos, MD 35, Monika Dmitrzak-Weglarz, PhD 36, Elisa Docampo, MD, PhD 37,38,39, Karin Egberts, MD 40, Stefan Ehrlich, MD 41,42, Geòrgia 14 15 Escaramís, PhD 37,38,43, Tõnu Esko, PhD 44, Xavier Estivill, MD, PhD 45,37,38,43, Angela 16 Favaro, MD, PhD 21, Fernando Fernández-Aranda, PhD, FAED 46, Manfred Fichter, MD, Dipl-17 Psych 47, Chris Finan, PhD 48, Krista Fischer, PhD 49, Manuel Föcker, MD 50,51, Lenka Foretova, MD, PhD 52, Monica Forzan, PhD 53, Christopher Franklin, PhD 48, Héléna Gaspar, 18 19 PhD 23, Fragiskos Gonidakis, MD 54, Philip Gorwood, MD, PhD 55, Monica Gratacos, MD, PhD 20 37,38,43, Sébastien Guillaume, MD, PhD 25, Yiran Guo, PhD 56, Hakon Hakonarson, MD, PhD 21 56,57, Katherine Halmi, MD 58, Konstantinos Hatzikotoulas, MD, PhD 48, Joanna Hauser, MD, 22 PhD 36, Johannes Hebebrand, MD 59, Sietske Helder, PhD 60,61, Judith Hendriks, BSc 62, Beate 23 Herpertz-Dahlmann, MD 63, Wolfgang Herzog, MD 64, Christopher Hilliard, BS 65, Anke Hinney, 24 PhD 59, James Hudson, MD, ScD 66,67, Julia Huemer, MD 68, Hartmut Imgart, MD 69, Hidetoshi 25 Inoko, PhD 70, Susana Jiménez-Murcia, PhD 46, Craig Johnson, PhD 71, Jenny Jordan, PhD 26 72,73, Anders Juréus, PhD 74, Gursharan Kalsi, PhD 23, Debora Kaminska, PhD 75, Allan Kaplan, 27 MSc, MD, FRCP(C) 76, Jaakko Kaprio, MD, PhD 77, Leila Karhunen, PhD 78, Andreas Karwautz, 28 MD, FAED 68, Martien Kas, PhD 79, Walter Kaye, MD 80, James Kennedy, MD, FRCP(C) 76, 29 Martin Kennedy, PhD 72, Anna Keski-Rahkonen, MD, PhD, MPH 81, Kirsty Kiezebrink, BSc 30 (Hons), PGDip, PhD, FHEA, RNutr 82, Youl-Ri Kim, MD, PhD 83, Kelly Klump, PhD 84, Gun Peggy

31 Knudsen, PhD 85, Bobby Koeleman, PhD 9, Doris Koubek, MD 68, Maria La Via, MD 65, Mikael 32 Landén, MD, PhD 86, Robert Levitan, MD 76, Dong Li, PhD 56, Paul Lichtenstein, PhD 22, Lisa 33 Lilenfeld, PhD 87, Jolanta Lissowska, PhD 88, Pierre Magistretti, PhD 89, Mario Maj, MD, PhD 34 90, Katrin Mannik, PhD 91, Nicholas Martin, PhD 92, Sara McDevitt, MB, MD, MRCPsych, 35 MMedED 93, Peter McGuffin, MD 94, Elisabeth Merl, MD 68, Andres Metspalu, PhD, MD 49, 36 Ingrid Meulenbelt, PhD 95, Nadia Micali, MD, PhD 96, James Mitchell, MD 97, Karen Mitchell, 37 PhD 98. Palmiero Monteleone. MD 99. Alessio Maria Monteleone. MD 90. Preben Mortensen. 38 MD, DrMedSc 100, Melissa Munn-Chernoff, PhD 65, Benedetta Nacmias, PhD 101, Ida Nilsson, 39 PhD 102,103, Claes Norring, PhD 104, Ioanna Ntalla, PhD 32, Julie O'Toole, MD 105, Jacques 40 Pantel, PhD 106, Hana Papezova, MD, PhD 75, Richard Parker, 92, Raquel Rabionet, PhD 107, 41 Anu Raevuori, MD, PhD 81, Andrzej Rajewski, MD, PhD 36, Nicolas Ramoz, PhD 108, N.William 42 Rayner, PhD 48,109,110, Ted Reichborn-Kiennerud, MD 111, Valdo Ricca, MD 101, Stephan 43 Ripke, MD, PhD 112, Franziska Ritschel, MSc 113, Marion Roberts, PhD 23,182, Alessandro 44 Rotondo, MD 114, Filip Rybakowski, MD, PhD 115, Paolo Santonastaso, MD 21, André Scherag, 45 PhD 116, Ulrike Schmidt, MD, PhD 23, Nicholas Schork, PhD 117, Alexandra Schosser, PhD 68, 46 Jochen Seitz, MD 63, Lenka Slachtova, PhD 75, P. Eline Slagboom, PhD 95, Margarita Slof-Op 't 47 Landt, PhD 118, Agnieszka Slopien, MD 119, Tosha Smith, PhD 65, Sandro Sorbi, MD 101, 120, 48 Eric Strengman, BS 121, Michael Strober, PhD 122, Patrick Sullivan, MD, FRANZCP 28,29, Jin 49 Szatkiewicz, PhD 65, Neonila Szeszenia-Dabrowska, MD, PhD 123, Ioanna Tachmazidou, PhD 48, 50 Elena Tenconi, MD 21, Laura Thornton, PhD 65, Alfonso Tortorella, MD 90,124, Federica Tozzi, 51 MD 125, Janet Treasure, PhD, FRCP, FRCPsych 23, Artemis Tsitsika, MD, PhD 126, Konstantinos 52 Tziouvas, MD, MSc 127, Annemarie van Elburg, MD, PhD 128,129, Eric van Furth, PhD 130, 53 Tracey Wade, PhD 131, Gudrun Wagner, Dr, MSc, DPO 68, Esther Walton, Dr. rer. nat., PhD 54 132,133, Hunna Watson, PhD 134,135,136, D.Blake Woodside, MD 137, Shuyang Yao, MSc, BSc 55 138, Zeynep Yilmaz, PhD 65, Eleftheria Zeggini, PhD 48, Stephanie Zerwas, PhD 65, Stephan 56 Zipfel, MD 139, Alfredsson Lars, PhD 22, Andreassen Ole, MD, PhD 140,141, Harald Aschauer, 57 MD 142, Jeffrey Barrett, PhD 143, Vladimir Bencko, MD, PhD 144, Laura Carlberg, MD 68, Sven Cichon, PhD 145, Sarah Cohen-Woods, PhD 146, Christian Dina, PhD 147, Bo Ding, PhD 148, 58 59 Thomas Espeseth, PhD 140,141, James Floyd, PhD 149, Steven Gallinger, MD 76, Giovanni

60 Gambaro, MD, PhD 150, Ina Giegling, PhD 151, Stefan Herms, PhD 152, Vladimir Janout, PhD 61 153, Antonio Julià, PhD 154, Lars Klareskog, MD 22, Stephanie Le Hellard, PhD 155, Marion Lebover, MD, PhD 156, Astri J. Lundervold, PhD 157, Sara Marsal, MD, PhD 154, Morten 62 63 Mattingsdal, PhD 158, Marie Navratilova, MUDr., PhD 52, Roel Ophoff, PhD 159, Aarno Palotie, 64 MD, PhD 160,161,162,163,164, Dalila Pinto, PhD 165,166, Samuli Ripatti, PhD 81, Dan Rujescu, 65 MD 151,167, Stephen Scherer, PhD, FRSC 168, Laura Scott, PhD 169, Robert Sladek, MD 66 170,171, Nicole Soranzo, PhD 172,173,174, Lorraine Southam, BSc 48,110, Vidar Steen, MD, 67 PhD 155, Wichmann H-Erich, PhD 175, Elisabeth Widen, MD, PhD 176, Bernie Devlin, PhD 177, 68 Solveig K. Sieberts, PhD 178, Nancy Cox, PhD 179, Hae Kyung Im, PhD 180,179, Gerome Breen, 69 PhD 23, Pamela Sklar, MD, PhD 1,5,2,181, Cynthia Bulik, PhD 28,29, Eli A. Stahl, PhD 1,5, 70

- 71 1 Pamela Sklar Division for Precision Psychiatry, Icahn School of Medicine at Mount Sinai, USA
- 72 2 Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, USA
- 73 3 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA
- 74 4 Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, USA
- 75 5 Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, USA
- 76 6 Vanderbilt University Medical Center, Nashville, TN, USA
- 77 7 Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois,
- 78 USA
- 79 8 CEDI Centre for Eating Disorders Innovation, Department of Medical Epidemiology and
- 80 Biostatistics (MEB), C8, Karolinska Institutet, Nobels väg 12A, 171 77 Solna, Sweden,
- 81 9 University Medical Center Utrecht, Netherlands
- 82 10 Altrecht Eating Disorders Rintveld, Netherlands
- 83 11 National Institute of Mental Health, Japan
- 84 12 University of North Carolina at Chapel Hill, UNC
- 85 13 Biorealm Research, Culver City, CA, USA
- 86 14 Perelman School of Medicine at the University of Pennsylvania, USA
- 87 15 Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet,
- 88 Sweden

- 89 16 Stockholm Health Care Services, Stockholm County Council, Sweden
- 90 17 Centre of Psychiatry and Neuroscience, France
- 91 18 Wellcome Trust Sanger Institute, University of Split School of Medicine, UK
- 92 19 The Center for Eating Disorders at Sheppard Pratt, Baltimore, USA
- 93 20 Klinikum Frankfurt/Oder, Germany
- 94 21 University of Padova, Italy
- 95 22 Karolinska Institutet, Sweden
- 96 23 King's College London, UK
- 97 24 University of Michigan, USA
- 98 25 CHRU Montpellier, University of Montpellier, France
- 99 26 The Center for Eating Disorders at Sheppard Pratt, USA
- 100 27 University of Minnesota, USA
- 101 28 University of North Carolina at Chapel Hill, USA,
- 102 29 Karolinska Institutet, Sweden,
- 103 30 University of Bristol, UK
- 104 31 Hannover Medical School, Germany
- 105 32 Harokopio University, Greece
- 106 33 Seattle University College of Nursing, USA
- 107 34 Virginia Commonwealth University, USA
- 108 35 Athens University Medical School, Greece
- 109 36 Poznan University of Medical Sciences, Poland
- 110 37 The Barcelona Institute of Science and Technology, Spain
- 111 38 Universitat Pompeu Fabra, Spain
- 112 39 CIBER Epidemiología y Salud Pública, Spain
- 113 40 University Hospital of Würzburg, Germany
- 114 41 Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of
- 115 Medicine, TU Dresden, Germany, Germany
- 116 42 Eating Disorders Research and Treatment Center, Department of Child and Adolescent
- 117 Psychiatry, Faculty of Medicine, TU Dresden, Germany, Germany

- 118 43 Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Spain
- 119 44 University of Tartu, Broad Institute, Estonia
- 120 45 Centre for Genomic Regulation (CRG), Spain
- 121 46 University Hospital of Bellvitge-IDIBELL and CIBEROBN, University of Barcelona, Spain
- 122 47 Ludwig-Maximilians-University Munich, Schön Klinik Roseneck, Germany
- 123 48 Wellcome Trust Sanger Institute, UK
- 124 49 University of Tartu, Estonia
- 125 50 Department of Child and Adolescent Psychiatry, University Hospital Essen, Germany
- 126 51 University of Duisburg-Essen, Essen, Germany
- 127 52 Masaryk Memorial Cancer Institute, Czech Republic
- 128 53 University Hospital of Padova, Italy
- 129 54 National and Kapodistrian University of Athens, Greece
- 130 55 INSERM U984, Sainte-Anne Hospital, University of Paris-Descartes, France
- 131 56 Children's Hospital of Philadelphia, USA
- 132 57 University of Pennsylvania, USA
- 133 58 Weill Cornell Medical College, USA
- 134 59 Department of Child and Adolescent Psychiatry, University Hospital Essen, University of
- 135 Duisburg-Essen, Essen, Germany
- 136 60 Zorg op Orde, Netherlands,
- 137 61 King's College London, UK,
- 138 62 University Utrecht, Netherlands
- 139 63 RWTH Aachen, Germany
- 140 64 Heidelberg University, Germany
- 141 65 University of North Carolina at Chapel Hill, USA
- 142 66 McLean Hospital, USA
- 143 67 Harvard Medical School, USA
- 144 68 Medical University of Vienna, Austria
- 145 69 Parkland-Klinik, Germany
- 146 70 Tokai University School of Medicine, Japan

- 147 71 Eating Recovery Center, USA
- 148 72 University of Otago, New Zealand
- 149 73 Canterbury District Health Board, New Zealand
- 150 74 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
- 151 Sweden,
- 152 75 Charles University, Czech Republic
- 153 76 University of Toronto, Canada
- 154 77 University of Helsinki, National Institute for Health and Welfare, Finland
- 155 78 University of Eastern Finland, Finland
- 156 79 University of Groningen, University Medical Center Utrecht, Netherlands
- 157 80 University of California, San Diego, USA
- 158 81 University of Helsinki, Finland
- 159 82 University of Aberdeen, UK
- 160 83 Inje University, South Korea
- 161 84 Michigan State University, USA
- 162 85 Norwegian Institute of Public Health, Norway
- 163 86 Karolinska Institutet, Gothenburg University, Sweden
- 164 87 American School of Professional Psychology at Argosy University, Washington DC, USA
- 165 88 M. Sklodowska-Curie Cancer Center and Institute of Oncology, Poland
- 166 89 Brain Mind Institute, EPFL, Center for Psychiatric Neuroscience, Department of Psychiatry -
- 167 CHUV/UNIL, Switzerland
- 168 90 University of Campania "Luigi Vanvitelli", Naples
- 169 91 University of Tartu, University of Lausanne, Estonia
- 170 92 QIMR Berghofer Medical Research Institute, Australia
- 171 93 University College Cork, Health Service Executive South, Ireland
- 172 94 Kings College London, UK
- 173 95 Leiden University Medical Centre, Netherlands
- 174 96 University of Geneva, Switzerland
- 175 97 University of North Dakota School of Medicine and Health Sciences, USA

