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Summary 

Identification of modules in molecular networks is at the core of many current analysis methods 

in biomedical research. However, how well different approaches identify disease-relevant 

modules in different types of networks remains poorly understood. We launched the “Disease 

Module Identification DREAM Challenge”, an open competition to comprehensively assess 

module identification methods across diverse gene, protein and signaling networks. Predicted 

network modules were tested for association with complex traits and diseases using a unique 

collection of 180 genome-wide association studies (GWAS). While a number of approaches 

were successful in terms of discovering complementary trait-associated modules, consensus 

predictions derived from the challenge submissions performed best. We find that most of these 

modules correspond to core disease-relevant pathways, which often comprise therapeutic 

targets and correctly prioritize candidate disease genes. This community challenge establishes 

benchmarks, tools and guidelines for molecular network analysis to study human disease 

biology (https://synapse.org/modulechallenge). 
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● Molecular network modules reveal core pathways underlying complex traits and 
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Introduction 

Understanding the mechanisms and pathways underlying complex human diseases remains a 

difficult problem, hindering the development of targeted therapeutics. Complex diseases involve 

many genes and molecules that interact within context-specific cellular networks (Califano et al., 

2012). These densely interconnected networks sense and propagate perturbations from genetic 

variants and environmental factors, giving rise to disease states that may be difficult to 

understand at the level of individual genes (Schadt, 2009). Indeed, it has become apparent that 

the majority of genetic variants underlying complex traits and diseases lie in noncoding regions 

of the genome where they presumably disrupt gene regulatory networks (Pickrell, 2014), lending 

further support to the long-recognized importance of molecular network analysis for 

understanding disease biology (Ideker and Sharan, 2008; Vidal et al., 2011). 

 

Experimental and computational techniques for mapping molecular networks, including physical 

interaction networks (e.g., protein-protein interaction, signaling and regulatory networks) as well 

as functional gene networks (e.g., co-expression and genetic interaction networks), have been a 

major focus of systems biology. Recent studies have further introduced comprehensive 

collections of tissue-specific networks (Greene et al., 2015; Marbach et al., 2016). Network-

based approaches are now widely used for systems-level analyses in diverse fields ranging 

from oncology (Chen et al., 2014; Tsherniak et al., 2017) to cell differentiation (Cahan et al., 

2014; Ciofani et al., 2012). A key problem in biological network analysis is the identification of 

functional units, called modules or pathways. It is well known that molecular networks have a 

high degree of modularity (i.e., subsets of nodes are more densely connected than expected by 

chance), and that the corresponding modules often comprise genes or proteins that are involved 

in the same biological functions (Hartwell et al., 1999). Moreover, biological networks are 

typically too large to be examined and visualized as a whole. Consequently, module 

identification is often a crucial step to gain biological insights from network data (Chen et al., 

2008; Langfelder and Horvath, 2008; Padi and Quackenbush, 2017; Pe’er et al., 2001).  

 

Module identification, also called community detection or graph clustering, is a key problem in 

network science for which a wide range of methods have been proposed (Fortunato and Hric, 

2016). These methods are typically assessed on in silico generated benchmark graphs (Girvan 

and Newman, 2002). However, how well different approaches uncover biologically relevant 

modules in real molecular networks remains poorly understood. Crowdsourced open-data 

competitions (known as challenges) have proven an effective means to rigorously assess 

methods and, in the process, foster collaborative communities and open innovation. The 
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Dialogue on Reverse Engineering and Assessment (DREAM) is a community-driven initiative 

promoting open-data challenges in systems biology and translational medicine 

(http://dreamchallenges.org). DREAM challenges have established standardized resources and 

robust methodologies for diverse problems, including the inference of gene regulatory and 

signaling networks (Hill et al., 2016; Marbach et al., 2012). But, so far there has been no 

community effort addressing the downstream analysis of molecular networks. 

 

Here we present the results of the Disease Module Identification DREAM Challenge (Fig. 1). 

The aim of this challenge is to comprehensively assess module identification methods across 

diverse molecular networks. Six research groups contributed unpublished molecular networks 

and over 400 participants from all over the world developed and applied module identification 

methods. Teams predicted disease-relevant modules both within individual networks (Sub-

challenge 1) and across multiple, layered networks (Sub-challenge 2). In the final round, 75 

submissions, including method descriptions and code, were made across the two sub-

challenges, providing a broad sampling of state-of-the-art methods. We employed a novel 

approach to assess the performance of these methods based on the number of discovered 

modules associated with complex traits or diseases. In this paper, we discuss the top-

performing approaches, show that they recover complementary modules, and introduce a 

method to generate robust consensus modules. Finally, we explore the biology and therapeutic 

relevance of trait-associated network modules. 

 

All challenge data, including the networks, GWAS datasets, team submissions and code are 

available as a community resource at https://www.synapse.org/modulechallenge. 

 

Results 

A crowdsourced challenge for empirical assessment of module 

identification methods 

We developed a panel of diverse, human molecular networks for the challenge, including 

custom versions of two protein-protein interaction and a signaling network extracted from the 

STRING (Szklarczyk et al., 2015), InWeb (Li et al., 2017) and OmniPath (Türei et al., 2016) 

databases, a co-expression network inferred from 19,019 tissue samples from the GEO 

repository (Barrett et al., 2011), a network of genetic dependencies derived from genome-scale 

loss-of-function screens in 216 cancer cell lines (Cowley et al., 2014; Tsherniak et al., 2017), 

and a homology-based network built from phylogenetic patterns across 138 eukaryotic species 
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(Li et al., 2014) (Methods). These networks have varying size, link density and structural 

properties, making a heterogeneous benchmark resource (Fig. 1A). 

 

Each network was generated specifically for the challenge and released in anonymized form 

(i.e., we did not disclose the gene names and the identity of the networks). Using unpublished 

networks made it impossible for participants to infer the gene identities, thus enabling rigorous 

“blinded” assessment. That is, participants could only use the provided network structures, 

without having access to any additional information such as known disease genes. 

 

We solicited participation in two types of module identification challenges (Fig. 1B). In Sub-

challenge 1, solvers were asked to run module identification on each of the provided networks 

individually (single-network module identification). Thus, they were asked to submit one set of 

modules for each of the six networks. This is a typical problem in biomedical research, where 

one is often presented with a single network derived from a given dataset. In Sub-challenge 2, 

the networks were re-anonymized in a way that the same gene identifier represented the same 

gene across all six networks. Solvers were then asked to identify a single set of non-overlapping 

modules by sharing information across the six networks (multi-network module identification). 

This is also common problem, as network-based approaches are often used to integrate 

disparate molecular datasets (Krishnan et al., 2016). In both sub-challenges, predicted modules 

had to be non-overlapping and comprise between 3 and 100 genes (modules with over one 

hundred genes are typically less useful to gain specific biological insights). 

 

We developed a framework to empirically assess module identification methods based on the 

number of predicted modules that show significant association with complex traits and diseases 

(called trait-associated modules, Fig. 1C). To this end, predicted modules were scored on 

GWAS data using the Pascal tool (Lamparter et al., 2016), which takes into account 

confounders such as linkage disequilibrium within and between genes (Methods). Since we are 

employing a large collection of 180 GWAS datasets ranging over diverse disease-related 

human phenotypes (Table S1), this approach covers a broad spectrum of molecular processes. 

In contrast to evaluation of module enrichment using existing gene and pathway annotations, 

where it is sometimes difficult to ascertain that annotations were not derived from similar data 

types as the networks, the GWAS-based approach provides an orthogonal means to assess 

disease-relevant modules. 

 

The challenge was run using the open-science Synapse platform (Derry et al., 2012). Over a 

two-month period, teams could make repeated submissions and see their performance on a 
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real-time leaderboard to iteratively improve their methods. The total number of leaderboard 

submissions per team was limited to 25 and 41 for the two sub-challenges, respectively. In the 

final round, teams could make a single submission for each sub-challenge, which had to include 

detailed method descriptions and code for reproducibility. The scoring of the final submissions 

was based on a separate set of GWAS data sets that were not used during the leaderboard 

round (Methods). 

 

Community-based collection of module identification methods 

The community contributed 42 single-network and 33 multi-network module identification 

methods in the final round of the two sub-challenges. Single-network module identification 

methods are listed in Table 1, top-performing approaches are detailed in Methods, and full 

descriptions and code of all methods are available on the Synapse platform 

(https://www.synapse.org/modulechallenge). In the following sections we first discuss the single-

network methods (Sub-challenge 1). 

 

We grouped methods into seven broad categories: (i) kernel clustering, (ii) modularity 

optimization, (iii) random-walk based, (iv) local methods, (v) ensemble methods, (vi) hybrid 

methods and (vii) other methods (Fig. 2A, Table 1). While many teams adapted existing 

algorithms for community detection, other teams -- including the best performers -- developed 

novel approaches.  

 

Top methods from different categories achieve comparable 

performance 

In Sub-challenge 1, teams submitted a separate set of predicted modules for each of the six 

networks. We scored these predictions based on the number of trait-associated modules at 5% 

false discovery rate (FDR; Methods). The overall score used to rank methods in the challenge 

was defined as the total number of trait-associated modules across the six networks. (Module 

predictions, scoring scripts and full results are available in on the challenge website.) 

 

The top five methods achieved comparable performance with scores between 55 and 60, while 

the remaining methods did not get to scores above 50 (Fig. 2B). To assess the robustness of 

the challenge ranking, we further scored all methods on 1,000 subsamples of the GWAS hold-

out set (Methods). This analysis revealed a significant difference between the top-scoring 

method K1 (method IDs are defined in Table 1) and the remaining methods (Fig. 2C). In 

addition, we repeated the scoring using four different FDR cutoffs: method K1 ranked 1st in 
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each case, while the performance of other methods varied (Fig. S1A). Moreover, method K1 

also obtained the top score in the leaderboard round. We conclude that although the final 

scores of the top 5 methods are close, method K1 performed more robustly in diverse settings. 

 

The top teams used different approaches: the best performers (K1) developed a novel kernel 

approach leveraging a diffusion-based distance metric (Cao et al., 2013, 2014) and spectral 

clustering (Ng et al., 2001); the runner-up team (M1) extended different modularity optimization 

methods with a resistance parameter that controls the granularity of modules (Arenas et al., 

2008); and the third-ranking team (R1) used a random-walk method based on multi-level 

Markov clustering with locally adaptive granularity to balance module sizes (Satuluri et al., 

2010). Interestingly, teams employing the widely-used Weighted Gene Co-expression Network 

Analysis tool (WGCNA) (Langfelder and Horvath, 2008), which relies on hierarchical clustering 

to detect modules, did not perform competitively in this challenge (rank 35, 37 and 41). 

 

Four different method categories are represented among the top five performers, suggesting 

that no single approach is inherently superior for module identification in molecular networks. 

Rather, performance depends on the specifics of each individual method, including the strategy 

used to define the resolution of the modular decomposition (the number and size of modules). 

Most teams used the leaderboard round to determine an appropriate resolution to capture 

disease-relevant pathways. Notably, the two runner-up teams (M1 and R1) both used methods 

specifically designed to control the resolution of modules, and the top three teams all subdivided 

large modules (>100 genes) by recursively applying their methods to the corresponding 

subnetworks. Pre-processing steps also affected performance: many of the top teams first 

sparsified the networks by discarding weak edges. A notable exception is the top method (K1), 

which performed robustly without any pre-processing of the networks. 

 

The challenge also allows us to explore how informative different types of molecular networks 

are for finding modules underlying complex traits. In absolute numbers, methods recovered the 

most trait-associated modules in the co-expression and protein-protein interaction networks 

(Fig. S1B). However, relative to the network size, the signaling network contained the most trait-

associated modules (Fig. 2D). The cancer-related and homology-based networks, on the other 

hand, were less informative for the considered traits. These results are consistent with the 

importance of signaling pathways for many of the considered traits and diseases. 
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Consensus predictions outperform individual methods 

Integration of multiple team submissions sometimes leads to winning predictions in 

crowdsourced challenges (Marbach et al., 2012). We therefore developed an ensemble 

approach to derive consensus modules from team submissions. To this end, module predictions 

from different methods were integrated in a consensus matrix C, where each element cij is 

proportional to the number of methods that put gene i and j together in the same module. The 

consensus matrix was then clustered using the top-performing module identification method 

from the challenge (Fig. S2A, Methods).  

 

When applied to the top 50% of methods from the leaderboard round, the consensus indeed 

leads to a new best-scoring prediction (Fig. 2B,C). However, when applied to fewer methods, 

the performance of the consensus drops (Fig. S2C), suggesting that further work is needed to 

make this approach practical outside of a challenge context. 

 

Complementarity of different module identification approaches 

We next asked whether predictions from different methods and networks tend to capture the 

same or complementary modules. To this end, we developed a pairwise similarity metric for 

module predictions, which we applied to the complete set of 252 module predictions from Sub-

challenge 1 (42 methods x 6 networks, Methods). We find that similarity of module predictions is 

primarily driven by the underlying network and not the method category (Fig. 3A). When 

comparing module predictions of different methods across networks, we find that the top-

performing methods produce dissimilar clusterings, suggesting that they capture complementary 

functional modules (Fig. S3A). 

 

These observations can be confirmed by evaluating the overlap between trait-associated 

modules from different methods. Within the same network, only 46% of trait modules are 

recovered by multiple methods with good agreement (high overlap or submodules, Fig. 3B). 

Across different networks, the number of recovered modules with substantial overlap is even 

lower (17%). Thus, the majority of trait modules are method- and network-specific. This 

suggests that users should not rely on a single method or network to find trait-relevant modules. 

 

The modules produced by different methods also vary in terms of their structural properties. For 

example, the average module size ranges from 7 to 66 genes across methods and does not 

correlate with performance in the challenge (Figs. 3C, S3B-D). This implies that trait-relevant 

pathways can be captured at different levels of granularity (indeed, 26% of trait modules are 
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submodules of larger trait modules, Fig. 3B). Topological quality metrics of modules such as 

modularity showed only modest correlation with the challenge score (Fig. 3D), highlighting the 

need to empirically assess module identification methods for a given task. 

 

Multi-network module identification methods did not provide added 

power 

In Sub-challenge 2, teams submitted a single modularization of the genes, for which they could 

leverage information from all six networks together. While some teams developed dedicated 

multi-network (multi-layer) community detection methods (De Domenico et al., 2015; Didier et 

al., 2015), the majority of teams first merged the networks in some way and then applied single-

network methods. 

 

It turned out to be very difficult to effectively leverage complementary networks for module 

identification. While three teams achieved marginally higher scores than single-network module 

predictions, the difference is not significant (Figs. 3E, S1C). Moreover, the best-scoring team 

simply merged the two protein interaction networks (the two most similar networks, Fig. S2E), 

discarding the other types of networks. Since no significant improvement over single-network 

methods was achieved, the winning position of Sub-challenge 2 was declared vacant. 

 

We nevertheless also applied our consensus method to integrate team submissions across 

networks. The exact same consensus method as we employed for Sub-challenge 1 was used, 

except that a cross-network consensus matrix was formed by taking the sum of the six network-

specific consensus matrices (Fig. S2B, Methods). This resulted in the best-scoring module 

prediction of Sub-challenge 2 (Fig. 3E), the only multi-network prediction that significantly 

outperforms single-network predictions, thus confirming the robustness of the consensus 

method and demonstrating that the multi-network methods can be further improved. 

 

Network modules reveal shared pathways between traits 

We next sought to explore biological properties of trait-associated modules discovered by the 

challenge participants. In what follows, we focus on the single-network predictions from Sub-

challenge 1. The most trait-associated modules were found for immune-related, psychiatric, 

blood cholesterol and anthropometric traits, for which high-powered GWAS are available that 

are known to show strong pathway enrichment (Fig. 4A).  
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Significant GWAS loci often show association to multiple traits. Across our GWAS compendium, 

we found that 46% of trait-associated genes but only 28% of trait-associated modules are 

associated with multiple traits (Fig. 4B). Thus, mapping genes onto network modules may help 

disentangling trait-specific pathways at shared loci. 

 

We further asked which traits are similar in terms of the implicated network components. To this 

end, we considered the union of all genes within network modules associated with a given trait 

(called “trait-module genes”). We then evaluated the pairwise similarity of traits based on the 

significance of the overlap between the respective trait-module genes (Methods). Trait 

relationships thus inferred are consistent with known biology and comorbidities between the 

considered traits and diseases (Fig. 4C). For example, consistent with its pathophysiological 

basis, age-related macular degeneration shares network components with cholesterol and 

immune traits, while coronary artery disease shows similarity with established risk factors 

(cholesterol levels, body mass index) and osteoporosis, which is epidemiologically and 

biologically linked (atherosclerotic calcification and bone mineralization involve related 

pathways). 

 

Trait-associated modules implicate core disease genes and pathways 

Trait-associated modules typically include many genes that do not show any signal in the 

respective GWAS. A key question is whether modules correctly predict such genes as being 

relevant for that trait or disease. We first consider a module from the consensus method that 

shows association to height -- a classic polygenic trait -- as an example. In the GWAS that was 

used to identify this module there are only three module genes that show association to height, 

while the remaining genes are predicted to play a role in height solely because they are 

members of this module (Fig. 5A). We sought to evaluate such candidate genes for height as 

well as other traits using higher-powered GWASs, ExomeChip data, monogenic disease genes 

and functional annotations. 

 

There are eight traits for which we have both an older (lower-powered) and more recent (higher-

powered) GWAS in our hold-out set: height, schizophrenia, ulcerative colitis, Crohn’s disease, 

rheumatoid arthritis, and three blood lipid traits (Fig. S4A). We can thus identify trait modules 

and candidate genes using the lower-powered GWAS and then evaluate how well they are 

supported in higher-powered GWAS (a common approach used to assess methods for GWAS 

gene prioritization, see Methods). Indeed, while only 3 genes in the height module introduced 

above are associated to height in the lower-powered GWAS (Randall et al., 2013), 13 module 
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genes are confirmed in the higher-powered GWAS (Wood et al., 2014) and 6 module genes 

further comprise coding variants associated to height in an independent ExomeChip study 

(Marouli et al., 2017) (Fig 5B). Similar results are obtained when evaluating module predictions 

from all challenge methods across the eight above-mentioned traits: a substantial fraction of 

module genes that do not show any signal and are located far from any significant locus in the 

lower-powered GWAS are subsequently confirmed by the higher-powered GWAS (Fig. 5C). 

This demonstrates that modules are predictive for trait-associated genes and could thus be 

used to prioritize candidate genes for follow-up studies, for instance. 

 

We next explored the biological function and clinical relevance of identified trait modules. For 

example, the height module discussed above consists of two submodules comprising 

extracellular matrix proteins responsible for, respectively, collagen fibril and elastic fibre 

formation -- pathways that are essential for growth (Fig. 5D). Indeed, mutations of homologous 

genes in mouse lead to abnormal elastic fiber morphology (Table S2) and one out of four 

module genes are known to cause monogenic skeletal growth disorders in human (Fig. 5D). For 

example, the module gene BMP1 (Bone Morphogenic Protein 1) causes osteogenesis 

imperfecta, which is associated with short stature. Interestingly, BMP1 does not show 

association to height in current GWAS and ExomeChip studies (Fig. 5A,B), demonstrating how 

network modules can implicate additional disease-relevant pathway genes (see Fig. S4B for a 

systematic comparison of trait modules with independent disease gene sets from the literature). 

 

To evaluate more generally whether trait-associated modules correspond to generic or disease-

specific pathways, we visualized and tested modules for functional enrichment of Gene 

Ontology (GO) annotations, mouse mutant phenotypes, and diverse pathway databases. In 

order to account for annotation bias of well-studied genes (Glass and Girvan, 2014), we 

employed a noncentral hypergeometric test (Methods). We find that the majority of trait modules 

reflect core disease-specific pathways. For example, in the first protein-protein interaction 

network only 33% of trait modules from the consensus method have generic functions, such as 

epigenetic gene silencing for modules associated with schizophrenia and body mass index; the 

remaining 66% of trait modules correspond to core disease-specific pathways, some of which 

are therapeutic targets (Fig. 6 and Tables S3, S4). Examples include a module associated with 

rheumatoid arthritis that comprises the B7:CD28 costimulatory pathway required for T cell 

activation, which is blocked by an approved drug (Fig. 6A); a module associated with 

inflammatory bowel disease corresponding to cytokine signalling pathways mediated by Janus 

kinases (JAKs), which are therapeutically being targeted at multiple levels (Fig. 6B); and a 

module associated with myocardial infarction that includes the NO/cGMP signaling cascade, 
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which plays a key role in cardiovascular pathophysiology and therapeutics (Fig. 6C). We further 

applied our pipeline to a GWAS on IgA nephropathy (IgAN) obtained after the challenge, a 

disease with poorly understood etiology and no effective therapy (Kiryluk et al., 2014). IgAN is 

an autoimmune disorder that manifests itself by deposition of immune complexes in the kidney’s 

glomeruli, triggering inflammation (glomerulonephritis) and tissue damage. The best-performing 

challenge method (K1) revealed one IgAN-specific module. The module implicates complement 

and coagulation cascades, pointing to the chemokine PF4V1 as a novel candidate gene (Fig. 

6D). In support of the function of this module in IgAN, top enriched mouse mutant phenotypes 

for module gene homologs are precisely “glomerulonephritis” and “abnormal blood coagulation” 

(Fig. S5). 

 

Discussion 

Large-scale network data are becoming pervasive in many areas ranging from the digital 

economy to the life sciences. While analysis goals vary across fields, robust detection of 

network communities remains an essential task in many applications of interest. We have 

conducted a critical assessment of module identification methods on real-world networks, 

providing much-needed guidance for users. The community-based challenge enabled 

comprehensive and impartial assessment, avoiding the “self-assessment trap” that leads 

researchers to consciously or unconsciously overestimate performance when evaluating their 

own algorithms (Norel et al., 2011). While it is important to keep in mind that the exact ranking 

of methods -- as in any benchmark -- is specific to the task and datasets considered, we believe 

that the resulting collection of top-performing module identification tools and methodological 

insights will be broadly useful for modular analysis of complex networks in biology and other 

domains. 

 

In addition to providing a cross section of established approaches, the collection of contributed 

methods also includes novel algorithms that further advance the state-of-the-art (notably, the 

best-performing method). Kernel clustering, modularity optimization, random-walk-based and 

local methods were all represented among the top performers, suggesting that no single type of 

approach is inherently superior. In contrast, basic approaches such as hierarchical clustering, 

which is widely used for gene network analysis, did not perform competitively. Consensus 

modules obtained by integrating multiple team submissions achieved the top score, 

demonstrating that method performance can be further improved. However, this strategy was 

only successful when integrating predictions from over twenty methods, explaining why 

ensemble approaches applied by individual teams, which integrated only few methods, did not 
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perform well. Indeed, our analysis showed that top-performing methods produced very different 

modular decompositions, capturing complementary pathways at varying resolutions that may be 

difficult to merge in a single consensus prediction. 

 

Published studies in biology that apply network analysis tools typically rely on a single clustering 

method. The results of this challenge call for a different approach. We recommend that users 

apply top methods from several categories, enabling the detection of different types of modules 

and making results less prone to biases of any single approach. We find that the top four 

challenge methods (K1, M1, R1 and M2) already offer substantial diversity (Fig. S3E). The 

generated modules should be considered as is, without forming a consensus prediction. It 

should be noted that the larger number of modules also results in a higher multiple testing 

burden in any subsequent analyses (e.g., functional enrichment testing) and that modules from 

different methods may overlap. When a single non-overlapping partition is needed, the best-

performing challenge method (K1) is a good choice as it functioned robustly in diverse settings 

(notably, it was also used to cluster the consensus matrices, leading to the top-scoring 

consensus predictions in both sub-challenges). 