- 176 98 VA Boston Healthcare System, Boston University School of Medicine, USA
- 177 99 University of Salerno, Italy
- 178 100 Aarhus University, Denmark
- 179 101 Department Neuroscience, Psychology, Drug Research and Child Health, University of
- 180 Florence, Italy
- 181 102 Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
- 182 103 Center for Molecular Medicine, Karolinska University Hospital, Sweden
- 183 104 Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet,
- 184 & Stockholm Health Care Services, Stockholm County Council, Sweden
- 185 105 Kartini Clinic, USA
- 186 106 Centre de Psychiatrie et Neurosciences Inserm U894, USA
- 187 107 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology,
- 188 Universitat Pompeu Fabra, Centro de Investigación Biomédica en Red en Epidemiología y Salud
- 189 Pública, Spain
- 190 108 Centre de Psychiatrie et Neurosciences Inserm U894, France
- 191 109 Oxford Centre for Diabetes, Endocrinology and Metabolism, UK
- 192 110 Wellcome Trust Centre for Human Genetics, UK
- 193 111 Norwegian Institute of Public Health, University of Oslo, Norway
- 194 112 Charité Universtätsmedizin Berlin,
- 195 113 Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of
- 196 Medicine, TU Dresden, Germany, Eating Disorders Research and Treatment Center, Department
- 197 of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany,
- 198 114 University of Pisa, Italy
- 199 115 Institute of Psychiatry and Neurology, University of Social Sciences and Humanities, Poland
- 200 116 Jena University Hospital, Germany
- 201 117 J. Craig Venter Institute, USA
- 202 118 Rivierduinen Eating Disorders Ursula, Leiden University Medical Centre, Netherlands
- 203 119 Uniwersytet Medyczny im. Karola Marcinkowskiego, Poland
- 204 120 IRCSS Fondazione Don Gnocchi, Florence, Italy

- 205 121 Department of Pathology, University Medical Center Utrecht, The Netherlands,
- 206 Netherlands
- 207 122 University of California at Los Angeles , USA
- 208 123 Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology,
- 209 Poland
- 210 124 University of Perugia, Italy
- 211 125 University of Cyprus, UK
- 212 126 University of Athens "P. & A. Kyriakou" Children's Hospital, Greece
- 213 127 "P. & A. Kyriakou" Children's Hospital, PICU, Greece
- 214 128 Center for Eating Disorders Rintveld, Netherlands
- 215 129 University of Utrecht, Netherlands
- 216 130 Rivierduinen Eating Disorders Ursula, Leiden University Medical Center, Netherlands
- 217 131 Flinders University, Australia
- 218 132 Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of
- 219 Medicine, TU Dresden, Germany,
- 220 133 Eating Disorders Research and Treatment Center, Department of Child and Adolescent
- 221 Psychiatry, Faculty of Medicine, TU Dresden, Germany,
- 222 134 University of North Carolina at Chapel Hill,
- 223 135 School of Paediatrics and Child Health, Faculty of Medicine, Dentistry, and Life Sciences,
- 224 The University of Western Australia, Australia,
- 225 136 School of Psychology and Speech Pathology, Faculty of Health Sciences, Curtin University,
- 226 Australia,
- 227 137 University of Toronto, Toronto General Hospital, Canada
- 228 138 Karolinksa Institutet, Sweden
- 229 139 University Medical Hospital Tuebingen, Germany
- 230 140 University of Oslo, Norway
- 231 141 Oslo University Hospital, Norway
- 232 142 Biopsychosocial Corporation, Austria
- 233 143 Sanger Institute, UK

- 234 144 Charles University, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Czech
- 235 Republic
- 236 145 University Hospital Basel, Switzerland
- 237 146 Finders University, AU
- 238 147 University of Nantes, France
- 239 148 University of California at San Diego, USA
- 240 149 Wellcome Trust Sanger Institute, Genomics PLC, UK
- 241 150 Columbus-Gemelli University Hospital, Italy
- 242 151 Martin Luther University of Halle-Wittenberg, Germany
- 243 152 University of Basel, Switzerland
- 244 153 Ostrava University, Czech Republic
- 245 154 Vall d'Hebron Hospital Research Institute, Spain
- 246 155 University of Bergen, Haukeland University Hospital, Norway
- 247 156 Université Paris-Est-Créteil (UPEC), France
- 248 157 University of Bergen, K. G. Jebsen Center for Neuropsychiatric Disorders , Noway
- 249 158 Oslo University, Norway
- 250 159 University of California Los Angeles, University Medical Center Utrecht, Netherlands
- 251 160 Massachusetts General Hospital, USA
- 252 161 Broad Institute, USA
- 253 162 Massachusetts Institute of Technology, USA
- 254 163 Harvard, USA
- 255 164 Institute for Molecular Medicine, USA
- 256 165 Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, USA,
- 257 166 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA,
- 258 167 Ludwig-Maximilians-University Munich, Germany
- 259 168 The Hospital for Sick Children, University of Toronto, Canada
- 260 169 Department of Biostatistics, University of Michigan,
- 261 170 McGill University, Canada
- 262 171 Génome Québec Innovation Centre, Canada

- 263 172 Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, CB10 1HH,
- 264 UK
- 265 173 Department of Haematology, University of Cambridge, Hills Rd, Cambridge CB2 0AH, UK
- 266 174 The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor
- 267 Health and Genomics at the University of Cambridge, UK
- 268 175 Helmholtz Centre Munich German Research Center for Environmental Health, Germany
- 269 176 Institute for Molecular Medicine, Finland
- 270 177 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- 271 178 Systems Biology, Sage Bionetworks, Seattle, WA, USA
- 272 179 Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago,
- 273 Illinois, USA,
- 274 180 Vanderbilt University Medical Center, Nashville, TN,
- 275 181 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, USA
- 276 182 University of Auckland, New Zealand

277 Abstract

Anorexia nervosa (AN) is a complex and serious eating disorder, occurring in ~1% of individuals.
Despite having the highest mortality rate of any psychiatric disorder, little is known about the
aetiology of AN, and few effective treatments exist.

281

Global efforts to collect large sample sizes of individuals with AN have been highly successful, and a recent study consequently identified the first genome-wide significant locus involved in AN. This result, coupled with other recent studies and epidemiological evidence, suggest that previous characterizations of AN as a purely psychiatric disorder are over-simplified. Rather, both neurological and metabolic pathways may also be involved.

287

288 In order to elucidate more of the system-specific aetiology of AN, we applied transcriptomic 289 imputation methods to 3,495 cases and 10,982 controls, collected by the Eating Disorders 290 Working Group of the Psychiatric Genomics Consortium (PGC-ED). Transcriptomic Imputation 291 (TI) methods approaches use machine-learning methods to impute tissue-specific gene 292 expression from large genotype data using curated eQTL reference panels. These offer an 293 exciting opportunity to compare gene associations across neurological and metabolic tissues. 294 Here, we applied CommonMind Consortium (CMC) and GTEx-derived gene expression 295 prediction models for 13 brain tissues and 12 tissues with potential metabolic involvement 296 (adipose, adrenal gland, 2 colon, 3 esophagus, liver, pancreas, small intestine, spleen, stomach).

297

298 We identified 35 significant gene-tissue associations within the large chromosome 12 region 299 described in the recent PGC-ED GWAS. We applied forward stepwise conditional analyses and 300 FINEMAP to associations within this locus to identify putatively causal signals. We identified 301 four independently associated genes; RPS26, C12orf49, SUOX, and RDH16. We also identified 302 two further genome-wide significant gene-tissue associations, both in brain tissues; REEP5, in the dorso-lateral pre-frontal cortex (DLPFC; p=8.52x10⁻⁰⁷), and *CUL3*, in the caudate basal 303 ganglia (p=1.8x10⁻⁰⁶). These genes are significantly enriched for associations with 304 305 anthropometric phenotypes in the UK BioBank, as well as multiple psychiatric, addiction, and

- 306 appetite/satiety pathways. Our results support a model of AN risk influenced by both metabolic
- 307 and psychiatric factors.

308 Introduction

Anorexia nervosa (AN) is a serious neuropsychiatric disorder presenting with low body weight, a fear of weight gain or behaviours that interfere with weight gain, and a lack of recognition of the seriousness of the illness- AN has the highest mortality rate of any psychiatric disorder¹, and ranks among the leading cause of disability in young women worldwide. Despite this, little is known about the biological mechanisms underlying AN development, and few effective therapies and medications are available.

315

316 Findings from genetic and epidemiological research have encouraged broadening our 317 conceptualization of the aetiology of AN beyond purely psychiatric causes to incorporate 318 metabolic and other somatic factors in risk models. Recently, genome-wide association studies have revealed the first significantly associated genomic locus for anorexia nervosa², as well as a 319 number of promising sub-threshold associations^{3–5}, and intriguing pathway associations. Results 320 321 have implicated genes with both psychiatric and metabolic relevance, while polygenic risk score 322 analyses and LD-Score approaches have revealed significant genetic overlap with psychiatric. 323 metabolic and autoimmune diseases, as well as anthropometric traits.

324

The research findings underscore clinical observations as individuals with AN have an uncanny 325 326 ability to reach and maintain extraordinarily low body mass indices (BMI) and after successful renourishment, their bodies often quickly revert to what may be an abnormally low set point². 327 328 Other observations include that individuals with AN tend to find eating aversive, and feelings of 329 fullness unpleasant; dieting, restricting, and binge-purge behaviours tend to alleviate 330 uncomfortable or painful associations with fullness in these individuals and reduce anxiety⁶. Although aversion to fullness and low appetite could be driven by dysfunction of 331 neurobiological satiety pathways or altered levels of orexigenic hormones⁷, it is also possible 332 333 that specific metabolic or gastric dysfunction enables and perpetuates dieting behaviours.

334

335 Transcriptomic Imputation (TI) provides an opportunity to test the involvement of metabolic, 336 endocrine, adipose, and gastrointestinal (GI) tissues, as well as brain tissues, in the 337 development of AN. These approaches leverage well curated eQTL panels to create predictors of genetically regulated gene expression (GREX)⁸⁻¹⁰. These predictors may be applied to large 338 groups of genotyped individuals, to identify case-control associations with predicted differential 339 340 gene expression. This approach circumvents many of the complications inherent in traditional transcriptomic analysis; for example, the need to collect large number of inaccessible tissues, 341 which is particularly complicated in studies of early-onset psychiatric disorders¹¹. Further, the 342 prediction of genetically-regulated gene expression means that there is no ambiguity in 343 344 direction of effect; unlike in RNA-seq studies, where changes in gene expression may result 345 from medication, diet, exercise, or environmental exposures, genetically regulated gene expression necessarily precedes disease onset⁸. 346

347

348 An intriguing aspect of transcriptomic imputation is the opportunity to calculate predicted gene 349 expression in a tissue-specific manner, and to use this to further inform our understanding of 350 disease aetiology. In this study, we used gene expression predictor models for 13 brain regions (derived from CMC^{12,13} and GTEX^{8,14} data), as well as fifteen gastrointestinal, endocrine, and 351 352 adipose tissues, and compared patterns of gene expression changes between cases and 353 controls. We identified 37 significant gene-tissue associations, constituting eleven independent 354 signals. These genes together explained 2.38% of the phenotypic variance in our study, 355 including substantial proportions of variance explained by genes in brain tissues (51.5%), 356 gastrointestinal tissues (16.01%), endocrine (18.6%), and adipose tissues (13.9%), supporting 357 our theory of both psychiatric and metabolic contributions to AN risk. We identify genes with 358 intriguing patterns of association with anthropometric traits; for example, seven of our gene-359 tissue associations are also significantly associated with BMI, weight, and waist circumference 360 in the UK BioBank.

362 Methods

363 Samples

364 Genotype data were obtained from the PGC-ED collection. These data included 3,495 cases and 10.982 ancestry-matched controls². Detailed diagnostic criteria used are described in the PGC-365 366 ED GWAS of these data². Briefly, cases include individuals with lifetime diagnoses of either AN (including both binge-purge and restrictive subtypes) or "eating disorder not other specified 367 368 (EDNOS)". AN subtype, A small number of individuals with bulimia nervosa diagnoses were also 369 included if they also had histories of AN. Amenorrhoea was not required for diagnosis, as it does not increase diagnostic specificity^{15–17}. Exclusion criteria included schizophrenia, 370 371 intellectual disability, and medical and neurological conditions which may cause weight loss.

372

373 Transcriptomic Imputation

We imputed genetically regulated gene expression (GREX) using the CommonMind Consortium derived Dorso-lateral pre-frontal cortex (CMC DLPFC) predictor database¹², as well as GTeXderived predictor databases including 12 brain regions, four endocrine tissue, eight gastrointestinal/digestive tissues, and subcutaneous adipose tissue^{8,14} (Table 1). We imputed GREX in all cohorts for which we had access to raw data using PrediXcan⁸.

379

We tested for association between GREX and case-control status in each cohort separately, using a standard linear regression test in R. We included ten principal components as covariates to correct for population stratification. Principal components were calculated from genotype data. Raw genotype-based and summary-statistics based cohorts were meta-analysed using an odds-ratio based approach in METAL¹⁸.

385

386 Establishing a threshold for genome-wide significance

We applied two significance thresholds to our data. First, we applied a threshold for each tissue, correcting for the number of genes tested within that tissue (Table 1). Second, we applied a stricter, overall threshold, correcting for all genes tested across all tissues simultaneously (234,896 tests in total, $p=2.31 \times 10^{-7}$).

- 391 GREX is highly correlated across tissues^{14,19}, and consequently the tests across different tissues 392 are not independent. A Bonferroni correction may therefore be overly conservative, and under-393 estimate the true degree of association in this study.
- 394

395 Identifying independent associations

We identified a number of genomic regions with multiple associations, as well as genes with significant associations across multiple tissues. In particular, we identified a very large number of gene-tissue associations (35 significant gene-tissue associations), in the same chromosome 12 locus identified in a recent GWAS by the PGC-ED group²⁰.

400

We applied two methods to identified independent signals in these complex genomic regions. First, in regions with a small number of associated gene-tissue pairs (<5), we used "CoCo", an extension to GCTA-CoJo²¹. Briefly, CoCo applies the same stepwise forward conditional analysis as in GCTA-CoJo, but allows specification of a custom linkage disequilibrium (LD) or correlation matrix instead of obtaining LD from a reference panel. Here, we calculated a GREX correlation matrix used this as the correlation matrix input to CoCo.

407

We used FINEMAP²², a shotgun stochastic search algorithm which identifies and ranks plausible causal configurations for a region, to disentangle the complex gene-tissue association patterns on chromosome 12. As for CoCo, we substituted a GREX correlation matrix in place of the standard LD-matrix input file. We constructed a 95% credible set from probable configurations specified by FINEMAP in order to identify significant gene-tissue associations within the region.