 

The challenge also emphasized the importance of the resolution (size and number of modules), 

which critically affected results. Biological networks typically have a hierarchical modular 

structure, which implies that disease-relevant pathways can be captured at different levels 

(Ravasz et al., 2002). Our results showed that the optimal resolution is method- and network-

specific (Fig. S3B-D). Top-performing challenge methods allowed the resolution to be tuned. 

Although setting the “right” resolution can be challenging for users, this critical point should not 

be sidestepped. We recommend that users experiment with different resolutions and use the 

settings optimized by teams for the different types of networks as guidance. 

 

Our analysis showed that signaling, protein-protein interaction and co-expression networks 

comprise complementary trait-relevant modules (Fig. 3A,B). Considering different types of 

networks is thus clearly advantageous. However, multi-network module identification methods 

that attempted to reveal integrated modules across these networks failed to significantly 

improve predictions compared to methods that considered each network individually. Possibly, 

the networks of the challenge were not sufficiently related -- multi-network methods may 

perform better on networks from the same tissue- and disease-context (Krishnan et al., 2016).  

 

The benchmark datasets and results of the challenge provide a reference point for future 

method improvements. We see many promising avenues for future work, such as: (i) top-
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performing challenge methods can potentially be further enhanced with ensemble approaches 

that sample multiple partitions of the same method to generate stable results (Lancichinetti and 

Fortunato, 2012); (ii) top teams recursively broke down large “supermodules” by iteratively 

applying their clustering methods, a heuristic that worked well, but more principled approaches 

to globally balance module sizes may improve accuracy (exemplified by method R1); and (iii) 

methods for detection of overlapping modules (Ihmels et al., 2002) may also be assessed using 

the benchmarks of this challenge. 

 

An important observation about these results is that the module identification tasks were 

performed on completely blinded networks; gene identities and even the type of relationship 

captured was unknown to challenge participants. The fact that meaningful modules can be 

identified in such a context is perhaps surprising, revealing how much functional information is 

present strictly in the topological structure of biological networks. It remains to be seen whether 

an un-blinded approach that allows integration of prior knowledge about gene functions, 

relationships, and the source of network edges might further improve the quality of inferred 

modules, especially when integrating data from multiple types of networks. 

 

The collective effort of over 400 challenge participants resulted in a unique compendium of 

modules for the different types of molecular networks considered. By leveraging the “wisdom of 

crowds” we generated robust consensus modules, which captured disease-relevant pathways 

better than any individual method. While most modules partly reflect known pathways or 

functional gene categories, which they reorganize and expand with additional genes, other 

modules may correspond to yet uncharacterized pathways. The consensus modules (gene sets) 

thus constitute a novel data-driven pathway collection, which may complement existing pathway 

collections in a range of applications (e.g., for interpretation of gene expression data using gene 

set enrichment analysis). 

 

There is continuing debate over the value of GWASs for revealing disease mechanisms and 

therapeutic targets. Indeed, the number of GWAS hits continues to grow as sample sizes 

increase, but the bulk of these hits may not correspond to core genes with specific roles in 

disease etiology. An “omnigenic” model recently proposed by Boyle et al. (2017) explains this 

observation by the high interconnectivity of molecular networks, which implies that most of the 

expressed genes in a disease-relevant tissue are likely to be at least weakly connected to core 

genes and may thus have non-zero effects on that disease. Indeed, disease-associated genes 

tend to coalesce in regulatory networks of tissues that are specific to that disease (Marbach et 

al., 2016). Our analysis of 180 GWAS datasets across six molecular networks demonstrated 
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that, although thousands of genes may show association for a given disease, at the network 

level specific disease modules comprising only dozens of genes can be identified. We have 

shown that these modules are more disease-specific than individual genes, reveal pathway-

level similarity between diseases, accurately prioritize candidate genes, and correspond to core 

disease pathways in the majority of cases. These results are consistent with the omnigenic 

model and the robustness of biological networks: presumably, the many genes that influence 

disease indirectly are broadly distributed across network modules, while core disease genes 

cluster in specific pathways underlying pathophysiological processes (Sullivan and Posthuma, 

2015). Our analysis also demonstrated that GWASs with larger sample size are extremely 

useful for the identification of key core modules and SNP effect size (explained variance) is not 

necessarily an indicator of core-ness. 

 

In this study we used global networks because the focus was on method assessment across 

diverse disorders. Global networks mostly comprise pathways that are either broadly expressed 

or specific to well-studied tissues, such as blood or immune cells. In the near future, we expect 

much more detailed maps of cell- and tissue-specific networks, along with diverse high-powered 

genetic datasets, to become available. We hope that the challenge resources will be 

instrumental in dissecting these networks and will provide a solid foundation for developing 

integrative methods to reveal the cell types and causal circuits implicated in human disease. 
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Table 1 

Table 1. Module identification methods 

 
IDa 

 
Description 

 
Scoreb 

Pre- / post- 
processing 

Kernel clustering: (i) the weighted adjacency matrix is transformed into a gene similarity matrix; (ii) a clustering algorithm is applied. 
K1 (i) Diffusion State Distance metric (Cao et al., 2013); (ii) spectral clustering. 60 R 
K2 (i) Singular Value Thresholding (Cai et al., 2010) maps the graph into a latent feature space; (ii) hierarchical clustering using 

Ward’s method. 
48 W, R 

K3 (i) Large-scale Information Network Embedding (LINE) (Tang et al., 2015); (ii) K-means clustering. 46 - 

K4 (i) Extension of Spectral Clustering On Ratios-of-Eigenvectors (SCORE) (Jin, 2015) allowing for weighted networks and 
hierarchical structure of submodules; (ii) spectral clustering. 

42 R 

K5 (i) SCORE (Jin, 2015); (ii) spectral clustering.  38 - 
K6 (i) Diffusion kernel is applied to graph Laplacian (Kondor and Lafferty, 2002); (ii) Weighted Gene Coexpression Network 

Analysis (WGCNA) (Langfelder and Horvath, 2008). 
30 M 

Modularity optimization: search algorithms are employed to find modules that maximize a modularity quality function. 
M1 Modularity optimization algorithms are extended with a multiresolution technique (Arenas et al., 2008). 60 S, R 
M2 Louvain community detection algorithm (Blondel et al., 2008). 56 S,W,R,M 
M3 Extension of a multi-network module identification method (Didier et al., 2015), here applied to single-layer networks. 48 R 
M4 PageRank algorithm is used to create an initial partition for the Louvain method. 44 W, R 
M5 A hierarchical module tree is generated using the Louvain method, optimal partitions are selected using modularity, 

conductance and connectivity metrics. 
42 W,R,M,F 

M6 Greedy agglomerative clustering approach optimizes a score based on total weight of intra-module edges and module size. 40 S,W, M 
M7 Fast greedy clustering algorithm (Clauset et al., 2008) that iteratively divides modules to optimize the modularity. 40 - 
M8 Modularity optimization by Conformational Space Annealing (Mod-CSA) (Lee et al., 2012) using the weighted adjacency matrix. 38 S, R 
M9 Louvain algorithm is used for optimization of a generalized modularity metric with a resolution parameter. 37 R 
M10 Louvain algorithm. 33 R 

Random-walk-based: modules are identified using diffusion processes over the network. 
R1 Multi-level Markov clustering is extended with a regularization matrix to balance module sizes (Satuluri et al., 2010). 58 S, W, R 
R2 Walktrap algorithm (Pons and Latapy, 2005), output modules are filtered based on the median node degree. 44 S, R 
R3 Walktrap algorithm. 43 S, R 
R4 A machine learning approach for predicting disease genes from graph features is combined with the Infomap algorithm (Rosvall 

et al., 2009) for community detection.  
40 S,R,F 

R5 Walktrap algorithm with varying number of steps. 39 S, F, M 
R6 Infomap algorithm, Markov-time parameter is optimized to yield maximum number of modules of valid size. 38 R,M 
R7 Markov clustering, output modules are filtered based on conductance and module size. 36 S, w 
R8 Recursive local graph sparsification and clustering using Infomap for scalable community detection.  36 S, R 
R9 Walktrap is used for the first network, Infomap for the remaining networks. 28 R 
R10 Modules detected using Walktrap and Infomap are combined. 20 S 

Local methods: agglomerative algorithms that grow modules from seed nodes. 
L1 Topological overlap matrix is clustered using the fast agglomerative SPICi (Jiang and Singh, 2010) and SCAN++ algorithms 

(Shiokawa et al., 2015). 
55 S, W,R 

L2 Basic agglomerative approach assigning genes to connected modules until the module size limit is reached.  31 W,R,M 
L3 Local method that grows modules from seed nodes using a novel Triangle based Community Expansion (TCE) method. 30 M 

Ensemble clustering: alternative clusterings sampled either from stochastic runs or from a set of different methods are merged.  
E1 Various clustering methods are applied on network embeddings created using DeepWalk (Perozzi et al., 2014), consensus 

modules are obtained using a bagging method. 
46 S,W,M 

E2 Consensus modules are derived from two flat clustering algorithms: ClusterOne and Finding Low-Conductance set with Dense 
interactions (FLCD) (Wang and Qian, 2017). 

41 S,W,F 

E3 Ensemble approach applied to integrate multiple Markov clustering runs. 24 S,R 

Hybrid methods: different clustering methods are selected for each network based on leaderboard performance or structural quality scores. 
H1 Either Louvain, Infomap, or a continuous optimization method (Li et al., 2016) are selected for each network. 50 R, F 
H2 Either Louvain, Infomap, SPICi, or DCut (Shao et al., 2016) are selected for each network. 50 W,R 
H3 Up to five different methods are applied to cluster networks, followed by filtering of modules based on structural quality metrics. 40 W,R, M, F 
H4 Up to nine different methods are applied in different combinations, followed by module filtering and post-processing steps. 37 

 

H5 Up to seven different methods are applied including an ensemble approach, followed by filtering and post-processing steps. 31 S,W,R,M,F 
H6 WGCNA followed by fast greedy community detection to refine modules. 19 R 
H7 No detailed description provided. 14 - 

Others   

O1 Agglomerative algorithm that joins clusters based on the number of shared neighbors and the cluster sizes.  36 W,F 
O2 Two-way modules (dense bipartite subgraphs) are mined using a heuristic algorithm. 33 W,F 
O3 No detailed description provided. 12 - 

(legend on next page) 
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Table 1. The 42 module identification methods applied in Sub-challenge 1 grouped by category (see Fig. 2A). 

aIdentifier (ID) of the method used throughout the paper. 

bOverall score of the method as defined in Fig. 2B. 

cCommon pre- and post-processing steps. Pre-processing steps are coded as: (S) sparsification of networks and (W) 
rescaling of edge weights. Post-processing steps are coded as: (R) recursive break-down of large modules, (M) 
merging modules of invalid size followed by re-modularization, and (F) filtering modules according to a quality metric. 
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Figure 1 

 

Figure 1: The Disease Module Identification DREAM Challenge.  
We launched an open-participation community challenge, where teams competed to predict groups of functionally 
related genes (i.e., modules) within diverse molecular networks.  

(A) The challenge comprised six networks, including protein-protein interaction, signaling, co-expression, cancer 
dependency, and homology-based gene networks. As the networks were all unpublished, we could anonymize them 
by removing the gene labels. This prevented participants from using existing knowledge of gene functions, thus 
enabling rigorous, blinded assessment.  

(B) The aim of the challenge was to identify disease-relevant modules within the provided networks. Teams could 
participate in either or both sub-challenges: 42 teams predicted modules for individual networks (Sub-challenge 1) and 
33 teams predicted integrated modules across multiple networks (Sub-challenge 2).  

(C) The submitted modules were tested for association with complex traits and diseases using a comprehensive 
collection of 180 GWAS datasets. The final score for each method was the number of trait-associated modules that it 
discovered. Since GWAS are based on data completely different from those used to construct the networks, they can 
provide independent support for biologically relevant modules. 
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Figure 2 

 

Figure 2: Assessment of module identification methods.  

(A) Main types of module identification approaches used in the challenge: kernel clustering methods transform and 
cluster the network adjacency matrix; modularity optimization methods rely on search algorithms to find modular 
decompositions that maximize a structural quality metric; random-walk-based methods take inspiration from diffusion 
processes over the network; local methods use agglomerative processes to grow modules from seed nodes; and 
ensemble methods merge alternative clusterings sampled either from stochastic runs of a given method or from a set 
of different methods. In addition, hybrid methods employ more than one of the above approaches and then pick the 
best modules according to a quality metric. See also Table 1. 

(B) Final scores of the 42 module identification methods applied in Sub-challenge 1 for each of the six networks, as 
well as the overall score summarizing performance across networks (same method identifiers as in Table 1). Scores 
correspond to the number of unique trait-associated modules identified by a given method in a network (evaluated 
using the hold-out GWAS set at 5% FDR, see Methods). Ranks are indicated for the top ten methods. The last two 
rows show the performance of consensus predictions derived from the challenge submissions and randomly 
generated modules, respectively.  

(C) Robustness of the overall ranking was evaluated by subsampling the GWAS set used for evaluation 1,000 times. 
For each method, the resulting distribution of ranks is shown as a boxplot. The rankings of method K1 are substantially 
better than those of the remaining teams (Bayes factor < 3, see Methods). 

(D) Number of trait-associated modules per network. Boxplots show the number of trait-associated modules across 
methods, normalized by the size of the respective network. See also Fig. S1B.  
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Figure 3 

 

Figure 3: Complementarity of module predictions from different methods and networks. 

(A) Similarity of module predictions from different methods (color) and networks (shape). The closer two points are in 
the plot, the more similar are the corresponding module predictions (multidimensional scaling, see Methods). Top 
performing methods tend to be located far from the origin (the top three methods are highlighted for each network). 
Top methods do not cluster close together, suggesting dissimilar modular decompositions (see also Fig. S3A). 

(B) Comparison of GWAS trait-associated modules identified by all challenge methods. Pie-charts show the 
percentage of trait modules that show overlap with at least one trait module from a different method in the same 
network (top) and in different networks (bottom). We distinguish between strong overlap, sub-modules, weak but 
significant overlap, and insignificant overlap (Methods). 

(C) Total number of predicted modules versus average module size for each method (same color scheme as in Panel 
A). There is a roughly inverse relationship between module number and size because modules had to be non-
overlapping and did not have to cover all genes. The top five methods (highlighted) produced modular decompositions 
of varying granularity. See also Figs. S3B-D. 

(D) Challenge score (number of trait-associated modules) versus modularity is shown for each method (same color 
scheme as in Panel A). Modularity is a topological quality metric for modules based on the fraction of within-module 
edges (Newman and Girvan, 2004). While there is modest correlation between the two metrics (r=0.45), the methods 
with the highest challenge score are not necessarily those with the highest modularity, presumably because the 
intrinsic scale of modularity is not optimal for the task considered in the challenge. 

(E) Final scores of multi-network module identification methods in Sub-challenge 2 (evaluated using the hold-out 
GWAS set at 5% FDR, see Methods). For comparison, the overall best-performing method from Sub-challenge 1 is 
also shown (method K1, purple). Teams used different combinations of the six challenge networks for their multi-
network predictions (shown on the left): the top-performing team relied exclusively on the two protein-protein 
interaction networks. The difference between the top single-network module predictions and the top multi-network 
module predictions is not significant when sub-sampling the GWASs (Fig. S1D). The last two rows show the 
performance of multi-network consensus predictions (obtained by integrating single-network submissions from Sub-
challenge 1 across networks) and randomly generated module predictions, respectively.  
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Figure 4 

 

Fig. 4: Overlap between modules associated with different traits and diseases. 

(A) Average number of trait-associated modules identified by challenge methods for each trait. For traits where 
multiple GWASs were available, results for the best-powered study are shown. 

(B) Histograms showing the number of distinct traits per trait-associated module (brown) and gene (grey). 72% of trait-
associated modules are specific to a single trait, while the remaining 28% are hits for multiple traits. In contrast, only 
54% of trait-associated genes are specific to a single trait. 

(C) Trait network showing similarity between GWAS traits based on overlap of associated modules (force-directed 
graph layout). Node size corresponds to the number of genes in trait-associated modules and edge width corresponds 
to the degree of overlap (Jaccard index; only edges for which the overlap is significant are shown, see Methods). 
Traits without any edges are not shown. Traits of the same type (color) tend to cluster together, indicating shared 
pathways. 
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Figure 5 

 

Figure 5: Support of trait-module genes in diverse datasets. 

(A) Example module of the consensus method in the STRING protein interaction network (force-directed graph layout). 
The module shows modest association to height (q-value = 0.04) in the GWAS by Randall et al. (2013) (lower-
powered than the GWAS shown in Panel B). Color indicates GWAS gene scores. The signal is driven by three genes 
from different loci with significant scores (pink), while the remaining genes (grey) are predicted to be involved in height 
because of their module membership. 

(B) The module from Panel A is supported in the higher-powered GWAS (Wood et al., 2014) (q-value = 0.005). 45% 
of candidate trait genes (grey in Panel A) are confirmed (pink). In addition, 28% of module genes have coding variants 
associated to height in an independent ExomeChip study published after the challenge (Marouli et al., 2017) (black 
squares, enrichment p-value = 1.9E-6). See also Fig. S4B. 

(C) Support of candidate trait genes across eight different traits for which lower- and higher-powered GWASs are 
available in our hold-out set. The lower-powered GWASs were used to predict candidate trait genes, i.e., genes within 
trait modules that do not show any signal (GWAS gene score <4) and that are located far away (>1mb) from any 
significant GWAS locus (cf. grey genes in Panel A). The plot shows the cumulative distribution of gene scores in the 
higher-powered GWASs for candidate trait genes (red line) and all other genes (grey line, see Methods). 

(D) Functional annotation of genes in the height-associated module from Panel A. Genes implicated in monogenic 
skeletal growth disorders are highlighted (red squares, enrichment p-value = 7.5E-4). See also Table S2. 
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Figure 6 

 

Figure 6: Example trait modules comprising therapeutically relevant pathways. 

(A, B and C) Three trait-associated modules in the STRING protein interaction network identified using the consensus 
method (similar results were obtained for other modules and traits, Tables S3, S4). Node colors correspond to gene 
scores in the respective GWAS. For the two inflammatory disorders (A and B), red squares indicate genes causing 
monogenic immunodeficiency disorders (enrichment p-values of 4.1E-8 and 1.2E-6, respectively).  

(A) Module associated with rheumatoid arthritis (q-value = 0.04) involved in T cell activation. A costimulatory pathway 
is highlighted green: T cell response is regulated by activating (CD28) and inhibitory (CTLA4) surface receptors, which 
bind B7 family ligands (CD80 and CD86) expressed on the surface of activated antigen-presenting cells. The 
therapeutic agent CTLA4-Ig binds and blocks B7 ligands, thus inhibiting T cell response.  

(B) A cytokine signalling module associated with inflammatory bowel disease (q-value = 0.0006). The module includes 
the four known Janus kinases (JAK1-3 and TYK2, highlighted green), which are engaged by cytokine receptors to 
mediate activation of specific transcription factors (STATs). Inhibitors of JAK-STAT signaling are being tested in 
clinical trials for both ulcerative colitis and Crohn’s disease (Neurath, 2017).  

(C) Module associated with myocardial infarction (q-value = 0.0001). The module includes two main components of 
the NO/cGMP signaling pathway (highlighted green): endothelial nitric oxide synthases (NOS1-3), which produce the 
gas nitric oxide (NO) used as signal transmitter, and soluble guanylate cyclases (GUCY1A2, GUCY1A3 and 
GUCY1B3), which sense NO leading to formation of cGMP. The cGMP signal inhibits platelet aggregation and leads 
to vascular smooth muscle cell relaxation; it is a therapeutic target for cardiovascular disease as well as erectile 
dysfunction (Kraehling and Sessa, 2017). 

(legend continued on next page) 
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(D) Module associated to IgA nephropathy (IgAN; q-value = 0.04). The module was identified using the best-
performing method (K1) in the InWeb protein interaction network. Besides finding complement factors that are known 
to play a role in the disease (CFB and C4A), the module implicates novel candidate genes such as the chemokine 
Platelet Factor 4 Variant 1 (PF4V1) from a sub-threshold locus, and is enriched for coagulation cascade, a process 
known to be involved in kidney disease (Madhusudhan et al., 2016) (see also Fig. S5). 
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Methods 

Network compendium 

A collection of six gene and protein networks for human were provided by different groups for 

this challenge. The two protein-protein interaction and signaling networks are custom or new 

versions of existing interaction databases that were not publicly available at the time of the 

challenge. The remaining networks were yet unpublished at the time of the challenge. This was 

important to prevent participants from deanonymizing challenge networks by aligning them to 

the original networks. The original networks, anonymized networks and the mappings from gene 

symbols to anonymized IDs are available on the challenge website. 

 

Networks were released for the challenge in anonymized form. Anonymization consisted in 

replacing the gene symbols with randomly assigned ID numbers. In Sub-challenge 1 each 

network was anonymized individually, i.e., node k of network A and node k of network B are 

generally not the same genes. In Sub-challenge 2 all networks were anonymized using the 

same mapping, i.e., node k of network A and node k of network B are the same gene. Since the 

networks were unpublished, it was practically impossible for participants to infer the gene 

identities. Participants also agreed not to attempt to infer gene identities as part of the challenge 

rules. 

 

All networks are undirected and weighted, except for the signaling network, which is directed 

and weighted. Basic properties and similarity between the networks are shown in Figs. 1A and 

S2E. Below we briefly summarize each of the six networks. Detailed descriptions of networks 4, 

5 and 6 are available on GeNets, a web platform for network-based analysis of genetic data 

(http://apps.broadinstitute.org/genets). 

 

Network 1: STRING protein-protein interaction network 

The first network was obtained from STRING, a database of known and predicted protein-

protein interactions (Szklarczyk et al., 2015). STRING includes aggregated interactions from 

primary databases as well as computationally predicted associations. Both physical protein 

interactions (direct) and functional associations (indirect) are included. The challenge network 

corresponds to the human protein-protein interactions of STRING version 10.0, where 

interactions derived from text-mining were removed. Edge weights correspond to the STRING 

association score after removing evidence from text mining. The network was provided by 

Damian Szklarczyk and Christian von Mering (University of Zürich). 
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Network 2: InWeb protein-protein interaction network 

The second network is the InWeb protein-protein interaction network (Li et al., 2017). InWeb 

aggregates physical protein-protein interactions from primary databases and the literature. The 

challenge network corresponds to InWeb version 3. Edge weights correspond to a confidence 

score that integrates the evidence of the interaction from different sources. 

 

Network 3: OmniPath signaling network 

The third network is the OmniPath signaling network (Türei et al., 2016). OmniPath integrates 

literature-curated human signaling pathways from 27 different sources, of which 20 provide 

causal interaction, 7 deliver undirected interactions. These data were integrated to form a 

directed weighted network. The edge weights correspond to a confidence score that 

summarizes the strength of evidence from the different sources. 