413

Additionally, we visually inspected patterns of correlation among the 35 gene-tissue associations in the chr12 locus using the 'heatmap.2' function in the 'gplots' R package²³, and identified distinct clusters of GREX within this heatmap using a dendrogram cut at height 4.

- 417
- 418
- 419

420 **Proportion of variance explained by tissue**

421 We calculated the proportion of phenotypic variance in our study jointly explained by all genes 422 reaching $p<1x10^{-04}$ in our analysis. We corrected for ten principal components and study 423 variables using a nested model.

424

425 We divided gene-tissue associations four categories; endocrine, into brain, 426 gastrointestinal/digestive, and subcutaneous adipose tissue. We used a series of nested models 427 to calculate the variance explained by gene-tissue associations for each category. For example, 428 the amount of variance explained by adipose-gene associations was calculated as the difference 429 between the variance explained by all genes, and the variance explained by all genes except 430 those associated in adipose tissue (egn 1).

431

432 Equation 1: Nested model to calculate proportion of variance explained by adipose tissue

$$Var_{Adipose} = Var_{All genes} - Var_{All genes except adipose}$$

433

434 UK BioBank analysis

We obtained publicly available GWAS summary statistics for the UK BioBank sample^{24,25}. We analyzed summary statistics relating to three anthropometric traits; BMI (336,107 individuals), weight (in kg; 336,227 individuals), and waist circumference (in cm; 336,639 individuals). We obtained distributions of each trait from the UK BioBank search portal²⁶ (Suppl. Table 1).

439

Descriptions of phenotype curation, quality control, and association models used for the UK BioBank sample are available elsewhere²⁵. Briefly, quantitative traits within the sample were normalized using a rank-based inverse normal transform (INRT) prior to analysis, and analysis was carried out using a linear regression. Beta values from these associations correspond not to the 'unit' of the original trait (e.g., cm or kg), but to the 'unit' of the INRT, i.e., the standard deviation of the original trait distribution. We confirmed this by simulating distributions matching the UK Biobank traits in R, and performing an INRT on each trait.

We used MetaXcan²⁷, a summary statistic based software analogous to PrediXcan, to compute gene-tissue associations for genes with $p<1x10^{-04}$ in our prediXcan PGC-ED analysis. In order to compare association statistics between our PGC-ED and UK BioBank studies, we normalized betas to account for the variance of a gene's GREX within each study.

452

453 Pathway Analysis

Pathway analysis was carried out using an adaptation to MAGMA²⁸. We manually assigned prediXcan genic p-values to genes in order to carry out only the gene-set enrichment analysis in MAGMA. We used Bonferroni-corrected prediXcan p-values as input for our MAGMA analyses, in three stages; first, a Bonferroni-correction for the overall best p-value for each gene across tissues; second, for the best p-value across brain regions; third, for the best p-value across nonbrain tissues.

460

We carried out two sets of pathway analysis. First, we tested a subset of pathways for which we had prior hypotheses of involvement with psychiatric disorders^{29,30}, as well as genesets related to orexigenic hormones, hunger, and satiety. Second, we carried out an agnostic pathway enrichment test including ~8,500 pathways obtained from publicly available databases, including KEGG^{31,32}, GO³³, REACTOME³⁴, PANTHER^{35,36}, BIOCARTA³⁷, and MGI³⁸. We included only gene sets with at least 10 genes. Gene set enrichment results from the "competitive" MAGMA analysis were used, and an FDR-correction applied within each stratum of our analysis.

468

469

471 Results

472 Association Tests

We calculated predicted gene expression for thirteen brain regions, four endocrine tissues, eight gastrointestinal and digestive tissue, and subcutaneous adipose tissue (derived from CMC and GTEx data^{8,14,19,39}) in 3,495 cases and 10,982 controls from the PGC-ED consortium, and tested for association between predicted gene expression (GREX) and case-control status.

477

478 We identified 37 significant gene-tissue associations, and a further 22 sub-threshold associations ($p < 1 \times 10^{-04}$; Suppl. Table 2). The majority of the significant associations (35/37) 479 correspond to the only known genome-wide significant locus for AN²⁰. We used FINEMAP²² to 480 identify independent signals within this region. We identified 12 likely gene-tissue associations 481 482 within this region, including four unique genes; SUOX, RPS26, RDH16, and C12orf49 (Suppl. 483 Table 3). Visual inspection (Suppl. Figure 1) and hierarchical clustering (Suppl. Figure 2) of GREX 484 correlation patterns within this region indicate three distinct groups of associated genes, and 485 follow our FINEMAP results closely.

486

487 We identified two additional genome-wide significant gene-tissue associations (Table 2). First, a region on chromosome two with three gene-tissue associations; increased expression of CUL3 488 in the caudate basal ganglia ($p=1.86 \times 10^{-06}$), and increased expression of WDFY1 and FAM124B. 489 in adipose tissue ($p=6.11x10^{-05}$, $6.73x10^{-05}$, respectively). We applied a stepwise forward 490 conditional analysis in CoCo (following GCTA-COJO), using GREX correlations for all three genes 491 492 (Suppl. Table 4). Neither adipose tissue association remained significant after conditioning on 493 CUL3-Caudate (p=0.042, 0.25, respectively). Second, we identified decreased expression of *REEP5* in the DLPFC ($p=8.34 \times 10^{-07}$), and in the adrenal gland ($p=6.68 \times 10^{-05}$); conditioning *REEP5*-494 495 adrenal on *REEP5*-DLPFC completely ameliorates the signal (p=0.085).

496

497 Additionally, we identified 22 sub-threshold associations ($p<1x10^{-04}$), including 17 independent 498 associations after stepwise conditional analysis (Table 2). In particular, we identified two genes 499 on chromosome 10 with decreased expression in the small intestine and colon (*MGMT*-small intestine, *MGMT*-pituitary, and *FOXI2*-colon), and two genes with increased brain expression on
chromosome 17 (Supplementary table 2; *YWHAE*-hypothalamus, *NTN1*-nucleus accumbens).

503 **Comparing Tissue types**

Jointly, the genetically regulated gene expression (GREX) of our 28 gene-tissue associations ($p<1x10^{-04}$) explain 2.38% of the phenotypic variance in our study. The majority of this variance (51.5%) was explained by brain-gene associations, followed by endocrine (18.6%), gastrointestinal/digestive (16.01%), and adipose tissues (13.9%).

508

509 Associations with anthropometry

510 We used publicly available GWAS summary statistics from the UK BioBank to test whether our 511 AN associated genes were associated with anthropometric phenotypes such as BMI, weight, 512 and waist circumference. We used a summary-statistics based approach analogous to 513 predixcan⁴⁰ ("MetaXcan") to identify gene-tissue associations across all three traits, for all 514 genes reaching $p<1x10^{-04}$ in our analysis.

515

516 Three genes within our chromosome twelve locus were significantly associated with at least 517 one anthropometric phenotype in the UK BioBank sample (Table 3). The direction of effect was epidemiologically consistent with our prediXcan analysis across all genes. For example, 518 increased expression of SUOX in the colon, esophagus and spleen results in increased BMI 519 (~0.04 BMI units/unit of gene expression; p<1.28x10⁻⁰⁷), increased weight (~0.135kg/unit of 520 gene expression; p<5.8x10⁻⁰⁸) in the UK BioBank, and decreased risk of AN in PGC-ED 521 (OR=0.98/unit of gene expression; $p < 5 \times 10^{-07}$) (Figure 2A). Similarly, increased expression of 522 RPS26 and RDH16 across multiple tissues is associated with increased AN risk, decreased BMI, 523 524 decreased waist circumference, and decreased weight (Figure 2B).

525

526 Increased expression of *REEP5* is associated with increased weight ($p<2x10^{-08}$) and decreased 527 AN risk. Three sub-threshold AN genes (*BARX1, MGMT, TRIM38*) are also associated with BMI 528 ($p<2 x10^{-13}$), weight ($p<2x10^{-07}$), and waist circumference ($p=1.35x10^{-08}$), again with highly

significant concordance of direction of effect between studies. Three sub-threshold associated
genes, *BARX1*, *MGMT*, *TRIM38*, also follow this pattern of association.

531

This degree of shared signal and concordance of direction of effect is highly unlikely to occur by 532 chance (binomial test $p=2.39 \times 10^{-270}$). Interestingly, of the seven genes within our study that are 533 associated with BMI, weight, and waist circumference within the UK BioBank, six are associated 534 535 with AN in gastrointestinal tissues. The only brain-tissue based associated gene, REEP5, is an 536 olfactory gene with a potential role in taste and appetite. Although it is difficult to draw firm 537 conclusions given the small set of genes tested and the limited sample size of our study, these 538 results suggest that gene expression changes in metabolic tissues are more likely to have 539 general relevance for anthropometry and weight maintenance.

540

541 **Pathway analysis**

542 We performed pathway analyses on our AN prediXcan results across (1) all tissues, (2), brain 543 tissues, and (3) all non-brain tissues. For each set of results, we tested 174 gene sets with prior 544 hypotheses for involvement in psychiatric disorders, and ~8,500 pathways obtained from 545 publicly available databases.

546

Using the best p-value across all tissues, we identified 17 significantly enriched pathways (fdrcorrected p-value<0.05; Table 4). These include multiple calcium-gated voltage channel pathways (p<0.002), axon guidance (p= 1.07×10^{-04}), Wnt signalling (9.93× 10^{-04}), the postsynaptic density (0.003), targets of the FMRP protein⁴¹⁻⁴⁵ (p=0.003), as well as gene sets corresponding to neurological disease such as Alzheimer's, Huntington's, and Prion Disease (p<0.007). We also noted enrichment of a pathway related to circadian entrainment (p=0.0013).

554

555 Interestingly, genes involved in synthesis secretion and deacylation of ghrelin were significantly 556 enriched within our results (p=0.0011). Examining individual genes within this pathway 557 indicates that no single gene is driving the association; rather, the pathway includes multiple

sub-threshold associations across *KLF4*, *BCHE*, *IGF1*, *SPCS2*, *ACHE*, *PCKS1*, and *SPSC3*. Taken together, these associations indicate lower baseline ghrelin expression in individuals with AN than in controls. For example, AN cases have lower GREX of *KLF4*, *SPCS2* and *SPCS3*, all of which stimulate ghrelin secretion⁴⁶. AN cases also have increased expression of *ACHE*, *IGF1*, *PCSK1*, and *BCHE*, which inhibit ghrelin expression^{47–49}. We also noted that GREX of ghrelin (GHRL) was lower in AN cases than controls across 11/12 tissues tested.

564

565 Using exclusively brain-gene association statistics as an input to our MAGMA analysis resulted 566 in 51 significantly enriched pathways. 35/51 pathways were from the hypothesis-driven test; these included circadian entrainment ($p=2.6 \times 10^{-04}$), addictive behaviors (nicotine, alcohol, 567 cocaine, and morphine dependence, p<0.0045), calcium-gated voltage channels, and a large 568 569 number of pathways related to processes in the post-synaptic density (Table 4), in line with pathway results from other psychiatric disorders^{10,30,50,51}. A further 25 significantly enriched 570 pathways were identified in the agnostic analysis, including further evidence of circadian 571 entrainment ($p=1.39 \times 10^{-06}$), long-term potentiation ($p=4.44 \times 10^{-06}$), as well as multiple pathways 572 implicating ear and neuronal system development in mice ($p < 1.2 \times 10^{-04}$). We noted enrichment 573 in cyclic-AMP metabolism pathways ($p < 9.3 \times 10^{-05}$). This pathway includes dopamine receptor 574 gene DRD1 ($p=8.85 \times 10^{-05}$), and DRD5 ($p=3.5 \times 10^{-04}$), two receptors which are part of the 575 dopaminergic pathways affected by ghrelin in the VTA and nucleus accumbens^{52,53}, as well as 576 GCG (Glucagon; $p=1.3 \times 10^{-03}$), and APOE ($p=1.0 \times 10^{-03}$) which is associated with risk for 577 Alzheimer's disease. CREB phosphorylation through activation of CaMKII pathway was enriched 578 in our results ($p=5.25 \times 10^{-05}$). This pathway includes *AKAP9* ($p=2.1\times 10^{-04}$), which regulates levels 579 580 of cAMP activity in the brain, and co-localizes with NMDA receptor NR1 which in certain brain regions is involved in appetite and weight regulation 54-56, as well as *GRIN2B* (p=5.1x10⁻⁰⁴), which 581 is associated with neurite outgrowth and risky decision making^{57,58}. 582

583

584 Excluding brain-gene associations statistics from our pathway analysis results in only one 585 subthreshold association ($p=3.2x10^{-04}$; fdr-corrected p-value 0.06) in our hypothesis-driven 586 pathway analysis, concerning circadian rhythms (albeit through a different pathway than

- 587 identified in the brain-only analysis). Our agnostic pathway analysis identified only one
- 588 significant association, with hyaluronic acid binding $(p=2.32 \times 10^{-08})$.

597 **Discussion**

598 AN is a complex and serious neuropsychiatric disorder, with one of the highest mortality rates 599 of any psychiatric disorder. As our research into the aetiology of AN develops and grows, we 600 identify increasing levels of complexity and heterogeneity; for example, recent GWAS studies, 601 LDScore analysis, and epidemiological evidence indicates both psychiatric and metabolic risk 602 factors for the disorder.

603

Here, we used gene expression prediction models for brain, gastrointestinal/digestive, endocrine, and adipose tissues to predict genetically regulated gene expression (GREX) in 3,495 individuals with anorexia nervosa (AN) and 10,982 controls. We identified 12 independent gene-tissue associations reaching tissue-specific significance, the majority of which lie in the same chromosome 12 locus identified in a recent AN GWAS²⁰. In line with our hypothesis of both psychiatric and metabolic risk having a role in AN, we identified genes with differential expression in endocrine and gastrointestinal/digestive tissues, as well as in brain.