 

Network 4: GEO co-expression network 

The fourth network is a co-expression network based on Affymetrix HG-U133 Plus 2 arrays 

extracted from the Gene Expression Omnibus (GEO) (Barrett et al., 2011). In order to adjust for 

non-biological variation, data were rescaled by fitting a loess-smoothed power law curve to a 

collection of 80 reference genes (ten sets of ~8 genes each, representing different strata of 

expression) using nonlinear least squares regression within each sample. All samples were then 

quantile normalized together as a cohort. This approach is described fully in (Subramanian et 

al., 2017). After filtering out samples that did not pass quality control, a gene expression matrix 

of 22,268 probesets by 19,019 samples was obtained. Probes were mapped to genes by 

averaging and the pairwise Spearman correlation of genes across samples was computed. The 

matrix was thresholded to include the top 1M strongest positive correlations resulting in an 

undirected, weighted network. The edge weights correspond to the correlation coefficients. 

 

Network 5: Achilles cancer co-dependency network 

The fifth network is a functional gene network derived from the Project Achilles dataset v2.4.3 

(Cowley et al., 2014). Project Achilles performed genome-scale loss-of-function screens in 216 

cancer cell lines using massively parallel pooled shRNA screens. Cell lines were infected with a 

library of 54,000 shRNAs, each targeting one of 11,000 genes for RNAi knockdown (~5 shRNAs 

per gene). The proliferation effect of each shRNA in a given cell line could be assessed using 

Next Generation Sequencing. From these data, the dependency of a cell line on each gene (the 
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gene essentiality) was estimated using the ATARiS method. This led to a gene essentiality 

matrix of 11,000 genes by 216 cell lines. Pairwise correlations between genes were computed 

and the resulting co-dependency network was thresholded to the top 1M strongest positive 

correlations, analogous to how the co-expression network was constructed. Project Achilles 

data was kindly provided by Aviad Tsherniak and Barbara Weir (Broad Institute). 

 

Network 6: CLIME homology-based network 

The sixth network is a functional gene network based on phylogenetic relationships identified 

using the CLIME (clustering by inferred models of evolution) algorithm (Li et al., 2014). CLIME 

can be used to expand pathways (gene sets) with additional genes using an evolutionary model. 

Briefly, given a eukaryotic species tree and homology matrix, the input gene set is partitioned 

into evolutionarily conserved modules (ECMs), which are then expanded with new genes 

sharing the same evolutionary history. To this end, each gene is assigned a log-likelihood ratio 

(LLR) score based on the ECMs inferred model of evolution. CLIME was applied to 1,025 

curated human gene sets from GO and KEGG using a 138 eukaryotic species tree, which 

resulted in 13,307 expanded ECMs. The network was constructed by adding an edge between 

every pair of genes that co-occurred in at least one ECM. Edge weights correspond to the mean 

LLR scores of the two genes.  

 

Challenge structure  

Participants were challenged to apply network module identification methods to predict 

functional modules (gene sets) based on network topology. Valid modules had to be non-

overlapping (a given gene could be part of either zero or one module, but not multiple modules) 

and comprise between 3 and 100 genes. Modules did not have to cover all genes in a network. 

The number of modules per network was not fixed: teams could submit any number of modules 

for a given network (the maximum number was limited due to the fact that modules had to be 

non-overlapping). In Sub-challenge 1, teams were required to submit a separate set of modules 

for each of the six networks. In Sub-challenge 2, teams were required to submit a single set of 

modules by integrating information across multiple networks (it was permitted to use only a 

subset of the six networks).  

 

The challenge consisted of a leaderboard phase and the final evaluation. The leaderboard 

phase was organized in four rounds, where teams could make repeated submissions and see 

their score on each network. Due to the high computational cost of scoring the module 

predictions on a large number of GWAS datasets (see next section), a limit for the number of 
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submissions per team was set in each round taking into consideration our computational 

resources and the number of participating teams. The total number of submissions that any 

given team could make over the four leaderboard rounds was thus limited to only 25 and 41 for 

the two sub-challenges, respectively. For the final evaluation, a single submission including 

method descriptions and code was required per team, which was scored on a separate set of 

GWASs after the challenge closed to determine the top performers.  

 

The submission format and rules are described in detail on the challenge website 

(https://www.synapse.org/modulechallenge). 

 

Challenge scoring 

We have developed a novel framework to empirically assess module identification methods on 

molecular networks using GWAS data. In contrast to functional gene annotations and pathway 

databases such as GO, which sometimes originate from similar types of functional genomics 

data as the network modules, GWAS data are orthogonal to the networks and thus provide an 

independent means of validation. In order to cover diverse molecular processes, we compiled a 

large collection of 180 GWAS datasets from public sources. The collection was split into two 

sets of 76 and 104 GWASs used for the leaderboard phase and the final evaluation, 

respectively (Table S1). 

 

Gene and module scoring using Pascal  

SNP-trait association p-values from a given GWAS were integrated across genes and modules 

using the Pascal (pathway scoring algorithm) tool (Lamparter et al., 2016). Briefly, Pascal 

combines analytical and numerical solutions to efficiently compute gene and module scores 

from SNP p-values, while properly correcting for linkage disequilibrium (LD) correlation structure 

prevalent in GWAS data. To this end, LD information from a reference population is used (here, 

the European population of the 1000 Genomes Project was employed as we only included 

GWASs with predominantly European cohorts). Compared to alternative gene scoring methods 

that rely on Monte Carlo simulations, Pascal is about 100 times faster and more precise 

(Lamparter et al., 2016). The fast gene scoring is critical as it allows module genes that are in 

LD, and can thus not be treated independently, to be dynamically rescored. This amounts to 

fusing the genes of a given module that are in LD and computing a new score that takes the full 

LD structure of the corresponding locus into account. Finally, Pascal tests modules for 

enrichment in high-scoring (potentially fused) genes using a modified Fisher method, which 

avoids any p-value cutoffs inherent to standard binary enrichment tests. As background gene 
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set, the genes of the given network were used. Lastly, the resulting nominal module p-values 

were adjusted to control the FDR via the Benjamini-Hochberg procedure. A snapshot of the 

Pascal version used for the challenge is available on the challenge website.  

 

Scoring metric 

In Sub-challenge 1, the score for a given network was defined as the number of modules with 

significant Pascal p-values at a given FDR cutoff in at least one GWAS (called trait-associated 

modules). Thus, modules that were hits for multiple GWAS traits were only counted once. The 

overall score was defined as the sum of the scores obtained on the six networks (i.e., the total 

number of trait-associated modules across all networks). For the official challenge ranking a 5% 

FDR cutoff was defined, but performance was further reported at 10%, 2.5% and 1% FDR. 

 

Module predictions in Sub-challenge 2 were scored using the exact same methodology and 

FDR cutoffs. The only difference to Sub-challenge 1 was that submissions consisted of a single 

set of modules (instead of one for each network) and there was thus no need to define an 

overall score. As background gene set, the union of all genes across the six networks was used. 

 

Robustness analysis of challenge ranking 

To gain a sense of the robustness of the ranking with respect to the GWAS data, we 

subsampled the set of 104 GWASs used for the final evaluation (called the “test set”) by 

drawing 76 GWASs (same number of GWASs as in the leaderboard set; note that we have to 

do subsampling rather than resampling of GWASs because the scoring counts the number of 

modules that are associated to at least one GWAS, i.e., including the same GWASs multiple 

times does not affect the score). We applied this approach to create 1,000 subsamples of the 

test set. The methods were then scored on each subsample. 

  

The performance of every method m was compared to the highest-scoring method across the 

subsamples by the paired Bayes factor Km. That is, the method with the highest overall score in 

the test set (all 104 GWASs) was defined as reference (i.e., method K1 in Sub-challenge 1). 

The score S(m, k) of method m in subsample k was thus compared with the score S(ref, k) of 

the reference method in the same subsample k. The Bayes factor Km is defined as the number 

of times the reference method outperforms method m, divided by the number of times method m 

outperforms or ties the reference method over all subsamples. Methods with Km < 3 were 

considered a tie with the reference method (i.e., method m outperforms the reference in more 

than 1 out of 4 subsamples). 
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Module identification methods 

Here we provide an overview of module identification approaches applied in the two sub-

challenges, including a detailed description of the top-performing method. Full descriptions and 

code of all methods are available on the challenge website 

(https://www.synapse.org/modulechallenge). 

 

Overview of module identification methods in Sub-challenge 1 

Based on descriptions provided by participants, module identification methods were classified 

into different categories (Fig. 2A). Categories and corresponding module identification methods 

are summarized in Table 1. In the following, we first give an overview of the different categories 

and top-performing methods, and then describe common pre- and post-processing steps used 

by these methods: 

● Kernel clustering. Instead of working directly on the networks themselves, these 

methods cluster a kernel matrix, where each entry (i, j) of that matrix represents the 

closeness of nodes i and j in the network according to the particular similarity function, or 

kernel that was applied. Some of the kernels that were applied are well-known for 

community detection, such as the exponential diffusion kernel based on the graph 

Laplacian (Kondor and Lafferty, 2002) employed by method K6. Others, such as the 

LINE embedding algorithm (Tang et al., 2015) employed by method K3 and the kernel 

based on the inverse of the weighted diffusion state distance (Cao et al., 2013, 2014) 

employed by method K1, were more novel. Method K1 was the best-performing method 

of the challenge and is described in detail below. 

● Modularity optimization. This method category was, along with random-walk-based 

methods (see below), the most popular type of method contributed by the community. 

Modularity optimization methods use search algorithms to find a partition of the network 

that maximizes the modularity Q (commonly defined as the fraction of within-module 

edges minus the expected fraction of such edges in a random network with the same 

node degrees) (Newman and Girvan, 2004). The most popular algorithm was Louvain 

community detection (Blondel et al., 2008). At least eight teams employed this algorithm 

in some form as either their main method or one of several methods. The top team of the 

category (method M1), which ranked second overall, first sparsified networks by 

removing low confidence edges. A mixture of several established community detection 

algorithms was then employed in order to search for a partition that optimized 
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modularity. Importantly, these algorithms were extended with an additional resistance 

parameter that penalized merging of communities (Arenas et al., 2008); increasing the 

resistance parameter thus led to partitions with a larger number of communities. 

Communities above the size limit (100 nodes) were subdivided recursively by reapplying 

the same community detection algorithms to the corresponding subnetworks (see 

below). 

● Random-walk-based methods. These methods take inspiration from random walks or 

diffusion processes over the network. Several teams used the established Walktrap 

(Pons and Latapy, 2005) and Infomap (Rosvall et al., 2009) algorithms. The top team of 

this category (method R1) used a sophisticated random-walk method based on multi-

level Markov clustering (Satuluri et al., 2010). The method modifies basic Markov 

Clustering in two ways. First, a hierarchical view of the graph is considered by 

successively coarsening neighborhoods into fewer supernodes. The clustering is first run 

on the coarsened graph, enabling the detection of communities at varying scales. 

Second, a balance parameter is introduced that adjusts for nodes to preferentially join 

smaller communities, thus leading to more balanced community sizes. Similar to method 

M1 described above, networks were first sparsified and communities above the size limit 

were recursively subdivided. While we did not include kernel methods in the “random 

walk” category, several of the successful kernel clustering methods used random-walk-

based measures within their kernel functions. 

● Local methods. Only three teams used local community detection methods, including 

agglomerative clustering and seed set expansion approaches. The top team of this 

category (method L1) first converted the adjacency matrix into a topology overlap matrix 

(Ravasz et al., 2002), which measures the similarity of nodes by their topological overlap 

based on the number of neighbor they have in common. The team then used the SPICi 

algorithm (Jiang and Singh, 2010), which iteratively adds adjacent genes to cluster 

seeds such as to improve their local density. 

● Hybrid methods. Seven teams employed hybrid methods that leveraged clusterings 

produced by several of the different main approaches listed above. These teams applied 

more than one community detection method to each network in order to get larger and 

more diverse sets of predicted modules. The most common methods applied were 

Louvain (Blondel et al., 2008) hierarchical clustering, and Infomap (Rosvall et al., 2009). 

Two different strategies were used to select a final set of modules for submission: (1) 

choose a single method for each network according to performance in the leaderboard 
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round, and (2) select modules from all applied methods according to a topological quality 

score such as the modularity or conductance (Fortunato and Hric, 2016). 

● Ensemble methods. Much like hybrid methods, ensemble methods leverage clusterings 

obtained from multiple community detection methods (or multiple stochastic runs of a 

single method). However, instead of selecting individual modules according to a quality 

score, ensemble methods merge alternative clusterings to obtain potentially more robust 

consensus predictions (Lancichinetti and Fortunato, 2012). Our method to derive 

consensus module predictions from team submissions is an example of an ensemble 

approach (described in detail below).  

 

Besides the choice of the community detection algorithm, there are other steps that critically 

affected performance, including pre-processing of the network data, setting of method 

parameters, and post-processing of predicted modules. We describe successful approaches 

employed by challenge participants to address these issues below (pre- and post-processing 

steps of challenge methods are also summarized in Table 1): 

● Pre-processing. Data pre-processing often plays a key role in the analysis of noisy 

data, such as biological network data. Most networks in the challenge were densely 

connected, including many edges of low weight that are likely noisy. Some of the top 

teams (e.g., M1, R1, L1) benefitted from sparsifying these networks by discarding weak 

edges before applying their community detection methods. An added benefit of 

sparsification is that it typically reduces computation time. Few teams also normalized 

the edge weights of a given network to make them either normally distributed or fall in 

the range between zero and one. Not all methods required pre-processing of networks, 

for example the top performing method (K1) was applied to the original networks without 

any sparsification or normalization steps. 

● Parameter setting. Most community detection methods have parameters that need to 

be specified, typically to control the resolution of the clustering (the number and size of 

modules). While some methods have parameters that explicitly set the number of 

modules (e.g., the top-performing method K1), other methods have parameters that 

indirectly control the resolution (e.g., the resistance parameter of the runner-up method 

M1). Teams used the leaderboard phase to optimize the parameters of their method. 

Note that teams could make at most 25 submissions during the leaderboard phase, 

which limited the parameter space that could be explored in particular for methods with 

multiple parameters. While there were also methods that had no parameters to set (e.g., 
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the classic Louvain algorithm), these methods have an intrinsic resolution that may not 

always be optimal for a given network and target application. 

● Post-processing. Depending on the target application, the output of community 

detection methods may need to be post-processed. In biological networks, most 

methods typically lead to highly imbalanced module sizes. That is, some modules may 

be very small (e.g., just one or two genes), while others are extremely large (e.g., 

thousands of genes). Both extremes are generally not useful to gain biological insights at 

the pathway level. In the challenge, module sizes were thus required to be between 3 

and 100 genes. Since current community detection methods generally do not allow such 

constraints on module size to be specified, teams used different post-processing steps 

to deal with modules outside of this range. A successful strategy employed by teams to 

break down large modules was to recursively apply their method to each of these 

modules. Alternatively, all modules of invalid size were merged and the community 

detection method was re-applied to the corresponding subnetwork. Finally, modules with 

less than three genes were often discarded (i.e., the corresponding genes were not 

included in any of the submitted modules). Some teams also discarded larger modules 

that were deemed low quality according to a topological metric, although this strategy 

was generally not beneficial. 

 

Top-performing team method 

The top-performing team developed a kernel clustering approach (method K1) based on a 

distance measure called Diffusion State Distance (DSD) (Cao et al., 2013, 2014), which they 

further improved for this challenge (Crawford et al., in preparation). DSD produces a more 

informative notion of proximity than the typical shortest path metric, which measures distance 

between pairs of nodes by the number of hops on the shortest path that joins them in the 

network. More formally, consider the undirected network 𝐺(𝑉, 𝐸) on the node set 𝑉 =

{𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛} with |𝑉| = 𝑛.  𝐻𝑒𝑡(𝑣𝑥 , 𝑣𝑦) is defined as the expected number of times that a 

random walk (visiting neighboring nodes in proportion to their edge weights) starting at node 𝑣𝑥 

and proceeding for some fixed t steps will visit node 𝑣𝑦 (the walk includes the starting point, i.e., 

0th step). Taking a global view, we define the n-dimensional vector 𝐻𝑒𝑡(𝑣𝑥) whose 𝑖th entry is 

the 𝐻𝑒𝑡(𝑣𝑥 , 𝑣𝑖) value to network node 𝑣𝑖. Then the 𝐷𝑆𝐷𝑡 distance between two nodes 𝑣𝑥 and 𝑣𝑦 

is defined as the 𝐿1 norm of the difference of their 𝐻𝑒𝑡 vectors, i.e.  

𝐷𝑆𝐷𝑡(𝑣𝑥 , 𝑣𝑦) = ||𝐻𝑒𝑡(𝑣𝑥)  −  𝐻𝑒𝑡(𝑣𝑦)||1. 
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It can be shown that DSD is a metric and converges as 𝑡 → ∞, allowing DSD to be defined 

independently from the value t (Cao et al., 2013). The converged DSD matrix can be computed 

tractably, with an eigenvalue computation, as  

𝐷𝑆𝐷(𝑣𝑥 , 𝑣𝑦) = ||(1𝑥 − 1𝑦)(𝐼 − 𝐷−1𝐴 + 𝑊)−1||1, 

where 𝐷 is the diagonal degree matrix, 𝐴 is the adjacency matrix, and 𝑊 is the matrix where 

each row is a copy of 𝜋, the degrees of each of the nodes, normalized by the sum of all the 

vertex degrees (in the unweighted case; weighted edges can be normalized proportional to their 

weight), and 1x and 1y are the vectors that are zero everywhere except at position x and y, 

respectively. The converged DSD matrix was approximated using algebraic multigrid techniques 

(Crawford et al., in preparation). Note that for the signaling network, edge directions were kept 

and low-weight back edges were added so that the network was strongly connected; i.e. if there 

was a directed edge from 𝑣𝑥to 𝑣𝑦, an edge from 𝑣𝑦 to 𝑣𝑥 of weight equal to 1/100 of the lowest 

edge weight in the network was added. 

 

A spectral clustering algorithm (Ng et al., 2001) was used to cluster the DSD matrix of a given 

network. Note that the spectral clustering algorithm operates on a similarity matrix (i.e., entries 

that are most alike have higher values in the matrix). However, the DSD matrix is a distance 

matrix (i.e., similar entries have low DSD values). The radial basis function kernel presents a 

standard way to convert the DSD matrix to a similarity matrix; it maps low distances to high 

similarity scores and vice-versa. Since the spectral clustering algorithm employed uses k-means 

as the underlying clustering mechanism, it takes a parameter k specifying the number of cluster 

centers. The leaderboard rounds were utilized to measure the performance of different k. Also 

note that spectral clustering produces clusters of size less than 3, and clusters of size more than 

100. Whenever a cluster of size less than 3 was produced, those vertices were not included in 

any cluster for that network. Whenever a cluster of size more than 100 was produced, spectral 

clustering was called recursively to split that cluster into two subclusters (i.e., k=2) until all 

clusters were of size < 100.  

 

The top-performing team also used a different algorithm to search for dense bipartite subgraph 

module structure in half of the challenge networks. However, a post-facto analysis of their 

results showed that this step contributed few modules and the score would have been similar 

with this additional procedure omitted (Crawford et al., in preparation).  
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Overview of module identification methods in Sub-challenge 2 

In Sub-challenge 2, few teams employed dedicated multi-network community detection methods 

(De Domenico et al., 2015; Didier et al., 2015). The majority of teams first built an integrated 

network by merging either all six or a subset of the challenge networks, and then applied single-

network methods (typically the same method as in Sub-challenge 1) to modularize the 

integrated network. For example, the team with highest score in Sub-challenge 2 merged the 

two protein interaction networks and then applied the Louvain algorithm to identify modules in 

the integrated network. The top performing team from Sub-challenge 1 also performed 

competitively in Sub-challenge 2. They applied their single-network method (K1) to an 

integrated network consisting of the union of all edges from the two protein interaction networks 

and the coexpression network. 

 

Similar to Sub-challenge 1, teams used the leaderboard phase to set parameters of their 

methods. However, besides the parameters of the community detection method, there were 

additional choices to be made, whether to use all or only a subset of the six networks and how 

to integrate them. 

 

Consensus module predictions 

We developed an ensemble approach to derive consensus modules from a given set of team 

submissions (see Fig. S2A for a schematic overview). In Sub-challenge 1, a consensus matrix 

Cn was defined for each network n, where each element cij corresponds to the fraction of teams 

that put gene i and j together in the same module in this network. That is, cij equals one if all 

teams clustered gene i and j together, and cij equals zero if none of the teams clustered the two 

genes together. The top-performing module identification method (K1) was used to cluster the 

consensus matrix (i.e., the consensus matrix was considered a weighted adjacency matrix 

defining a functional gene network, which was clustered using the top module identification 

method of the challenge). Method K1 has only one parameter to set, which is the number of 

cluster centers used by the spectral clustering algorithm (see previous section). This parameter 

was set to the median number of modules submitted by the considered teams for the given 

network. The consensus module predictions described in the main text were derived from the 

submissions of the top 50% teams (i.e., 21 teams) with the highest overall score on the 

leaderboard GWAS set. (Results for different cutoffs regarding the percentage of teams 

included are reported in Fig. S2C.) 
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Multi-network consensus modules were obtained by integrating team submissions from Sub-

challenge 1 across all six networks using the same approach (see Fig. S2B). The same set of 

teams was considered (i.e., top 50% on the leaderboard GWAS set). First, a multi-network 

consensus matrix was obtained by taking the mean of the six network-specific consensus 

matrices Cn. The multi-network consensus matrix was then clustered using method K1 as 

described above, where the number of cluster centers was set to the median number of 

modules submitted by the considered teams across all networks. 

 

Two additional, more sophisticated approaches to construct consensus matrices Cn were tested: 

(1) normalization of the contribution of each module by the module size led to similar results as 

the basic approach described above, and (2) unsupervised estimation of module prediction 

accuracy using the Spectral Meta Learner ensemble method (Parisi et al., 2014) did not perform 

well in this context (Fig. S2D). 

 

Similarity of module predictions 

To define a similarity metric between module predictions from different methods, we 

represented module predictions as vectors. Namely, the set of modules predicted by method 𝑚 

in network 𝑘 was represented as a prediction vector 𝑃𝑚𝑘  of length 𝑁𝑘(𝑁𝑘 − 1)/2, where 𝑁𝑘 is the 

number of genes in the network. Each element of this vector corresponds to a pair of genes and 

equals 1 if the two genes are in the same module and 0 otherwise. Accordingly, for any two 

module predictions (method 𝑚1 applied to network 𝑘1, and method 𝑚2 applied to network 𝑘2), 

we calculated the distance as follows: 

 

𝐷(𝑚1𝑘1,  𝑚2𝑘2)  =  1 −
<𝑃𝑚1𝑘1 ,𝑃𝑚2𝑘2

>

||𝑃𝑚1𝑘1||2 ||𝑃𝑚2𝑘2||2
,  (1) 

 

where <. , . > is the Euclidean inner product, ||. ||2is the Euclidean norm, and 𝐷is the (symmetric) 

distance matrix between the 252 module predictions submitted in Sub-challenge 1 (i.e., 42 

methods applied to each of six networks). The distance matrix 𝐷was used as input to the 

Multidimensional Scaling (MDS) analysis for dimensionality reduction in Fig. 3A. 