611

612 We calculated the phenotypic variance explained by the genetically regulated expression of 613 these 28 genes, and used a nested model to partition the variance according to tissue type. Jointly, these explain 2.38% of the phenotypic variance in our study. The majority of this 614 615 variance (51.5%) was explained by brain-gene associations, followed by endocrine (18.6%), 616 gastrointestinal/digestive (16.01%), and adipose tissues (13.9%). The proportion of variance explained by brain- and endocrine-gene associations is in line with the proportion of tests 617 618 carried out in each tissue (46.3% and 16.8%, respectively). Gastrointestinal/digestive genes 619 explain significantly less variance than we would expect given the large proportion of test performed (16.01% vs. 32.3%, binomial test, p=3.6x10⁻⁰⁴), while adipose tissue-genes explain 620 significantly more variance than we would expect (13.9% vs. 4.6%, $p=2x10^{-04}$). This enrichment 621 of signal within adipose tissue is of particular interest given the demonstrated overlap between 622 adiposity and disordered eating patterns⁵⁹, AN risk factors^{60–62}, and clinical outcomes^{63,64}, as 623 624 well as our findings relating AN risk genes to anthropometric traits in the UK Biobank.

However, these calculations are based on the assumption that all gene-tests are independent; in fact, we note high correlation of GREX between tissues, including a large number of co-linear genes and tissues. The number of independent tests carried out is therefore likely to be substantially lower than the number of tests used in our estimate, perhaps explaining why gastrointestinal/digestive genes explain less variance than we would expect.

631

632 Among our gene-tissue associations are a number of genes which may be of particular interest. 633 For example, decreased expression of *REEP5* in the DLPFC is associated with increased risk of AN. *REEP5* is a receptor accessory protein which promotes expression of olfactory receptors⁶⁵. 634 635 Reep5, together with RTP1 and RTP2, is required for cell surface expression of odorants, and is 636 primarily expressed in olfactory neurons. The DLPFC has a high localized concentration of olfactory neurons, and DLPFC volume is decreased in anosmic individuals⁶⁶. Olfaction is of 637 638 particular interest in eating disorders given its role in taste and desire for food, as well as in a number of neurological disorders such as Alzheimer's and Parkinson's^{67,68}. Individuals with AN 639 have high rates of reported hyposmia and anosmia^{67,69–72}, and perform poorly in odor 640 641 discrimination tests, compared to healthy controls. Importantly, odor discrimination ability and hyposmic status correlates more strongly with BMI than with any specific disordered eating 642 behavior, even among individuals with AN⁷³. Previous studies have also demonstrated 643 644 differential expression of olfactory genes following eight restoration in individuals with Anorexia Nervosa⁷⁴. In line with this, we identified a direct correlation between *REEP5* 645 646 expression and body weight in the UK BioBank; each additional unit of gene expression 647 corresponds to \sim 140 g additional body weight, and an AN OR of 0.85. Taken together these 648 results suggest that REEP5 may have a general role in body size and BMI through altered 649 olfactory cues, and may be of interest to researchers studying appetite and satiety, as well as 650 obesity, normal variation in BMI, and AN. REEP5 has also been implicated in major depressive disorder and antidepressant response in previous studies⁷⁵. 651

We identified four significantly associated genes within our complex chromosome 12 locus. Three of these genes (*SUOX, RPS26, RDH16*) are significantly associated with AN across a range of gastrointestinal tissues (Figure 1), and have highly correlated expression across almost all

655 non-brain tissues tested. All three of these genes are significantly correlated with 656 anthropometric traits in the UK BioBank analysis (Figure 2), and all have consistent directions of 657 effects with our AN prediXcan analysis: that is, the change in expression which increases body 658 size also decreases AN risk.

Little is known about the function of *C12orf49*, the fourth gene in this locus, although SNPs within the gene have also previously been associated with BMI, waist circumference, and waisthip ratio⁷⁶. Taken together, this evidence implies that the locus on chromosome 12 is likely to be generally associated with BMI and body size, rather than any specific eating disordered behaviours. The fine-mapping and characterization of this locus supports our hypothesis of a role for metabolic dysregulation in AN.

665

Increased expression of *CUL3* (Cullin 3) in the caudate basal ganglia was associated with increased risk of AN in our study (OR=1.07). Dysregulation of *CUL3* is associated with pseudohypoaldosteronism⁷⁷, a disorder characterized by sodium imbalance in the body and often presenting with low body weight. Mutations in *CUL3* are associated with schizophrenia⁷⁸, autism⁷⁹ and non-response to anti-depressants⁸⁰. Variants lying near to *CUL3* were identified in the first GWAS of AN, although these did not reach genome-wide significance⁸¹.

672

673 Among our subthreshold gene-tissue associations, we identified a number of genes previously associated with psychiatric^{13,78} and neurological disorders (for example, FURIN^{13,78,82}, 674 ADAMTS9⁸³⁻⁸⁶, MGMT^{86,87}, SMDT1⁷⁸, TMEM108⁸⁸), as well as with abnormal behavioural 675 responses in knock-out mice models^{38,89–91} (ADAMTS9, CITED4, FOXI2, FURIN, SMDT1, 676 677 TMEM108). We also noted a number of genes with prior associations with anthropometric traits, both in humans (ADAMTS9^{92,92-96}, MGMT^{94,97,98}) and in mice^{38,89-91} (CITED4, FOXI2, 678 679 FURIN, RDH16, SMDT1, TMEM108), as well as genes associated with gastric and esophageal complaints (BARX1⁹⁹) in humans, and abnormal defecation patterns in mice^{38,89–91,100} (RDH16, 680 CITED4), and with disorders and traits known to be comorbid with AN ($TMEM108^{101-104}$). 681

683 Our pathway analysis identified a large number of significantly enriched pathways. In particular, 684 multiple pathways indicate a role for the post-synaptic density (including PSD95, targets of the 685 FMRP protein, glutamate receptor genes, among others), which has previously been implicated 686 in other psychiatric disorders. Four pathways are associated with addiction and addictive 687 behaviours, including nicotine addiction, alcoholism, cocaine addiction, and amphetamine 688 addiction. Illicit drug use is significant enriched among individuals with eating disorders, in 689 particular AN¹⁰⁵, although this is, to our knowledge, the first study identifying shared genetic 690 risk factors.

691

692 Circadian entrainment and clock genes are highly enriched among our data. Longstanding 693 hypotheses implicated disrupted circadian rhythms in a range of mood disorders, particularly 694 depression and bipolar disorder^{106–108}. Further, behavioural patterns in individuals with AN (for 695 example excessive exercise^{109–111} and lack of sleep) have long provided epidemiological 696 evidence for circadian rhythm disruption in AN. Circadian rhythms may also have a role is 697 regulating appetite and satiety pathways^{7,112,113}.

698

699 Our analysis also implicates pathways concerning taste and olfactory transduction, as well as 700 ghrelin secretion. Ghrelin is an orexigenic hormone with a documented role in appetite and satiety¹¹⁴⁻¹¹⁸ as well as in gut motility¹¹⁷⁻¹¹⁹. Our results suggest that individuals with AN may 701 have decreased circulating ghrelin levels due to increased genetically regulated expression of 702 ghrelin inhibitors, and decreased GREX of Ghrelin stimulators. Ghrelin enhances appetite and 703 704 increases food intake in humans; lowered baseline circulating ghrelin levels may begin to explain decreased hunger and desire for food in individuals with AN. Previous studies have 705 documented dysregulation of ghrelin, leptin and glucagon in individuals with AN¹²⁰. However, 706 707 these studies are by definition performed after long periods of starvation or food restriction. 708 meaning that causation is difficult to disentangle from consequences of eating disordered 709 behaviours; it is likely that the increased ghrelin levels seen in these studies is a consequence of 710 long-term fasting, rather than causative. In this study, we assess only genetically regulated gene 711 expression (GREX), meaning that any associations identified are not affected by diet or environment. Instead, these results may indicate an altered "baseline" level of circulatingghrelin in individuals with AN.

714 There are a number of limitations that should be taken into account. First, the sample size of our study is small, especially compared to GWAS sample sizes in other psychiatric 715 disorders^{121,122}. It is likely that increasing sample size substantially will yield many new insights 716 into the aetiology of anorexia nervosa, and that current sub-threshold associations may lose 717 718 significance as sample size increases. Similarly, transcriptomic imputation approaches rely on 719 large, well-curated reference panels in order to build GREX predictor models; here, we have used reference panels constructed from GTeX^{8,14} and CommonMind Consortium data^{10,13}, 720 including the largest collections of publicly available post-mortem brain tissues. We have shown 721 722 previously that there is a significant correlation between the sample sizes used to construct 723 these predictors and the number of genes included in each predictor database, and that a number of these databases are therefore likely underpowered¹⁰. 724

725

Our analysis highlights the need for greater investigation into the complex aetiology of anorexia nervosa. Transcriptomic Imputation allows us to identify significant gene-tissue associations with anorexia nervosa, and indicates an excess of signal in adipose tissue. It is clear from these results that both psychiatric and metabolic risk factors play a role in AN risk; these factors should be carefully considered in the design of future studies, as well as in how AN is perceived and considered by clinicians treating individuals with AN.

733 References

734 Bulik, C. M., Slof-Op't Landt, M. C. T., van Furth, E. F. & Sullivan, P. F. The genetics of 1. 735 anorexia nervosa. Annu. Rev. Nutr. **27,** 263–275 (2007). 736 2. Duncan, L. et al. Significant locus and metabolic genetic correlations revealed in genome-737 wide association study of anorexia nervosa. Am. J. Psychiatry 174, 850–858 (2017). 738 Boraska, V. et al. A genome-wide association study of anorexia nervosa. Mol. Psychiatry 3. 739 **19,** (2014). 740 Huckins, L. M. et al. Investigation of common, low-frequency and rare genome-wide 4. variation in anorexia nervosa. Mol. Psychiatry (2017). doi:10.1038/mp.2017.88 741 742 Hinney, A. *et al.* Evidence for three genetic loci involved in both anorexia nervosa risk 5. 743 and variation of body mass index. *Mol. Psychiatry* **22**, (2017). 744 6. Avena, N. M. & Bocarsly, M. E. Dysregulation of brain reward systems in eating disorders: 745 neurochemical information from animal models of binge eating, bulimia nervosa, and 746 anorexia nervosa. *Neuropharmacology* **63**, 87–96 (2012). 747 Fabbri, A. D. et al. Ghrelin and eating disorders. Arch. Clin. Psychiatry (São Paulo) 42, 52-7. 748 62 (2015). 749 Gamazon, E. R. et al. A gene-based association method for mapping traits using 8. 750 reference transcriptome data. Nat. Genet. 47, 1091-8 (2015). 751 Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association 9. 752 studies. Nat. Genet. 48, 245-52 (2016). 753 Huckins, L. M. et al. Gene expression imputation across multiple brain regions reveals 10. 754 schizophrenia risk throughout development. bioRxiv 222596 (2017). doi:10.1101/222596 755 11. De Marco, M. C. et al. Assessment of the capacity to express informed consent for organ 756 donation in patients with schizophrenia. J. Forensic Sci. 55, 669–676 (2010). 757 12. Laura M. Huckins. Gene expression imputation across multiple brain regions reveals 758 schizophrenia risk throughout development. Nat. Genet. 759 Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for 13. 760 schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016). 761 14. Ardlie, K. G. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science (80-.). 348, 648–660 (2015). 762 Watson, T. L. & Andersen, A. E. A critical examination of the amenorrhea and weight 763 15. 764 criteria for diagnosing anorexia nervosa. Acta Psychiatr. Scand. 108, 175–182 (2003). 765 16. Gendall, K. A. et al. The psychobiology and diagnostic significance of amenorrhea in 766 patients with anorexia nervosa. Fertil. Steril. 85, 1531–1535 (2006). 767 17. Garfinkel, P. E. et al. Should amenorrhoea be necessary for the diagnosis of anorexia 768 nervosa? Evidence from a Canadian community sample. Br. J. Psychiatry 168, 500–506 769 (1996). 770 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 18. 771 genomewide association scans. *Bioinformatics* **26**, 2190–2191 (2010). 772 Mele, M. et al. The human transcriptome across tissues and individuals. Science (80-.). 19. 773 348.660-665 (2015). 774 Duncan, L. et al. Genome-Wide Association Study Reveals First Locus for Anorexia 20. 775 Nervosa and Metabolic Correlations. *bioRxiv* (2016).

	• •	
776	21.	Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide
777	22	complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
778	22.	Benner, C. <i>et al.</i> FINEMAP: Efficient variable selection using summary data from genome-
779	22	wide association studies. <i>Bioinformatics</i> 32 , 1493–1501 (2016).
780	23.	Warnes, A. G. R. <i>et al.</i> Package 'gplots'. (2016).
781 782	24. 25	Lab), (Rivas. Global Biobank Engine. <i>Stanford, CA</i> (2017). at <http: gbe.stanford.edu=""></http:>
782	25.	Nealelab. UK_Biobank_GWAS. (2017).
783	26.	BioBank), (UK. UK BioBank search. (2017). at
784 785	77	<pre><http: biobank.ctsu.ox.ac.uk="" crystal="" search.cgi=""></http:></pre>
785 786	27.	Barbeira, A. <i>et al.</i> MetaXcan: Summary Statistics Based Gene-Level Association Method
786 787	20	Infers Accurate PrediXcan Results. <i>bioRxiv</i> (2016).
787 700	28.	de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set
788 789	29.	analysis of GWAS data. <i>PLoS Comput. Biol.</i> 11, e1004219 (2015). Kirov, G. <i>et al.</i> De novo CNV analysis implicates specific abnormalities of postsynaptic
789	29.	signalling complexes in the pathogenesis of schizophrenia. <i>Mol. Psychiatry</i> 17, 142–53
790 791		(2012).
792	30.	Pardiñas, A. F. <i>et al.</i> Common schizophrenia alleles are enriched in mutation-intolerant
793	50.	genes and maintained by background selection. <i>bioRxiv</i> 68593 (2016).
794		doi:10.1101/068593
795	31.	Kanehisa, M. <i>et al.</i> Data, information, knowledge and principle: back to metabolism in
796	51.	KEGG. Nucleic Acids Res. 42, D199-205 (2014).
797	32.	Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. <i>Nucleic Acids</i>
798	52.	<i>Res.</i> 28, 27–30 (2000).
799	33.	The Gene Ontology Consortium. Gene Ontology Consortium: going forward. <i>Nucleic Acids</i>
800		<i>Res.</i> 43, D1049-1056 (2014).
801	34.	Croft, D. <i>et al.</i> The Reactome pathway knowledgebase. <i>Nucleic Acids Res.</i> 42, D472-7
802		(2014).
803	35.	Thomas, P. D. <i>et al.</i> PANTHER: a library of protein families and subfamilies indexed by
804		function. <i>Genome Res.</i> 13, 2129–2141 (2003).
805	36.	Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of
806		gene function, and other gene attributes, in the context of phylogenetic trees. <i>Nucleic</i>
807		Acids Res. 41, D377-86 (2013).
808	37.	BioCarta. MSigDB Collections. (2017).
809	38.	MGI-About the Mouse Genome Informatics database resource. at
810		<http: aboutmgi.shtml="" mgihome="" projects="" www.informatics.jax.org=""></http:>
811	39.	(GTex Consortium). GTEx Portal. (2015). at
812		<http: documentationpage="" gtexportal.org="" home=""></http:>
813	40.	Barbeira, A. N. <i>et al</i> . Exploring the phenotypic consequences of tissue specific gene
814		expression variation inferred from GWAS summary statistics. Nat. Commun. In Press,
815		(2018).
816	41.	Darnell, J. C. <i>et al.</i> FMRP stalls ribosomal translocation on mRNAs linked to synaptic
817		function and autism. <i>Cell</i> 146, 247–61 (2011).
818	42.	Ascano, M. et al. FMRP targets distinct mRNA sequence elements to regulate protein
819		expression. <i>Nature</i> 492, 382–6 (2012).