 

Similarity between method predictions across networks was calculated in the same way. To this 

end, the prediction vectors 𝑃𝑚𝑘  of method 𝑚 for the six networks (𝑘 = 1,2, . . . ,6) were 

concatenated, forming a single vector 𝑃𝑚 that represents the module predictions of that method 

for all six networks. A corresponding distance matrix between the 42 methods was computed 
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using the same approach as described above (Equation 1) and used as input for hierarchical 

clustering in Fig. S3A. 

 

Overlap between trait-associated modules 

Three different metrics were considered to quantify the overlap between trait-associated 

modules from different methods and networks. The first metric was the Jaccard index, which is 

defined as the size of the intersection divided by the size of the union of two modules (gene 

sets) 𝐴 and 𝐵: 

  𝐽(𝐴, 𝐵)  =  
|𝐴∩𝐵|

|𝐴∪𝐵|
 . 

The Jaccard index measures how similar two modules are, but does allow the detection of sub-

modules. For example, consider a module 𝐴 of size 10 that is a submodule of a module 𝐵 of 

size 100. In this case, even though 100% of genes of the first module are comprised in the 

second module, the Jaccard index is rather low (0.1). To capture sub-modules, we thus 

considered in addition the percentage of genes of the first module that are comprised in the 

second module: 

  𝑆(𝐴, 𝐵)  =  
|𝐴∩𝐵|

|𝐴|
 . 

Lastly, we also evaluated the significance of the overlap. To this end, we computed the p-value 

𝑝𝐴𝐵 for the overlap between the two modules using the hypergeometric distribution. P-values 

were adjusted using Bonferroni correction given the number of module pairs tested. 

 

Based on these three metrics, we categorized the type of overlap that a given trait-module 𝐴 

had with another trait-module 𝐵 as:  

(1) strong overlap if 𝐽(𝐴, 𝐵)  ≥ 0.5 and 𝑝𝐴𝐵 < 0.05;  

(2) submodule if 𝐽(𝐴, 𝐵) < 0.5 and 𝑆(𝐴, 𝐵) − 𝐽(𝐴, 𝐵) ≥ 0.5 and 𝑝𝐴𝐵 < 0.05; 

(3) partial overlap if 𝐽(𝐴, 𝐵) < 0.5 and 𝑆(𝐴, 𝐵) − 𝐽(𝐴, 𝐵) < 0.5 and 𝑝𝐴𝐵 < 0.05; 

(4) insignificant overlap if 𝑝𝐴𝐵 ≥ 0.05. 

This categorization was used to get a sense of the type of overlap between trait modules from 

all methods (see Fig. 3B). 

 

Trait similarity network 

We defined a network level similarity between GWAS traits based on overlap between trait-

associated modules. To this end, we only considered the most relevant networks for our 

collection of GWAS traits, i.e., the two protein interaction, the signaling and the co-expression 

network (see Fig. 2D). For a given network, the set of “trait-module genes” 𝐺𝑇 was obtained for 
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every trait 𝑇by taking the union of the modules associated with that trait across all challenge 

methods. (If different GWASs were available for the same trait type (see Table S1), the union of 

all corresponding trait-associated modules was taken). The overlap between every pair of trait-

module gene sets 𝐺𝑇1
and 𝐺𝑇2

 was evaluated using the Jaccard index 𝐽(𝐺𝑇1
, 𝐺𝑇2

) and the 

hypergeometric p-value 𝑝𝑇1𝑇2
as described in the previous section. P-values were adjusted using 

Bonferroni correction. For the visualization as a trait-trait network in Fig. 4C, an edge between 

traits 𝑇1 and 𝑇2 was added if the overlap was significant (𝑝𝑇1𝑇2
< 0.05) in at least three out of the 

four considered networks, and node sizes and edge weights were set proportional to the 

average number of trait-module genes and the average Jaccard index across the four networks, 

respectively. 

 

Evaluation of candidate trait genes 

Trait-associated modules comprise many genes that show only borderline or no signal in the 

corresponding GWAS (called “candidate trait genes”). To assess whether modules correctly 

prioritized candidate trait genes, we considered eight traits for which older (lower-powered) and 

more recent (higher-powered) GWAS datasets were available in our test set (Fig. S4A). This 

allowed us to evaluate how well trait-associated modules and candidate trait genes predicted 

using the lower-powered GWAS datasets were supported in the higher-powered GWAS 

datasets.  

 

We only considered candidate trait genes that were predicted solely because of their 

membership in a trait-associated module, i.e., that did not show any signal in the lower-powered 

GWAS as defined by: (i) a high gene p-value (p > 1E-4, i.e., two orders of magnitude above the 

genome-wide significance threshold of 1E-6) and (ii) genomic location of more than one 

megabase away from the nearest significant locus of the corresponding GWAS. Gene p-values 

were computed using Pascal as described above (see “Gene and module scoring using the 

Pascal tool”). Finally, the Pascal p-value of all candidate trait genes was evaluated for the 

higher-powered GWAS. Since there is a genome-wide tendency for p-values to become more 

significant in higher-powered GWAS data (Boyle et al., 2017), Pascal p-values were also 

evaluated for a background gene set (all genes that meet the two conditions (i, ii) but do not 

belong to trait-associated modules of the lower-powered GWAS). Fig. 5C shows the cumulative 

distribution of Pascal p-values for the candidate trait genes as well as the background genes.  
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Functional enrichment analysis 

In order to test network modules for enrichment in known gene functions and pathways, we 

considered diverse annotation and pathway databases. GO annotations for biological process, 

cellular component, and molecular functions were downloaded from the GO website 

(http://geneontology.org, accessed on January 20, 2017). Curated pathways (KEGG, 

Reactome, and BioCarta) were obtained from MSigDB version 5.2 

(http://software.broadinstitute.org/gsea). We also created a collection of gene sets reflecting 

mouse mutant phenotypes, as defined by the Mammalian Phenotype Ontology (Blake et al., 

2017). We started with data files HMD_HumanPhenotype.rpt and MGI_GenePheno.rpt, 

downloaded from the Mouse Genome Informatics database (http://www.informatics.jax.org) on 

February 21, 2016. The first file contains human-mouse orthology data and some phenotypic 

information; we then integrated more phenotypic data from the second file, removing the two 

normal phenotypes MP:0002169 ("no abnormal phenotype detected") and MP:0002873 

("normal phenotype"). For each remaining phenotype, we then built a list of all genes having at 

least one mutant strain exhibiting that phenotype, which we considered as a functional gene set. 

 

Annotations from curated databases are known to be biased towards certain classes of genes. 

For example, some genes have been much more heavily studied than others and thus tend to 

have more annotations assigned to them. This and other biases lead to an uneven distribution 

of the number of annotations per genes (annotation bias). On the other hand, the gene sets 

(modules) tested for enrichment in these databases typically also exhibit bias for certain classes 

of genes (selection bias) (Glass and Girvan, 2014; Young et al., 2010). Standard methods for 

GO enrichment analysis use the hypergeometric distribution (i.e., Fisher’s exact test), the 

underlying assumption being that, under the null hypothesis, each gene is equally likely to be 

included in the gene set (module). Due to selection bias, this is typically not the case in practice, 

leading to inflation of p-values (Glass and Girvan, 2014; Young et al., 2010). Following Young et 

al. (2010), we thus used the Wallenius non-central hypergeometric distribution to account for 

biased sampling. Corresponding enrichment p-values were computed for all network modules 

and annotation terms (pathways). The genes of the given network were used as a background 

gene set. For each network, module identification method, and annotation database, the 𝑀 × 𝑇 

nominal p-values of the 𝑀 modules and 𝑇 annotation terms (pathways) were adjusted using 

Bonferroni correction. 
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Data and software availability 

Challenge data, results, and code are available from the challenge website 

(https://synapse.org/modulechallenge). This includes: 

• Official challenge rules; 

• Gene scores for the compendium of 180 GWASs used in the challenge plus 5 additional 

GWASs obtained after the challenge (GWAS SNP p-values are available upon request); 

• The molecular network collection (anonymized and deanonymized versions); 

• Module identification method descriptions and code provided by teams; 

• The final module predictions of all teams for both sub-challenges; 

• Consensus module predictions for both sub-challenges; 

• Method scores at varying FDR cutoffs; 

• Individual module scores for all GWASs; 

• Enriched functional annotations for all modules (GO, mouse mutant phenotypes, and 

diverse pathway databases); 

• A snapshot of the PASCAL tool and scoring scripts. 

 

The latest version of PASCAL and the source code is also available from the PASCAL website 

(https://www2.unil.ch/cbg/index.php?title=Pascal) and GitHub 

(https://github.com/dlampart/Pascal). 
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Figure S1 

 

Figure S1. Assessment of Module Identification Methods, Related to Figures 2 and 3. 

 

(legend on next page)   
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Figure S1. Assessment of Module Identification Methods, Related to Figures 2 and 3. 

(A) Overall scores of the 42 module identification methods applied in Sub-challenge 1 at four different FDR cutoffs 
(10%, 5%, 2.5%, and 1% FDR). For explanation see legend of Fig. 2B, which shows the scores at 5% FDR (the 
predefined cutoff used for the challenge ranking). The top-performing method (K1) ranks first at all four cutoffs. The 
consensus prediction achieves the top score at 10% and 5% FDR, but not at the more stringent cutoffs. 

(B) Average number of trait-associated modules across all methods for each of the six networks. The most trait 
modules are found in the two protein-protein interaction (PPI) and the co-expression networks. Related to Fig. 2D, 
which shows the average number of trait modules relative to network size. 

(C) Final scores of multi-network module identification methods in Sub-challenge 2 at four different FDR cutoffs (10%, 
5%, 2.5%, and 1% FDR). For explanation see legend of Fig. 3E, which shows the scores at 5% FDR (the predefined 
cutoff used for the challenge ranking). Ranks are indicated for the top five teams (ties are broken according to 
robustness analysis described in Panel D). The multi-network consensus prediction (red) achieves the top score at 
each FDR cutoff. 

(D) Robustness of the overall ranking in Sub-challenge 2 was evaluated by subsampling the GWAS set used for 
evaluation 1,000 times. For each method, the resulting distribution of ranks is shown as a boxplot (using the 5% FDR 
cutoff for scoring). Related to Fig. 2C, which shows the same analysis for Sub-challenge 1. The difference between 
the top single-network module prediction and the top multi-network module predictions is not significant when sub-
sampling the GWASs (Bayes factor < 3). 
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Figure S2 

 

Figure S2. Consensus Module Predictions, Related to Figures 2 and 3.  

(A) Schematic of the approach used to generate single-network consensus module predictions for Sub-challenge 1. 
For each network, module predictions from the top 50% of teams were integrated in a consensus matrix C, where 
each element cij gives the fraction of teams that clustered gene i and j together in the same module in the given 
network (performance as the percentage of considered teams is varied is shown in Panel C). The overall score from 
the leaderboard round was used to select the top 50% of teams, i.e., the same set of teams was used for each 
network. The consensus matrix of each network was then clustered using the top-performing module identification 
method of the challenge (method K1; see Methods). 

(B) The approach used to generate multi-network consensus module predictions for Sub-challenge 2 was exactly the 
same as for single-network predictions, except that team submissions from all networks were integrated in the 
consensus matrix C. In other words, as input we still used the single-network predictions of the top 50% of teams from 
Sub-challenge 1, but instead of forming a consensus matrix for each network, a single cross-network consensus 
matrix was formed. This cross-network consensus matrix is then clustered using method K1 as described above (see 
Methods). 

(C) Scores of the single-network consensus predictions as the percentage of integrated teams is varied. We 
considered the top 25%, 50%, 75% and 100% of teams, as well as the top eight (19%) teams (these are the teams 
that ranked 2nd, or tied with the team that ranked 2nd, at any of the considered FDR cutoffs). 

(D) Performance of different methods to construct the consensus matrix C. In addition to the basic approach described 
above (Standard), two more sophisticated approaches to construct the consensus matrix were evaluated (Normalized 
and SML). In each case, the same set of team submissions were integrated (top 50%) and method K1 was applied to 
cluster the resulting consensus matrix. 