820	43.	Callan, M. A. & Zarnescu, D. C. Heads-up: new roles for the fragile X mental retardation
821		protein in neural stem and progenitor cells. <i>Genesis</i> 49, 424–40 (2011).
822	44.	Fromer, M. <i>et al.</i> De novo mutations in schizophrenia implicate synaptic networks.
823		Nature 506, 179–184 (2014).
824	45.	lossifov, I. <i>et al.</i> De novo gene disruptions in children on the autistic spectrum. <i>Neuron</i>
825		74, 285–99 (2012).
826	46.	Lee, H. J. <i>et al</i> . KLF4 positively regulates human ghrelin expression. <i>Biochem. J.</i> 420, 403–
827		411 (2009).
828	47.	Murtuza, M. I. & Isokawa, M. Endogenous ghrelin-O-acyltransferase (GOAT) acylates
829		local ghrelin in the hippocampus. <i>J. Neurochem.</i> (2017). doi:10.1111/jnc.14244
830	48.	Chen, V. P., Gao, Y., Geng, L. & Brimijoin, S. Butyrylcholinesterase regulates central
831		ghrelin signaling and has an impact on food intake and glucose homeostasis. Int. J. Obes.
832		41, 1413–1419 (2017).
833	49.	Broglio, F. et al. Acetylcholine Regulates Ghrelin Secretion in Humans. J. Clin. Endocrinol.
834		Metab. 89, 2429–2433 (2004).
835	50.	Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic
836		signalling complexes in the pathogenesis of schizophrenia. <i>Mol. Psychiatry</i> 17, 142–53
837		(2012).
838	51.	Huckins, L. et al. Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes
839		reveals 29 novel associated genes. <i>bioRxiv</i> 222786 (2017). doi:10.1101/222786
840	52.	Naleid, A. M., Grace, M. K., Cummings, D. E. & Levine, A. S. Ghrelin induces feeding in the
841		mesolimbic reward pathway between the ventral tegmental area and the nucleus
842		accumbens. <i>Peptides</i> 26, 2274–2279 (2005).
843	53.	Brunetti, L. <i>et al</i> . Effects of ghrelin and amylin on dopamine, norepinephrine and
844		serotonin release in the hypothalamus. <i>Eur. J. Pharmacol.</i> 454, 189–192 (2002).
845	54.	Piggott, L. A., Bauman, A. L., Scott, J. D. & Dessauer, C. W. The A-kinase anchoring protein
846		Yotiao binds and regulates adenylyl cyclase in brain. (2008).
847	55.	Lin, J. W. <i>et al.</i> Yotiao , a Novel Protein of Neuromuscular Junction and Brain That
848		Interacts with Specific Splice Variants of NMDA Receptor Subunit NR1. 18, 2017–2027
849		(2017).
850	56.	Wu, Q., Clark, M. S. & Palmiter, R. D. Deciphering a neuronal circuit that mediates
851		appetite. <i>Nature</i> 483, 594–597 (2012).
852	57.	Chen, L. T., Gilman, A. G. & Kozasa, T. A Candidate Target for G Protein Action in Brain *.
853		274, 26931–26938 (1999).
854	58.	Ness, V. <i>et al.</i> Variations in the GRIN2B gene are associated with risky decision-making.
855		Neuropharmacology 61, 950–956 (2011).
856	59.	Reed, Z. E., Micali, N., Bulik, C. M., Smith, G. D. & Wade, K. H. Assessing the causal role of
857		adiposity on disordered eating in childhood, adolescence, and adulthood: A Mendelian
858		randomization analysis. Am. J. Clin. Nutr. 106, 764–772 (2017).
859	60.	Barker, E. T. & Galambos, N. L. Body Dissatisfaction of Adolescent Girls and Boys: <i>J. Early</i>
860		Adolesc. 23, 141–165 (2003).
861	61.	Rosenblum, G. D. & Lewis, M. The relations among body image, physical attractiveness,
862		and body mass in adolescence. <i>Child Dev.</i> 70, 50–64
863	62.	Presnell, K., Bearman, S. K. & Stice, E. Risk factors for body dissatisfaction in adolescent

864		boys and girls: A prospective study. Int. J. Eat. Disord. 36, 389–401 (2004).
865	63.	Bodell, L. P. & Mayer, L. E. S. Percent body fat is a risk factor for relapse in anorexia
866		nervosa: a replication study. Int. J. Eat. Disord. 44, 118–23 (2011).
867	64.	El Ghoch, M., Calugi, S., Chignola, E., Bazzani, P. V & Dalle Grave, R. Body mass index,
868		body fat and risk factor of relapse in anorexia nervosa. <i>Eur. J. Clin. Nutr.</i> 70, 194–198
869		(2016).
870	65.	Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP Family Members
871		Induce Functional Expression of Mammalian Odorant Receptors. Cell 119, 679–691
872		(2004).
873	66.	Bitter, T. <i>et al.</i> Anosmia Leads to a Loss of Gray Matter in Cortical Brain Areas. <i>Chem.</i>
874		Senses 35, 407–415 (2010).
875	67.	Valdes-Socin, H. et al. Reproduction, smell, and neurodevelopmental disorders: genetic
876		defects in different hypogonadotropic hypogonadal syndromes. Front. Endocrinol.
877		(Lausanne). 5, 109 (2014).
878	68.	Martin, G. N. The Neuropsychology of Smell and Taste. (Taylor & Francis, 2013).
879	69.	Schecklmann, M. et al. Olfaction in child and adolescent anorexia nervosa. J. Neural
880		Transm. 119, 721–728 (2012).
881	70.	Roessner, V., Bleich, S., Banaschewski, T. & Rothenberger, A. Olfactory deficits in
882		anorexia nervosa. Eur. Arch. Psychiatry Clin. Neurosci. 255, 6–9 (2005).
883	71.	Rapps, N. et al. Olfactory deficits in patients with anorexia nervosa. Eur. Eat. Disord. Rev.
884		18, 385–9 (2010).
885	72.	Dazzi, F., Nitto, S. De, Zambetti, G., Loriedo, C. & Ciofalo, A. Alterations of the olfactory-
886		gustatory functions in patients with eating disorders. Eur. Eat. Disord. Rev. 21, 382–385
887		(2013).
888	73.	Rapps, N. et al. Olfactory deficits in patients with anorexia nervosa. Eur. Eat. Disord. Rev.
889		18, 385–389 (2010).
890	74.	Kim, Y. <i>et al.</i> Assessment of gene expression in peripheral blood using RNAseq before
891		and after weight restoration in anorexia nervosa. <i>Psychiatry Res.</i> 210, 287–293 (2013).
892	75.	Yang, Z. et al. Association of APC and REEP5 gene polymorphisms with major depression
893		disorder and treatment response to antidepressants in a Han Chinese population. Gen.
894		Hosp. Psychiatry 34, 571–577 (2012).
895	76.	Fox, C. S. <i>et al.</i> Genome-wide association to body mass index and waist circumference:
896		the Framingham Heart Study 100K project. BMC Med. Genet. 8 Suppl 1, S18 (2007).
897	77.	Osawa, M. et al. CUL3 gene analysis enables early intervention for pediatric
898		pseudohypoaldosteronism type II in infancy. <i>Pediatr. Nephrol.</i> 28, 1881–1884 (2013).
899	78.	Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature
900		511, 421–427 (2014).
901	79.	Firth, H. V & Wright, C. F. The Deciphering Developmental Disorders (DDD) study. <i>Dev.</i>
902		Med. Child Neurol. 53, 702–703 (2011).
903	80.	Li, Q. S., Tian, C., Seabrook, G. R., Drevets, W. C. & Narayan, V. A. Analysis of 23andMe
904		antidepressant efficacy survey data: implication of circadian rhythm and neuroplasticity
905		in bupropion response. <i>Transl. Psychiatry</i> 6, e889 (2016).
906	81.	Boraska, V. <i>et al</i> . A genome-wide association study of anorexia nervosa. <i>Mol. Psychiatry</i>
907		(2014). doi:10.1038/mp.2013.187

908	82.	Spada, J. et al. Genome-wide association analysis of actigraphic sleep phenotypes in the
909		LIFE Adult Study. <i>J. Sleep Res.</i> 25, 690–701 (2016).
910	83.	Kamboh, M. I. et al. Genome-wide association analysis of age-at-onset in Alzheimer's
911		disease. <i>Mol. Psychiatry</i> 17, 1340–6 (2012).
912	84.	Sprooten, E. <i>et al.</i> White matter integrity as an intermediate phenotype: exploratory
913		genome-wide association analysis in individuals at high risk of bipolar disorder.
914		Psychiatry Res. 206, 223–31 (2013).
915	85.	Seshadri, S. <i>et al.</i> Genetic correlates of brain aging on MRI and cognitive test measures: a
916		genome-wide association and linkage analysis in the Framingham Study. BMC Med.
917		Genet. 8 Suppl 1, S15 (2007).
918	86.	Li, H. <i>et al.</i> Candidate single-nucleotide polymorphisms from a genomewide association
919		study of Alzheimer disease. Arch. Neurol. 65, 45–53 (2008).
920	87.	Jun, G. <i>et al.</i> A novel Alzheimer disease locus located near the gene encoding tau protein.
921	••••	<i>Mol. Psychiatry</i> 21, 108–17 (2016).
922	88.	Pankratz, N. <i>et al.</i> Copy number variation in familial Parkinson disease. <i>PLoS One</i> 6 ,
923	001	e20988 (2011).
924	89.	About KOMP IMPC.
925	90.	Ayadi, A. <i>et al.</i> Mouse large-scale phenotyping initiatives: overview of the European
926	501	Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse
927		Genetics Project. <i>Mamm. Genome</i> 23 , 600–610 (2012).
928	91.	van der Weyden, L., White, J. K., Adams, D. J. & Logan, D. W. The mouse genetics toolkit:
929	51.	revealing function and mechanism. <i>Genome Biol.</i> 12 , 224 (2011).
930	92.	Heid, I. M. <i>et al.</i> Meta-analysis identifies 13 new loci associated with waist-hip ratio and
931	52.	reveals sexual dimorphism in the genetic basis of fat distribution. <i>Nat. Genet.</i> 42 , 949–60
932		(2010).
933	93.	Randall, J. C. <i>et al.</i> Sex-stratified genome-wide association studies including 270,000
934	55.	individuals show sexual dimorphism in genetic loci for anthropometric traits. <i>PLoS Genet</i> .
935		9 , e1003500 (2013).
936	94.	Kathiresan, S. <i>et al.</i> A genome-wide association study for blood lipid phenotypes in the
937	54.	Framingham Heart Study. <i>BMC Med. Genet.</i> 8 Suppl 1, S17 (2007).
938	95.	Shungin, D. <i>et al.</i> New genetic loci link adipose and insulin biology to body fat
939 939	95.	distribution. <i>Nature</i> 518 , 187–196 (2015).
939 940	96.	Fox, C. S. <i>et al.</i> Genome-wide association for abdominal subcutaneous and visceral
	90.	
941	07	adipose reveals a novel locus for visceral fat in women. <i>PLoS Genet.</i> 8 , e1002695 (2012).
942	97.	Velez Edwards, D. R. <i>et al.</i> Gene-environment interactions and obesity traits among
943		postmenopausal African-American and Hispanic women in the Women's Health Initiative
944 045	00	SHARe Study. Hum. Genet. 132 , 323–36 (2013).
945 046	98.	Bonder, M. J. <i>et al.</i> The effect of host genetics on the gut microbiome. <i>Nat. Genet.</i> 48 , 1407–1412 (2016)
946	00	
947	99.	Levine, D. M. <i>et al.</i> A genome-wide association study identifies new susceptibility loci for
948	400	esophageal adenocarcinoma and Barrett's esophagus. <i>Nat. Genet.</i> 45 , 1487–93 (2013).
949	100.	Keane, T. M. <i>et al.</i> Mouse genomic variation and its effect on phenotypes and gene
950	404	regulation. <i>Nature</i> 477 , 289–294 (2011).
951	101.	Meigs, J. B. <i>et al.</i> Genome-wide association with diabetes-related traits in the

952		Framingham Heart Study. BMC Med. Genet. 8 Supp l 1, S16 (2007).
952 953	102.	Scott, L. J. <i>et al.</i> A genome-wide association study of type 2 diabetes in Finns detects
	102.	
954 055	102	multiple susceptibility variants. <i>Science</i> 316 , 1341–5 (2007).
955	103.	Elks, C. E. <i>et al.</i> Thirty new loci for age at menarche identified by a meta-analysis of
956		genome-wide association studies. <i>Nat. Genet.</i> 42 , 1077–85 (2010).
957	104.	Pickrell, J. K. <i>et al.</i> Detection and interpretation of shared genetic influences on 42
958		human traits. <i>Nat. Genet.</i> 48, 709–17 (2016).
959	105.	Root, T. L. <i>et al.</i> Patterns of co-morbidity of eating disorders and substance use in
960		Swedish females. <i>Psychol. Med.</i> 40, 105–15 (2010).
961	106.	Murray, G., Allen, N. B. & Trinder, J. Mood and the circadian system: investigation of a
962		circadian component in positive affect. <i>Chronobiol. Int.</i> 19, 1151–69 (2002).
963	107.	Bellivier, F., Geoffroy, PA., Etain, B. & Scott, J. Sleep- and circadian rhythm–associated
964		pathways as therapeutic targets in bipolar disorder. Expert Opin. Ther. Targets 19, 747–
965		763 (2015).
966	108.	Murray, G. <i>et al</i> . Nature's clocks and human mood: The circadian system modulates
967		reward motivation. <i>Emotion</i> 9, 705–716 (2009).
968	109.	Davis, C. et al. The Prevalence of High-Level Exercise in the Eating Disorders: Etiological
969		Implications.
970	110.	Anorexia nervosa with excessive exercise: A phenotype with close links to obsessive-
971		compulsive disorder. <i>Psychiatry Res.</i> 142, 209–217 (2006).
972	111.	The prevalence of high-level exercise in the eating disorders: Etiological implications.
973		Compr. Psychiatry 38, 321–326 (1997).
974	112.	Herpertz, S. et al. Longitudinal changes of circadian leptin, insulin and cortisol plasma
975		levels and their correlation during refeeding in patients with anorexia nervosa. Eur. J.
976		Endocrinol. 142, 373–9 (2000).
977	113.	Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H. & Turek, F. W. Circadian timing of
978		food intake contributes to weight gain. <i>Obesity</i> 17, 2100–2102 (2009).
979	114.	Zhang, L., Yagi, M. & Herzog, H. The role of NPY and ghrelin in anorexia nervosa. <i>Curr.</i>
980		Pharm. Des. 18, 4766–4778 (2012).
981	115.	Helder, S. G. & Collier, D. A. The genetics of eating disorders. <i>Curr. Top. Behav. Neurosci.</i>
982		6, 157–175 (2011).
983	116.	Kojima, M. & Kangawa, K. Ghrelin: structure and function. <i>Physiol. Rev.</i> 85, 495–522
984		(2005).
985	117.	Dailey, M. J. & Moran, T. H. Glucagon-like peptide 1 and appetite. <i>Trends Endocrinol.</i>
986	/.	Metab. 24, 85–91 (2013).
987	118.	Holst, J. J. The physiology of glucagon-like peptide 1. <i>Physiol. Rev.</i> 87, 1409–1439 (2007).
988	119.	Hellström, P. M. <i>et al.</i> GLP-1 suppresses gastrointestinal motility and inhibits the
989	115.	migrating motor complex in healthy subjects and patients with irritable bowel syndrome.
990		Neurogastroenterol. Motil. 20, 649–659 (2008).
991	120.	Atalayer, D., Gibson, C., Konopacka, A. & Geliebter, A. Ghrelin and eating disorders. <i>Prog.</i>
991 992	<u>т</u> 20.	Neuropsychopharmacol. Biol. Psychiatry 40 , 70–82 (2013).
992 993	121.	Sullivan, P. F. The psychiatric GWAS consortium: big science comes to psychiatry. <i>Neuron</i>
995 994	141.	68, 182–186 (2010).
	177	
995	122.	Sullivan, P. F., Daly, M. J. & O'Donovan, M. Genetic architectures of psychiatric disorders:

996 the emerging picture and its implications. *Nat. Rev. Genet.* **13**, 537–51 (2012).

997

999 This manuscript is dedicated to the memory of Professor Pamela Sklar.

1000

1001 Acknowledgements

Data were generated as part of the CommonMind Consortium supported by funding from Takeda Pharmaceuticals Company Limited, F. Hoffman-La Roche Ltd and NIH grants R01MH085542, R01MH093725, P50MH066392, P50MH080405, R01MH097276, RO1-MH-075916, P50M096891, P50MH084053S1, R37MH057881 and R37MH057881S1, HHSN271201300031C, AG02219, AG05138 and MH06692.

1007

1008 Brain tissue for the study was obtained from the following brain bank collections: the Mount 1009 Sinai NIH Brain and Tissue Repository, the University of Pennsylvania Alzheimer's Disease Core 1010 Center, the University of Pittsburgh NeuroBioBank and Brain and Tissue Repositories and the NIMH Human Brain Collection Core. CMC Leadership: Pamela Sklar, Joseph Buxbaum (Icahn 1011 1012 School of Medicine at Mount Sinai), Bernie Devlin, David Lewis (University of Pittsburgh), 1013 Raquel Gur, Chang-Gyu Hahn (University of Pennsylvania), Keisuke Hirai, Hiroyoshi Toyoshiba 1014 (Takeda Pharmaceuticals Company Limited), Enrico Domenici, Laurent Essioux (F. Hoffman-La 1015 Roche Ltd), Lara Mangravite, Mette Peters (Sage Bionetworks), Thomas Lehner, Barbara Lipska 1016 (NIMH).

1017

1018 The Genotype-Tissue Expression (GTEx) Project was supported by the <u>Common Fund</u> of the 1019 Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, 1020 NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained 1021 from the <u>GTEx Portal</u> on 09/05/16. BrainSpan: Atlas of the Developing Human Brain [Internet]. 1022 Funded by ARRA Awards 1RC2MH089921-01, 1RC2MH090047-01, and 1RC2MH089929-01.

1023

UK BioBank analyses were carried out using results obtained from the Neale and Rivas Labs.
Results were downloaded from the Global Biobank Engine (Global Biobank Engine, Stanford, CA
(URL: <u>http://gbe.stanford.edu</u>) [September 30th, 2017]. The authors would like to thank the
Rivas lab for making the resource available.

1028

1029 Acknowledgements for the Eating Disorders Working Group of the Psychiatric 1030 Genomics Consortium (PGC-ED)

1031 The Wellcome Trust Wellcome Trust WT088827/Z/09; WT098051;

1032

1033 Swedish Research Council (VR Dnr: 538-2013-8864);

1034

1035 We thank the Price Foundation for their support of recruiting patients, collecting clinical 1036 information and providing DNA samples used in this study. We also thank the Klarman 1037 Family Foundation for supporting the study. We thank the technical staff at the Center for 1038 Applied Genomics (CAG) at CHOP for generating genotypes used for analyses and the 1039 nursing, medical assistant and medical staff for their invaluable assistance with sample 1040 collection. Yiran Guo was funded by the 2011-2014 Davis Foundation Postdoctoral 1041 Fellowship Program in Eating Disorders Research Award. Dong Li was funded by the 2012-1042 2015 Davis Foundation Postdoctoral Fellowship Program in Eating Disorders Research 1043 Award. Genome-wide genotyping for CHOP samples was funded by an Institutional 1044 Development Fund to CAG from CHOP. The study was additionally funded through the 1045 Electronic Medical Records and Genomics (eMERGE) Network (U01 HG006830) by National 1046 Human Genome Research Institute of National Institutes of Health, and also funded by 1047 donation from the Kurbert Family;

1048

1049 National Institutes of Health: K01MH093750; K01MH106675; K01MH109782;
1050 K02AA018755-06, R01AA015416-08, 5U01MH094432-04, 3U01MH094432-03S1; R01
1051 MH109528; D0886501; R01 MH092793;

1052

1053 This work received grants from EC Framework V Factors in Healthy Eating, from
1054 INRA/INSERM (4M406D), and from PHRC ENDANO (2008-A01636-49);

1055	European Commission (2008-2011)	as an Early	Stage Researc	cher from	the Research
1056	Training Network INTACT (Individua	ally Tailored	Stepped Care	for Womer	n with Eating
1057	Disorders) in the Marie Curie Program	n (MRTN-CT-20	06-035988);		

1058

Gerome Breen acknowledges support from the National Institute for Health Research (NIHR)
Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and
King's College London. The views expressed are those of the authors and not necessarily
those of the NHS, the NIHR, or the Department of Health.

1063

1064 Veneto Region Grant BIOVEDA; Contract grant number: DGR 3984/08;

1065

1066 Academy of Finland (28327, 286028); (Dr. Raevuori, grant number 259764);

1067

1068 The German Ministry for Education and Research (National Genome Research Net-Plus 1069 01GS0820 and 01KU0903), the German Research Foundation (DFG; HI865/2-1), the 1070 European Community's Seventh Framework Programme (FP7/2007-2013) under grant 1071 agreement no. 245009 and no.262055." We thank the German Ministry for Education and 1072 Research for funding the ANTOP-study (project number 01GV0624)

1073 AS was supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ 1074 01EO1502; German Federal Ministry for Education and Research (BMBF) 01GV0601 and 1075 01GV0624; German Ministry for Education and Research (National Genome Research Net-1076 Plus 01GS0820) and the German Research Foundation (DFG; HI865/2-1); MHT received 1077 grant support from the Alexander von Humboldt Foundation, the Helmholtz Alliance 1078 ICEMED-Imaging and Curing Environmental Metabolic Diseases, through the Initiative and 1079 Networking Fund of the Helmholtz Association, the Helmholtz cross-program topic 1080 "Metabolic Dysfunction," and the Deutsche Forschungsgemeinschaft (DFG-TS226/1-1 and 1081 TS226/3-1) and the European Research Council Consolidator Grant (HepatpMetaboPath)"

1082 Ministry for Research and Education, Germany; The Helmholtz Alliance ICEMED-Imaging 1083 and Curing Environmental Metabolic Diseases, through the Initiative and Networking Fund of 1084 the Helmholtz Association, the Helmholtz cross-program topic "Metabolic Dysfunction," and 1085 the Deutsche Forschungsgemeinschaft (DFG-TS226/1-1 and TS226/3-1); This work was 1086 supported by the Deutsche Forschungsgemeinschaft (EH 367/5-1 and SFB 940) and the 1087 Swiss Anorexia Nervosa Foundation;

1088

1089 Andrew Bergen is supported by a Professional Services Agreement with the Regents of the
1090 University of California; Resnick Family Chair in Eating Disorders; Klarman Family
1091 Foundation;

1092

1093 Research Council of Norway (RCN), and South-East Norway Regional Health Authority 1094 (SEN); Bergen Research Foundation, NFR (NORMENT-SFF), NCNG: This sample collection 1095 was supported by grants from the Bergen Research Foundation and the University of 1096 Bergen, the Dr Einar Martens Fund, the K.G. Jebsen Foundation, the Research Council of 1097 Norway, to SLH, VMS and TE; Supported by the Research Council of Norway (#248778, # 1098 223273); The twin program of research at the Norwegian Institute of Public Health was 1099 supported by grants from The Norwegian Research Council and The Norwegian Foundation 1100 for Health and Rehabilitation;

1101

1102 China Scholarship Council (Shuyang Yao);

1103

Genome Canada, the government of Ontario, the Canadian Institutes of Health Research, University of Toronto McLaughlin Centre; Ontario Mental Health Foundation for funding the recruitment and collection of the DNA samples. Ministry of Health of Ontario AFP Innovation Fund;

1108

1109	Grants 324715 and 480420 from the National Health and Medical Research Council
1110	(NHMRC) to TDW supported this work. Administrative support for data collection was
1111	received from the Australian Twin Registry, which is supported by an Enabling Grant (ID
1112	310667) from the NHMRC administered by the University of Melbourne;
1113	Matthew Flinders Fellowship, Flinders University, South Australia, Australia
1114	
1115	Internal Grant Agency of the Ministry of Health of the Czech Republic IGA MZ _R NT 14094-
1116	3/2013;
1117	
1118	Research of Korea Centers for Disease Control and Prevention Fund (code# HD16A1351);
1119	
1120	Nicole Soranzo's research is supported by the Wellcome Trust (Grant Codes WT098051 and
1121	WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant
1122	Code+HEALTH-F5-2011-282510) and the National Institute for Health Research Blood and
1123	Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics at the University of
1124	Cambridge in partnership with NHS Blood and Transplant (NHSBT). The views expressed are
1125	those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of
1126	Health or NHSBT.
1127	
1128	Psychiatry Research Trust (registered charity no. 284286);
1129	
1130	Spanish Ministry of Economy and Competitiveness (MINECO) no. SAF2013-49108-R, the
1131	Generalitat de Catalunya AGAUR 2014 SGR-1138, the European Commission 7th Framework
1132	Program (FP7/2007-2013) 262055 (ESGI); Instituto de Salud Carlos III (FIS PI14/290 and
1133	CIBERobn
1134	
1135	Supported by MH CZ - DRO (MMCI, 00209805);

1136

1137	An unrestricted grant from the Lundbeck Foundation, iPSYCH (Initiative for Integrative
1138	Psychiatric Research); and by Aarhus University for CIRRAU (Centre of Integrated Register-
1139	Based Research);
1140	
1141	This research was supported by a ZonMW VIDI Grant (91786327) from The Netherlands
1142	Organization for Scientific Research (NWO) to Prof. dr. Martien Kas;
1143	
1144	This study was supported by EU H2020 grants 692145, 676550, 654248, Estonian Research
1145	Council Grant IUT20-60, NIASC, EIT ñ Health and NIH-BMI Grant No: 2R01DK075787-06A1
1146	and EU through the European Regional Development Fund (Project No. 2014-2020.4.01.15-
1147	0012 GENTRANSMED;
1148	
1149	Ulrike Schmidt receives salary report from the National Institute of Health Research Mental
1150	Health Biomedical Research Centre at South London and Maudsley National Health Service

1151 Foundation Trust and King's College London.

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made availa under aCC-BY-NC-ND 4.0 International license.

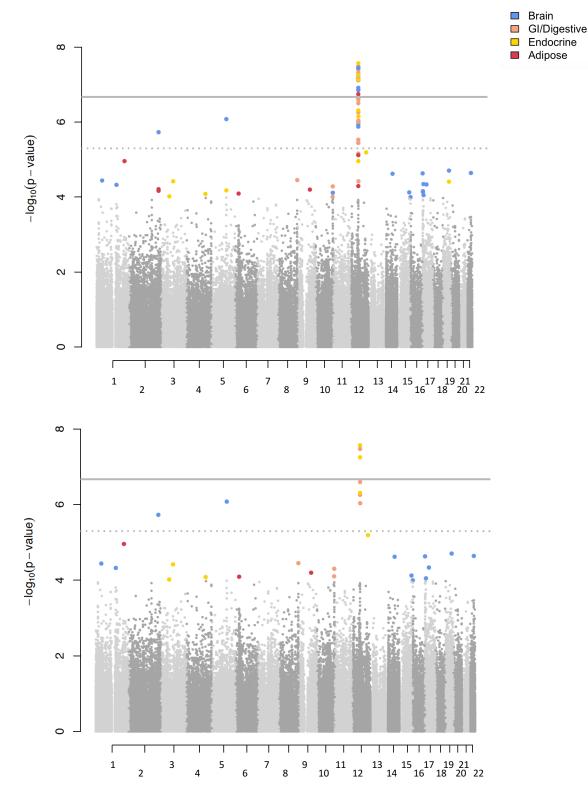


Figure 1: Genic associations in Anorexia NervosaA) We identify 37 significant gene-tissue associations across brain, GI/digestive, endocrine, and adipose tissuesB) 14 gene-tissue associations remain significant after applying CoCo and FINEMAP.

not critified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made availa under aCC-BY-NC-ND 4.0 International license.