The first alternative (Normalized) is similar to the basic method but further assumes that appearing together in a 
smaller cluster is stronger evidence that a pair of genes is associated than appearing together in a larger cluster.  

(legend continued on next page) 
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Thus, each cluster’s contribution to the consensus matrix was normalized by the size of the cluster. Furthermore, we 
normalized the ij-entry of the consensus matrix by the number of methods that assigned gene i to a cluster, thus taking 
the presence of background genes into account. We found that the consensus still achieved the top score with these 
normalizations, but there was no improvement compared to the basic approach. 

The second method is a very different approach called Spectral Meta Learner (SML) (Parisi et al., 2014). SML is an 
unsupervised ensemble method designed for two-class classification problems. Briefly, it takes a matrix of predictions, 
𝑃,  where each row corresponds to different samples being classified and the columns correspond to different 

methods. Accordingly, each matrix element 𝑃𝑖𝑗 is the class (0 or 1) assigned to sample 𝑖 by method 𝑗. Under the 

assumption of conditional independence of methods given class labels, SML can estimate the balanced accuracy of 
each classifier in a totally unsupervised manner using only the prediction matrix 𝑃. The algorithm then uses this 

information to construct an ensemble classifier in which the contribution of each classifier is proportional to its 
estimated performance (balanced accuracy). The module identification problem is an unsupervised problem by its 
nature and we applied the SML algorithm as a new way for constructing consensus modules. For each method 𝑚 and 

network 𝑘, we created a vector of prediction 𝑃𝑚𝑘, of size 𝑁𝐺𝑘
by 𝑁𝐺𝑘

, where 𝑁𝐺𝑘
is the number genes in network as 

follows: 

𝑃𝑚𝑘(𝑖, 𝑗) = 1,   𝑖𝑓 𝑚𝑒𝑡ℎ𝑜𝑑 𝑚 𝑝𝑢𝑡𝑠 𝑔𝑒𝑛𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑜𝑑𝑢𝑙𝑒    (1) 

𝑃𝑚𝑘(𝑖, 𝑗) = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

For each network, we constructed the prediction matrix 𝑃with each column 𝑃𝑚defined as above. We then provided this 

matrix as input to the SML algorithm. The SML algorithm outputs a consensus matrix, which assigns a weight between 
each pair of genes. We found that SML did not perform well in the context of this challenge, likely because the 
underlying assumption of SML is that top-performing methods converge to similar predictions, which was not the case 
here (see Figs. 3 and S3). 

(E) Pairwise similarity of networks. The upper triangle of the matrix shows the percent of shared links (the Jaccard 
index multiplied by 100) and the lower triangle shows the fold-enrichment of shared links compared to the expected 
number of shared links at random. The two protein-protein interaction networks are the two most similar networks with 
8% of shared edges. 
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Figure S3 
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Figure S3. Complementarity of Module Identification Methods, Related to Figure 3.       (legend on next page) 
Figure S3. Complementarity of Module Identification Methods, Related to Figure 3. 

All panels show results for single-network module identification methods (Sub-challenge 1). 

(A) Pairwise similarity of module predictions from different methods, averaged over all networks. Similarity was 
computed based on whether the same genes were clustered together by the two methods (see Methods). The 
resulting similarity matrix was hierarchically clustered using Ward’s method. The top row shows the method type. The 
top five methods (1-5) and the consensus (C) are highlighted. The top methods did not converge to similar module 
predictions (they are not all grouped together in the hierarchical clustering). Related to Fig. 3, which shows similarity of 
module predictions from individual networks. 

(B) Average module size versus score for each method. The x-axis shows the average module size of a given method 
across the six networks. The y-axis shows the overall score of the method. Top teams (highlighted) produced modules 
of varying size, i.e., they did not converge to a similar module size during the leaderboard round. Methods that 
generated very small modules (average size < 10) were not among the top performers. 

(C) Comparison of module sizes between networks. For each network, the boxplot shows the distribution of average 
module sizes of the 42 challenge methods. On average, modules were smallest in the signaling network and largest in 
the co-expression network. 

(D) Comparison of module sizes between method types. For each network, boxplots show the distribution of average 
module sizes for kernel clustering, modularity optimization, random-walk-based, and hybrid methods (the remaining 
categories are not shown because they comprise only three methods each). Note that teams tuned the resolution 
(average module size) of their method during the leaderboard round. The variation in module size between different 
method categories and networks suggests that the optimal resolution is method- and network-specific. For example, 
teams using random-walk-based methods tended to choose a higher resolution (smaller average module size) than 
teams using kernel clustering or modularity optimization methods. 

(E) Number of distinct trait-associated modules recovered by the top K methods. Given the top K methods, we 
considered the set including all modules predicted by these methods and scored them with the same pipeline as used 
for the individual methods in the challenge. We then evaluated how many “distinct” trait-associated modules were 
recovered by these methods. Distinct modules were defined as modules that do not show any significant overlap 
among each other. Overlap between pairs of modules was evaluated using the hypergeometric distribution and called 
significant at 5% FDR (Benjamini-Hochberg adjusted p-value < 0.05). From the set of trait-associated modules 
discovered by the top K methods, we thus derived the subset of distinct trait-associated modules (when several 
modules overlapped significantly, only the module with the most significant GWAS p-value was retained). Although the 
resulting scores (number of distinct trait-associated modules) cannot be directly compared with the challenge scores 
(because module predictions had to be strictly non-overlapping in the challenge), it is instructive to see how many 
distinct trait modules can be recovered when applying multiple methods. The stacked bars (colors) further show how 
many of the distinct trait modules are contributed by each method category. The number of distinct trait modules is not 
monotonically increasing as more methods are added because the larger sets of modules also increase the multiple 
testing burden of the GWAS scoring. The top four methods together discover 78 distinct trait-associated modules. 
Relatively little is gained by adding a higher number of methods. 
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Figure S4 

 

Figure S4. Support of Trait Modules in Diverse Datasets, Related to Figures 5 and 6. 

(A) Pairs of older (lower-powered) and more recent (higher-powered) GWASs used for the evaluation of module-based 
gene prioritization in Fig. 5C. The first column gives the trait and the second and third columns indicate the 
approximate cohort sizes of the respective GWASs. The bar plot shows the percentage of trait-associated modules 
from the first GWAS that are also trait-associated modules in the second GWAS. At the bottom, the expected 
percentage of confirmed modules at random is shown (i.e., assuming the trait-associated modules in the second 
GWAS were randomly selected from the set of predicted modules). 

(B) Enrichment of trait-associated modules in six curated gene sets from three recent studies. The first two gene sets 
were taken from Marouli et al., (2017) and correspond to genes comprising height-associated ExomeChip variants and 
genes known to be involved in skeletal growth disorders, respectively. The third gene set was taken from de Lange et 
al., (2017) and corresponds to genes causing monogenic immunodeficiency disorders. Lastly, three gene sets relevant 
for type 2 diabetes (T2D) were taken from Fuchsberger et al. (2016) and correspond to genes in literature-curated 
pathways that are believed to be linked to T2D (we distinguished between genes in cytokine signalling pathways and 
other pathways) and genes causing monogenic diabetes. We then considered corresponding GWAS traits in our hold-
out set, namely height, all immune-related disorders, and T2D. We then tested all modules associated with these 
GWAS traits for enrichment in these six external gene sets. Enrichment was tested using the hypergeometric 
distribution and p-values were adjusted to control FDR using the Benjamini-Hochberg method. The heatmap shows for 
each GWAS (row) the fraction of trait-associated modules that significantly overlap with a given gene set (column). It 
can be seen that modules associated with a given trait predominantly overlap the external gene sets that are expected 
to be relevant for that trait. 
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Figure S5 

 

Figure S5. Modules Associated with IgA Nephropathy, Related to Fig. 6D. 

 

(legend on next page) 
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Figure S5. Modules Associated with IgA Nephropathy, Related to Fig. 6D. 

The top ten enriched GO biological processes, Reactome pathways and mouse mutant phenotypes are shown for two 
IgA nephropathy (IgAN) associated modules. P-values were computed using the non-central hypergeometric 
distribution, see Methods.  

(A) IgAN-associated module identified using the consensus method in the InWeb protein-protein interaction network. 
The module comprises immune-related NF-κB signaling pathways. Enriched mouse mutant phenotypes for module 
gene homologs include perturbed immunoglobulin levels (IgM and IgG1). The module implicates in particular the NF-
κB subunit REL as a candidate gene. The REL locus does not reach genome-wide significance in current GWASs for 
IgAN but is known to be associated with other immune disorders such as rheumatoid arthritis. 

(B) Enriched annotations for the IgAN-associated module shown in Fig. 6D. The module comprises complement and 
coagulation cascades. The top two enriched mouse mutant phenotypes are precisely “abnormal blood coagulation” 
and “glomerulonephritis”. See main text for discussion. 
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Table S1 

Provided as Excel file (Table_S1.xlsx) 

Table S1: Collection of GWAS Datasets used for the Challenge. 

The table lists the GWAS datasets used for the module scoring. The first column indicates whether the GWAS was 
used during the "leaderboard" or "final" evaluation phase. The five GWAS listed in the end ("extra") were not used for 
the scoring as they were added to the collection after the challenge. The PASCAL gene scores for all GWAS are 
available for download from the challenge website (file names are given in the last column). The original GWAS SNP 
summary statistics can be downloaded individually from the indicated sources or we can share the complete collection 
upon request. 
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Table S2 

 
 

Table S2: Functional Enrichment for Example Modules, Related to Figs. 5 and 6. 

Enrichment p-values for mouse mutant phenotypes, Reactome pathways and GO biological processes are shown for 
four example modules discussed in the main text (Figs. 5 and 6). P-values were computed using the non-central 
hypergeometric distribution and adjusted using the Bonferroni method (Methods). Results for the remaining trait-
associated modules from the consensus method in the STRING protein interaction network are shown in Table S4. 
Functional enrichment analysis for additional pathway databases and modules from all methods and networks are 
available on the challenge website.  
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Table S3 

 

Table S3: Overview of Consensus Trait-modules in the STRING Network, Related to Fig. 6. 

Overview of all 21 trait-associated modules discovered by the consensus method in the STRING protein-protein 
interaction network. The first three columns give the module ID, the trait type, and the specific GWAS trait that the 
module is associated to. We tested all modules for enrichment in GO annotation, mouse mutant phenotypes, and 
other pathway databases using the noncentral hypergeometric test (Methods). The putative function of each module 
based on this enrichment analysis is summarized in the fourth column (see Figs. 5, 6 and Tables S2, S4 for details). 
Two thirds of the modules have functions that correspond to core pathways underlying the respective traits, while the 
remaining modules correspond either to generic pathways that play a role in diverse traits or to pathways without an 
established connection to the considered trait or disease. Only pathways with a well-established link to the trait were 
considered core pathways. Generic pathways, such as cell-cycle-related or epigenetic pathways, were not considered 
core pathways because they are relevant for many traits and tissues, making them more difficult to target 
therapeutically. For example, modules 77 and 109 are both associated with schizophrenia and comprise pathways 
related to epigenetic gene silencing and nucleosome organization, respectively. Although there is evidence that 
epigenetic mechanisms may play a role in schizophrenia, we considered this to be a generic pathway. 
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Table S4 

Provided as Excel file (Table_S4.xlsx) 

Table S4: Functional Enrichment of Consensus Trait Modules. 

For each of the 21 consensus trait-modules shown in Table S3, all categories with a Bonferroni-corrected P-value 

below 0.05 are listed (Methods). Only results for mouse mutant phenotypes, Reactome pathways and GO biological 

process annotations are included for brevity. Full results including all tested pathway databases and all challenge 

modules are available on the challenge website. 
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