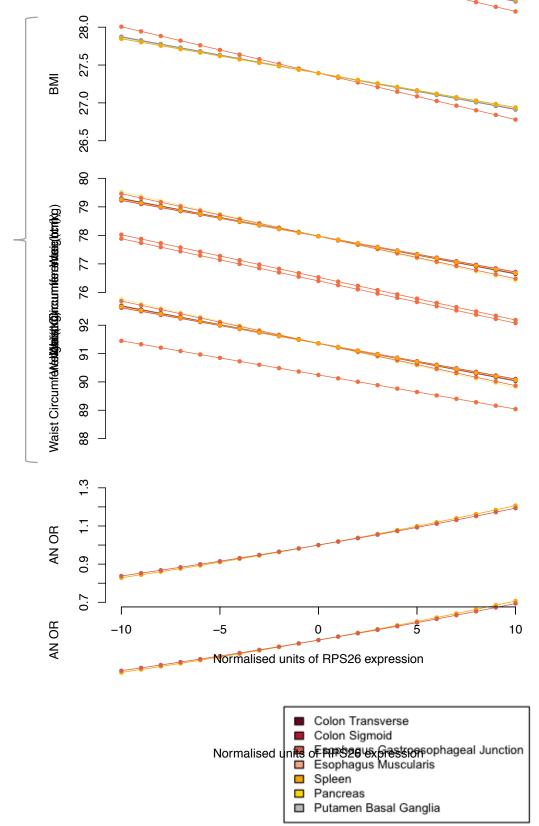


Figure 2A: Genetically regulated expression of *RPS26* is significantly associated with BMI, weight and waist circumference in the UK BioBank, and with AN in PGC-ED

PGC-ED

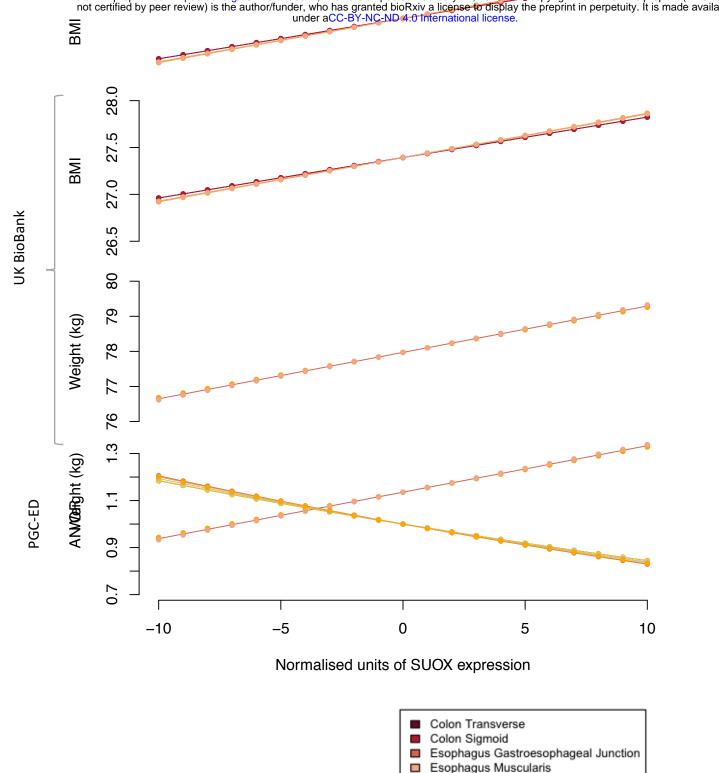


Figure 2B: Genetically regulated expression of SUOX is significantly associated with BMI and weight in the UK BioBank, and with AN in PGC-ED

Spleen

Pancreas

Putamen Basal Ganglia

Tissue	Source	Ngenes	P-val threshold
Adipose Subcutaneous	GTEX	10861	4.60E-06
Adrenal Gland	GTEX	9222	5.42E-06
Anterior Cingulate Cortex BA24	GTEX	8717	5.74E-06
Caudate Basal Ganglia	GTEX	9113	5.49E-06
Cerebellar Hemisphere	GTEX	9441	5.30E-06
Cerebellum	GTEX	9983	5.01E-06
Colon Sigmoid	GTEX	9323	5.36E-06
Colon Transverse	GTEX	9464	5.28E-06
Cortex	GTEX	9132	5.48E-06
DLPFC	CMC	9571	5.22E-06
Esophagus Gastroesophageal Junction	GTEX	9306	5.37E-06
Esophagus Mucosa	GTEX	10700	4.67E-06
Esophagus Muscularis	GTEX	10336	4.84E-06
Frontal Cortex BA9	GTEX	9009	5.55E-06
Hippocampus	GTEX	8510	5.88E-06
Hypothalamus	GTEX	8555	5.84E-06
Liver	GTEX	8528	5.86E-06
Nucleus Accumbens Basal Ganglia	GTEX	8887	5.63E-06
Pancreas	GTEX	9732	5.14E-06
Pituitary	GTEX	9138	5.47E-06
Putamen Basal Ganglia	GTEX	8728	5.73E-06
Small Intestine Terminal Ileum	GTEX	8838	5.66E-06
Spleen	GTEX	9324	5.36E-06
Stomach	GTEX	9352	5.35E-06
Thyroid	GTEX	11126	4.49E-06
		234896	2.13E-07

gene	gene name	tissue	beta		se		р		dirs
ENSG00000	1 CITED4	Putamen Bas	5	0.021		0.0051		3.63E-05	++++++++-+
ENSG00000	1 LYSMD1	Cerebellar H	(-	-0.068		0.0166		4.78E-05	++
ENSG00000	1 VASH2	Adipose Sub) -	-0.152		0.0345		1.10E-05	++-+-
ENSG00000	0 CUL3	Caudate Bas	E	0.072		0.0151		1.86E-06	+-++++++++
ENSG00000	1 ADAMTS9	Adrenal Glan	1	0.078		0.02		9.56E-05	+++-++++
ENSG00000	1 ARL13B	Pancreas		0.382		0.0929		3.84E-05	++-++-++++++
ENSG00000	1 INPP4B	Pancreas	-	-0.160		0.0407		8.30E-05	++
ENSG00000	1 REEP5	DLPFC	-	-0.160		0.0325		8.34E-07	++-
ENSG00000	1 TRIM38	Adipose Sub)	0.091		0.0231		8.05E-05	++++++-++-
ENSG00000	1 FBXL6	Liver	-	-0.133		0.0323		3.58E-05	-+++-+-+
ENSG00000	1 BARX1	Adipose Sub	C	0.085		0.0211		6.38E-05	++++-+++-+
ENSG00000	1 FOXI2	Colon Transv	/ -	-0.650		0.1667		9.73E-05	++-
ENSG00000	1 MGMT	Small Intesti	r -	-0.031		0.0076		5.22E-05	++
ENSG00000	1 RPS26	Spleen		0.120		0.0215		2.70E-08	++++++-+++++
ENSG00000	1 SUOX	Esophagus G	-	-0.059		0.0107		3.41E-08	+
ENSG00000	1 SUOX	Spleen	-	-0.053		0.0098		5.61E-08	++-+
ENSG00000	1 SUOX	Putamen Bas	5 -	-0.077		0.0147		1.42E-07	+
ENSG00000	1 RPS26	Esophagus G		0.141		0.0274		2.54E-07	++++++-+++++
ENSG00000	1 SUOX	Pancreas	-	-0.035		0.007		4.95E-07	+
ENSG00000	1 SUOX	Colon Transv	<i>ı</i> -	-0.059		0.0117		5.47E-07	+
ENSG00000	1 RDH16	Small Intesti	r	0.098		0.0199		9.09E-07	++-+++++++
ENSG00000	1 C12orf49	Thyroid		0.352		0.0779		6.49E-06	-++-++++++
ENSG00000	1 FURIN	Putamen Bas	5	0.114		0.0287		7.64E-05	+++-++-+++++
ENSG00000	0 CTNS	Hippocampu	!:	0.028		0.0071		6.90E-05	+++-+++++
ENSG00000	0 NTN1	Nucleus Accu	J	0.395		0.1008		8.88E-05	++-+++-+++
ENSG00000	1 TMEM108	Cortex		0.602		0.1475		4.47E-05	+++++-++
ENSG00000	1 YWHAE	Hypothalam	L	0.050		0.0119		2.37E-05	++++++-++++
ENSG00000	0 ZNF207	Anterior Cing	- 1	-0.026		0.0063		4.55E-05	+-+
ENSG00000	2 ZNF225	Spleen		0.104		0.0252		3.92E-05	+++++++++++++++++++++++++++++++++++++++
ENSG00000	1 ZNF235	Frontal Corte	2	0.433		0.1014		1.96E-05	++-+++-+-+++
ENSG00000	1 SMDT1	Cerebellar H	ŧ	0.018		0.0043		2.29E-05	+++-+++++-+-

chr

	pos1	pos2
1	41326729	41328018
1	151132224	151138424
1	213123862	213165379
2	225334867	225450110
3	64501333	64673676
3	93698983	93774512
4	142944313	143768585
5	112212084	112258236
6	25963030	25987384
8	145579091	145583036
9	96713905	96717654
10	129535499	129539450
10	131265448	131566271
12	56435637	56438116
12	56390964	56400425
12	56390964	56400425
12	56390964	56400425
12	56435637	56438116
12	56390964	56400425
12	56390964	56400425
12	57345219	57353158
12	117153593	117175875
15	91411822	91426688
17	3539762	3564836
17	8924859	9147317
17	8076555	8079717
17	1247566	1303672
17	30677136	30708905
19	44616334	44637027
19	44732882	44809199
22	42475695	42480288

Trait	Gene	Gene Name
Body_mass_index_(BMI)	ENSG000001	BARX1
Body_mass_index_(BMI)	ENSG00001	BARX1
Body_mass_index_(BMI)	ENSG00001	RDH16
Body_mass_index_(BMI)	ENSG00001	RPS26
Body_mass_index_(BMI)	ENSG000001	RPS26
Body_mass_index_(BMI)	ENSG00001	RPS26
Body_mass_index_(BMI)	ENSG00001	RPS26
Body_mass_index_(BMI)	ENSG000001	RPS26
Body_mass_index_(BMI)	ENSG00001	RPS26
Body_mass_index_(BMI)	ENSG000001	SUOX
Body_mass_index_(BMI)	ENSG000001	SUOX
Body_mass_index_(BMI)	ENSG00001	SUOX
Body_mass_index_(BMI)	ENSG00001	SUOX
Body_mass_index_(BMI)	ENSG000001	SUOX
Body_mass_index_(BMI)	ENSG000001	SUOX
Body_mass_index_(BMI)	ENSG00001	SUOX
Body_mass_index_(BMI)	ENSG00001	SUOX
Body_mass_index_(BMI)	ENSG000001	SUOX
Body_mass_index_(BMI)	ENSG00001	TRIM38
Body_mass_index_(BMI)	ENSG00001	TRIM38
Waist_circumference	ENSG00001	BARX1
Waist_circumference	ENSG000001	BARX1
Waist_circumference	ENSG00001	RPS26
Weight	ENSG00001	MGMT
Weight	ENSG00001	MGMT
Weight	ENSG00001	MGMT
Weight	ENSG000001	MGMT
Weight	ENSG00001	MGMT
Weight	ENSG000001	
Weight	ENSG000001	
Weight	ENSG000001	
Weight	ENSG000001	MGMT

Weight	ENSG000001 RDH16
Weight	ENSG000001 REEP5
Weight	ENSG000001 RPS26
Weight	ENSG000001 SUOX
Weight	ENSG000001 TRIM38
Weight	ENSG000001 TRIM38

Tissue	Z	Beta	Р
Colon-Transverse	-7.7773617	-0.0738614	7.41E-15
Artery-Coronary	-7.375406	-0.0468271	1.64E-13
SmallIntestine-TerminalIleum	-6.4889742	-0.0593701	8.64E-11
Heart-AtrialAppendage	-7.5878365	-0.0824355	3.25E-14
Breast-MammaryTissue	-6.3491046	-0.0346515	2.17E-10
Skin-SunExposed-Lowerleg	-6.2404842	-0.0575258	4.36E-10
Cells-EBV-transformedlymphocytes	-6.0618266	-0.0634271	1.35E-09
Adipose-Subcutaneous	-5.9677586	-0.0508896	2.41E-09
DLPFC	-5.8095616	-0.0229857	6.26E-09
Liver	-5.6989127	-0.0674398	1.21E-08
Lung	-5.626001	-0.0401266	1.84E-08
Spleen	-5.58502	-0.058693	2.34E-08
Skin-NotSunExposed-Suprapubic	5.85012331	0.02616247	4.91E-09
Spleen	5.84007447	0.02813843	5.22E-09
Esophagus-Muscularis	5.74811528	0.03123837	9.02E-09
Esophagus-GastroesophagealJunction	5.74185611	0.03005111	9.36E-09
Cells-EBV-transformedlymphocytes	5.43805266	0.0320962	5.39E-08
Skin-SunExposed-Lowerleg	5.31919323	0.02376405	1.04E-07
Colon-Sigmoid	5.3137019	0.04097991	1.07E-07
Ovary	5.29633119	0.0319386	1.18E-07
Colon-Transverse	5.28102353	0.03099286	1.28E-07
Thyroid	5.2735135	0.02241977	1.34E-07
Pancreas	5.21840847	0.03451622	1.80E-07
Colon-Transverse	-5.6792371	-0.0484106	1.35E-08
Artery-Coronary	-5.2353944	-0.0297862	1.65E-07
Heart-AtrialAppendage	-5.9156355	-0.0575675	3.31E-09
Stomach	6.03116147	0.01516222	1.63E-09
Adipose-Subcutaneous	5.8432158	0.01219944	5.12E-09
Heart-LeftVentricle	5.75450038	0.01803554	8.69E-09
Liver	5.618464	0.02565575	1.93E-08
Thyroid	5.5459707	0.01493591	2.92E-08
Esophagus-Mucosa	5.48046854	0.0136585	4.24E-08
Testis	5.41629516	0.01918677	6.08E-08
Colon-Transverse	5.40371016	0.01607542	6.53E-08
Esophagus-Muscularis	5.31591259	0.01452058	1.06E-07
Brain-Nucleusaccumbens-basalganglia	5.31093287	0.02756249	1.09E-07
WholeBlood	5.28285769	0.01756255	1.27E-07
Nerve-Tibial		0.01348915	
Brain-Anteriorcingulatecortex-BA24	5.26659324		
Skin-SunExposed-Lowerleg		0.01402023	
AdrenalGland	5.20926148	0.01385548	1.90E-07

SmallIntestine-Terminallleum	-5.8900719	-0.0474498	3.86E-09
Artery-Tibial	6.11566191	0.03833574	9.62E-10
WholeBlood	5.73480599	0.08610324	9.76E-09
Skin-NotSunExposed-Suprapubic	5.63609068	0.03540437	1.74E-08
Esophagus-Mucosa	5.63078519	0.04224336	1.79E-08
Testis	5.52861547	0.0502847	3.23E-08
Breast-MammaryTissue	-6.530904	-0.0315872	6.54E-11
Skin-SunExposed-Lowerleg	-6.2850329	-0.0513608	3.28E-10
Heart-AtrialAppendage	-6.2593475	-0.0602814	3.87E-10
DLPFC	-5.5731241	-0.019474	2.50E-08
Liver	-5.4913367	-0.0573873	3.99E-08
Spleen	-5.4182093	-0.0502923	6.02E-08
Cells-EBV-transformedlymphocytes	-5.4039068	-0.0498926	6.52E-08
Adipose-Subcutaneous	-5.2552273	-0.0399848	1.48E-07
Brain-Anteriorcingulatecortex-BA24	6.41507712	0.04309815	1.41E-10
Skin-NotSunExposed-Suprapubic	6.03928432	0.02410321	1.55E-09
Cells-EBV-transformedlymphocytes	5.9137031	0.03136303	3.35E-09
Heart-LeftVentricle	5.80708153	0.04596199	6.36E-09
Esophagus-Muscularis	5.68045296	0.02726121	1.34E-08
Esophagus-GastroesophagealJunction	5.55841118	0.02569696	2.72E-08
Spleen	5.42427892	0.02307607	5.82E-08
Thyroid	7.79117755	0.02939098	6.64E-15
Pancreas	7.34532675	0.0430497	2.05E-13

SYSTEM	SOURCE
All Tissues	Drug targets
All Tissues	Drug targets
All Tissues	GWAS gene sets
All Tissues	Hypothesis Driven

SET	NGENES	COMP P	FDR
ANABOLIC STEROIDS	34	0.0011139	0.08075775
PROGESTOGENS	44	0.00089785	0.08075775
Polycystic ovary syndrome	14	2.84E-05	0.0040274
Schizophrenia, schizoaffective disorder or bipolar disorder	33	0.00027732	0.01968972
LDL cholesterol	116	0.00052673	0.02493189
Hemoglobin	35	0.0013392	0.03803328
Sex hormone-binding globulin levels	26	0.0012608	0.03803328
Fasting glucose-related traits	31	0.0052364	0.05724238
Fibrinogen	35	0.0050973	0.05724238
Hematocrit	35	0.0030755	0.05724238
Hematology traits	33	0.0052405	0.05724238
Mean corpuscular volume	56	0.0036234	0.05724238
Non-albumin protein levels	12	0.0044993	0.05724238
Protein C levels	13	0.004335	0.05724238
Schizophrenia or bipolar disorder	26	0.0044133	0.05724238
Iron status biomarkers	24	0.0057116	0.05793194
Cardiovascular disease risk factors	35	0.0074585	0.07060713
Mean corpuscular hemoglobin	59	0.010082	0.08947775
Cav2::modulators & sma	20	6.75E-05	0.01012985
Axon guidance	119	0.00010663	0.01012985
MID	10409	0.00020205	0.0127965
HIGH	2715	0.00056599	0.0253175
Wnt signaling pathway	134	0.00099255	0.0253175
Prion diseases	33	0.0010036	0.0253175
Cav2::ion channels tra	43	0.0010086	0.0253175
7012	224 16	0.001066	0.0253175
Circadian entrainment	94	0.0012742	0.02689978
Cav2::ion channels tra	36	0.0020532	0.0390108
Huntington's disease	163	0.0027021	0.04620483
ARC+NMDAR+PSD95+mGluR5	122	0.0029182	0.04620483
FMRP-targets	735	0.0032083	0.04689054
MAPK signaling pathway	239	0.004037	0.05478786
Gap junction	86	0.0062529	0.07862759
Nucleus	127	0.0068123	0.07862759
Alzheimer's disease	148	0.0070351	0.07862759

ANALYSIS Brain Region Drug targets Brain Region Drug targets

Brain RegionGWAS gene sets Brain RegionGWAS gene sets

Brain Region Hypothesis Driven **Brain Region Hypothesis Driven** Brain Region Hypothesis Driven **Brain Region Hypothesis Driven Brain Region Hypothesis Driven** Brain Region Hypothesis Driven **Brain Region Hypothesis Driven** Brain Region Hypothesis Driven **Brain Region Hypothesis Driven** Brain Region Hypothesis Driven **Brain Region Hypothesis Driven** Brain Region Hypothesis Driven **Brain Region Hypothesis Driven**

Brain Region Hypothesis Driven Brain Region Hypothesis Driven

Brain Region Agnostic Brain Region Agnostic **Brain Region Agnostic Brain Region Agnostic** Brain Region Agnostic **Brain Region Agnostic Brain Region Agnostic** Brain Region Agnostic **Brain Region Agnostic Brain Region Agnostic Brain Region Agnostic Brain Region Agnostic** Brain Region Agnostic **Brain Region Agnostic Brain Region Agnostic**

Brain Region Agnostic Brain Region Agnostic Brain Region Agnostic Brain Region Agnostic Brain Region Agnostic **Brain Region Agnostic** Brain Region Agnostic **Brain Region Agnostic** Brain Region Agnostic **Brain Region Agnostic** Brain Region Agnostic

GENE SET	NGENES
ANTIEPILEPTICS	221
OTHER DERMATOLOGICAL PREPARATIONS	204
Mean corpuscular volume	56
Polycystic ovary syndrome	14
Sex hormone-binding globulin levels	26
Mean corpuscular hemoglobin	59
Lipid metabolism phenotypes	35
Dehydroepiandrosterone sulphate levels	29
LDL cholesterol	116
Calcium levels	17
Hematology traits	33
Circadian entrainment	94
Cav2::modulators & sma	20
HIGH	2714
Long-term potentiation	62
Gap junction	86
Nicotine addiction	35
FMRP-targets	735
Alcoholism	151
Retrograde endocannabi	94
Pre post synaptic genes	429
Glutamatergic synapse	108
Neuroactive ligand-rec	286
Ionotropic Glutamate R	14
GABAergic synapse	80
Cocaine addiction	46
Porphyrin and chloroph	36
Amphetamine addiction	64
Synaptic vesicle	309
Taste transduction	48
All Ion Channels	220
Glutamate Receptor Genes	21
ARC	24
Cav2::ion channels tra	43
Pre-synapse	387
Neurotransmitter recep	69
Cav2::ion channels tra	36
CLOCK-CONTROLLED WEAK	399
Nucleus	127

GABA Receptor Genes	17
ASD	65
Amyotrophic lateral sc	49
Olfactory transduction	292
Cholinergic synapse	109
Morphine addiction	85
MAPK signaling pathway	238
KEGG CIRCADIAN ENTRAINMENT	94
positive regulation of cAMP metabolic process	59
KEGG LONG-TERM POTENTIATION	66
positive regulation of cAMP biosynthetic process	58
positive regulation of cyclic nucleotide metabolic process	69
interstitial matrix	15
positive regulation of cyclic nucleotide biosynthetic process	65
positive regulation of nucleotide biosynthetic process	67
positive regulation of nucleotide metabolic process	72
positive regulation of purine nucleotide biosynthetic process	67
positive regulation of purine nucleotide metabolic process	71
protein palmitoylation	13
ear development	184
inner ear morphogenesis	91
ear morphogenesis	112
retinoid X receptor binding	13
CREB phosphorylation through the activation of CaMKII	14
Neuronal System	269
abnormal brain white matter morphology	118
KEGG VASCULAR SMOOTH MUSCLE CONTRACTION	116
KEGG GAP JUNCTION	86
regulation of cAMP metabolic process	96
inner ear development	157
Unblocking of NMDA receptor glutamate binding and activation	15
Muscarinic acetylcholine receptor 2 and 4 signaling pathway	51
regulation of cAMP biosynthetic process	88
KEGG PANCREATIC SECRETION	90
Ras activation uopn Ca2+ infux through NMDA receptor	16
morphogenesis of embryonic epithelium	127
abnormal embryonic tissue morphology	638
Metabotropic glutamate receptor group I pathway	22
5HT1 type receptor mediated signaling pathway	39
abnormal optic nerve morphology	63
regulation of oxidoreductase activity	61
·	

CREB phosphorylation through the activation of Ras	24
thin cerebellar molecular layer	16
KEGG NICOTINE ADDICTION	35
increased circulating aspartate transaminase level	33
KEGG NEUROACTIVE LIGAND-RECEPTOR INTERACTION	246
magnesium ion transmembrane transporter activity	11
magnesium ion transport	13
abnormal cranial nerve morphology	142
Metabotropic glutamate receptor group III pathway	59
abnormal chemoreceptor morphology	19
Activation of NMDA receptor upon glutamate binding and postsynaptic events	33
GPCR downstream signaling	648
Pausing and recovery of Tat-mediated HIV elongation	26
Tat-mediated HIV elongation arrest and recovery	26
KEGG GLUTAMATERGIC SYNAPSE	110
Post NMDA receptor activation events	30

SELF P	COMP P	FDR
1	0.00054783	0.03971768
1	0.00038437	0.03971768
0.75095	0.00011617	0.00818999
1.83E-05	9.77E-05	0.00818999
0.022136	0.00047961	0.02254167
0.92453	0.00090675	0.03196294
0.99103	0.0018655	0.0526071
0.98229	0.0034203	0.06889461
1	0.0030833	0.06889461
0.99597	0.0048546	0.08556233
0.31855	0.0056112	0.0879088
0.99713	1.39E-06	0.00026328
5.07E-05	1.46E-05	0.00137913
1	4.67E-05	0.00242511
0.99998	5.13E-05	0.00242511
0.99999	8.62E-05	0.00325662
0.99996	0.00034877	0.01098626
1	0.00058824	0.01588248
1	0.00071347	0.01685573
1	0.0014176	0.02860257
1	0.0015625	0.02860257
1	0.0016647	0.02860257
1	0.0019511	0.03072983
0.99898	0.0021656	0.03148449
1	0.0024029	0.03243915
1	0.0031707	0.03895763
0.94846	0.003298	0.03895763
1	0.0045245	0.04857897
1	0.0046422	0.04857897
1	0.0048836	0.04857897
1	0.005179	0.04894155
0.99999	0.0063647	0.05688814
0.85231	0.0066219	0.05688814
0.99986	0.0073367	0.06028853
1	0.0077512	0.0610407
1	0.0089817	0.06790165
0.99929	0.0093868	0.06823482
1	0.010253	0.07015275
1	0.010393	
-		

0.89702	0.011027	0.07186562
1	0.011959	0.0753417
1	0.014531	0.08859223
1	0.01544	0.09060545
1	0.01582	0.09060545
1	0.016661	0.09261556
1	0.018149	0.0980046
0.99713	1.39E-06	0.00906001
0.98723	2.12E-06	0.00906001
0.99988	4.44E-06	0.0094967
0.99384	3.77E-06	0.0094967
0.99983	8.43E-06	0.01201703
1	7.57E-06	0.01201703
0.99976	9.98E-06	0.01218925
0.99995	1.72E-05	0.0143912
0.99998	1.68E-05	0.0143912
0.99995	1.72E-05	0.0143912
0.99998	1.85E-05	0.0143912
0.47858	2.13E-05	0.01517981
1	2.31E-05	0.01521966
1	3.34E-05	0.02037954
1	3.94E-05	0.0224352
0.88099	4.92E-05	0.02626988
0.66681	5.25E-05	0.02640441
1	5.68E-05	0.02695815
1	6.50E-05	0.02926935
1	8.80E-05	0.03584404
0.99999	8.62E-05	0.03584404
1	9.30E-05	0.03616223
1	0.00012491	0.04449919
0.85806	0.00012411	0.04449919
0.88138	0.00013926	0.04762692
1	0.00015287	0.05027071
0.99999	0.00020155	0.06382417
0.95278	0.00021	0.064125
1	0.00026817	0.07225017
1	0.00027041	0.07225017
0.94933	0.00025314	0.07225017
0.99204	0.00026744	0.07225017
1	0.00028995	0.07279226
0.99946	0.00029798	0.07279226

0.99576	0.00029221	0.07279226
0.99955	0.00030681	0.07286738
0.99996	0.00034877	0.0804555
0.86126	0.00035758	0.0804555
1	0.00039331	0.08186923
0.97551	0.00041174	0.08186923
0.9824	0.00039927	0.08186923
1	0.00037751	0.08186923
0.99994	0.00040289	0.08186923
0.0082276	0.00048983	0.09157941
0.99972	0.00047394	0.09157941
1	0.00049294	0.09157941
0.25191	0.00051413	0.09157941
0.25191	0.00051413	0.09157941
1	0.00056017	0.09684585
0.99967	0.00056635	0.09684585

SYSTEM SOURCE Gastro-Intestinal and Peripheral Tissue Drug targets

Gastro-Intestinal and Peripheral Tissue GWAS gene s

Gastro-Intestinal and Peripheral Tissue Hypothesis D

Gastro-Intestinal and Peripheral Tissue Agnostic Gastro-Intestinal and Peripheral Tissue Agnostic Gastro-Intestinal and Peripheral Tissue Agnostic

SET	NGENES	SELF P	COMP P
ANABOLIC STEROIDS	34	0.56804	0.00026816
Schizophrenia, schizoaffective disorder or bipolar disorder	32	0.66707	0.00029124
	404		0.000000004
CLOCK-CONTROLLED PERVA	121	1	0.00032294
hyaluronic acid binding	20	0.95248	2.32E-08
KEGG PATHWAYS IN CANCER	310	1	1.87E-05
abnormal nervous system development	736	1	1.55E-05

FDR

0.0388832

0.04135608

0.06103566

0.00019827 0.05352215

0.05352215