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Abstract

The generation of DNA Next Generation Sequencing (NGS) data is a commonly applied approach 
for studying the genetic basis of biological processes, including diseases, and underpins the 
aspirations of precision medicine. However, there are significant challenges when dealing with 
NGS data. A huge number of bioinformatics tools exist and it is therefore challenging to design an 
analysis pipeline; NGS analysis is computationally intensive, requiring expensive infrastructure 
which can be problematic given that many medical and research centres do not have adequate 
high performance computing facilities and the use of cloud computing facilities is not always 
possible due to privacy and ownership issues. We have therefore developed a fast and efficient 
bioinformatics pipeline that allows for the analysis of DNA sequencing data, while requiring little 
computational effort and memory usage. We achieved this by exploiting state-of-the-art 
bioinformatics tools. DNAscan can analyse raw, 40x whole genome NGS data in 8 hours, using as 
little as 8 threads and 16 Gbs of RAM, while guaranteeing a high performance. DNAscan can look 
for SNVs, small indels, SVs, repeat expansions and viral genetic material (or any other organism). 
Its results are annotated using a customisable variety of databases including ClinVar, Exac and 
dbSNP, and a local deployment of the gene.iobio platform is available for an on-the-fly result 
visualisation.
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Introduction

Next Generation Sequencing (NGS) technologies play a key role in human genetic research. The 
effort needed to sequence a whole genome has reduced from about 15 years of work at a cost of 
$3 billion in 2003 [1] to hours for ~$1000 in 2017 (https://www.veritasgenetics.com/mygenome).

Producing sequencing data, whether it is whole genome sequencing (WGS), whole exome 
sequencing (WES) or targeted gene panels, is common practice for the study of the genetic basis 
of biological processes. In biomedical research, NGS data are widely used to investigate the 
genetic causes of disease, allowing for the study of genomic variants including single nucleotide 
variations, small insertions or deletions of a few bases, as well as structural variants. 

On a large scale, international collaborations are forming sequencing consortia to study the genetic 
landscape of thousands of individuals. Examples of such consortia are Project MinE [2] and The 
Cancer Genome Atlas (TCGA) [3]. Project MinE is an international consortium seeking to obtain 
sequencing data from 15,000 Amyotrophic Lateral Sclerosis cases and 7,500 matched controls. 
TCGA is a rich dataset of sequencing data of over 11,000 individuals affected by 33 different 
tumour types. On an individual scale, NGS data are also being investigated for their use in 
diagnostic medicine and so called Precision Medicine [4, 5], whose aim is to tailor medical 
treatments to patient genetics.

There are several practical challenges when processing NGS data. For example, 40x WGS data  
for one sample produced on the Illumina Hiseq 2000, one of the most popular sequencers, is about 
400 gigabytes in its raw format (fastq format) [6]. This size can be reduced to approximately one 
fourth when the data is compressed down to about 100 gigabytes, using lossless formats such as 
fastq.gz (gzip-compressed version of fastq) and bam [7]. Such big files are not easy to handle for 
the average non-specialised scientist or lab, since they require sophisticated tools, bioinformatics 
skills and high performance computing for their analysis. Indeed, as an example, consider mapping 
one of these files, typically about 1 billion 150-base-pair long reads, to the human genome, a key 
process in the analysis of WGS data. Assuming that a standard midrange desktop computer with 4 
CPUs and 16 Gb RAM is used with The Burrow Wheeler Aligner (BWA) [8], probably the most 
widely used mapper, aligning this data to the human reference genome would take about 1 day, 
and this would only be the first step of an NGS data analysis pipeline. Faster mappers exist. For 
example SNAP [9] would only take about 4 hours to complete the same job, using the same 
number of CPUs, but it requires about 65Gb RAM, making it an unsuitable choice if large memory 
High-Performance-Computing (HPC) facilities are not available.  

For big collaborations and projects, collecting NGS data from thousands of individuals, powerful 
and expensive HPC facilities, as well as highly specialised staff are needed. To handle such data, 
the Project MinE consortium makes use of SURFsara, the Dutch national HPC facility, and the 
TCGA invested millions of dollars in HPC infrastructure and e-infrastructure (https://
cancergenome.nih.gov) making use of, among others, Amazon Web Services (AWS) and Seven 
Bridges (https://www.sevenbridges.com).

Further challenges are represented by the large number of bioinformatics tools available for NGS 
analysis. Omictools [10], a web database where most available tools are listed and reviewed, lists 
over 7000 bioinformatics NGS tools, and given the great interest in this field, new tools are 
frequently released. Therefore, designing a bioinformatics pipeline for the analysis of NGS data, 
taking into account both the available computing facilities and the study aim, is not trivial, and 
requires specialised expertise.

Here we describe DNAscan, an extremely fast, accurate and computationally light bioinformatics 
pipeline for the analysis, annotation and visualisation of DNA NGS data. DNAscan is designed to 
provide a powerful and easy-to-use tool for applications in biomedical research and diagnostic 
medicine, at minimal computational cost. DNAscan can analyse 40x WGS data in 8 hours using 8 
threads and 16 Gb RAM and WES data in 1 hour using 4 threads and 10 Gb of RAM, enabling the 
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processing of NGS data to be carried out on most midrange computers and the minimisation of 
computational costs. The pipeline can detect SNVs, small indels, SVs, repeat expansions and viral 
genetic material (or any other organism). Its results are annotated using a variety of databases 
including ClinVar [11], Exac [12], dbSNP [13] and dbNSFP [14], made available for a local 
deployment of the gene.iobio platform for an on-the-fly visualisation and user-friendly quality 
control (QC) reports are generated. DNAscan also allows the user to restrict the analysis to any 
subregion of the human genome, including the whole exome or a set of genes or gene panel, 
speeding up the processing time and generating region specific reports. DNAscan is available on 
GitHub [15] and Docker [16] and Singularity [17] images are also available for fast and reliable 
deployment. 

Motivation

The pipeline is being developed to meet the needs of the interdisciplinary biomedical research 
community of the King’s College London Clinical Neuroscience and Health Informatics 
laboratories. Their current genomics initiatives include a variety of projects ranging from large scale 
international sequencing projects such as Project MinE and ADNI [18], collecting thousands of 
whole-genome-sequencing samples, to medical studies designing gene panels for diagnostic 
purposes. In this context, research and medical workers, with different scientific backgrounds and 
levels of bioinformatics skills, deal with NGS data constantly. The pipeline requirements were the 
following:

1) Speed: Some studies for which the pipeline is being used, require the analysis to be concluded 
within working hours.

2) Usable on personal laptops and desktops: Even if most academic institutions have HPC 
facilities available for their staff, this does not necessarily mean everything can be processed on 
them. In many circumstances, many factors, e.g. the informatics skills of the research workers, 
privacy and ownership policies, technical obstacles, etc., might make using local machines 
necessary. This is common in a medical research environment.    

3) Annotation and visualisation: For non specialised users, e.g. physicians, wet lab biologists, etc., 
an automatic annotation of the results and user friendly interface for their visualisation is 
fundamental.

4) Screen for microbial presence: NGS data are widely used to investigate the role of microbes, 
such as viruses and bacteria, in many diseases. Viral and bacterial metagenomics studies are also 
common. 

5) Specific known repeats: Many repeat expansions have a crucial role in the development of 
several diseases. E.g. C9orf72 repeat [19] in Amyotrophic Lateral Sclerosis (ALS).

6) Region restricted analysis: Use of shared datasets for heterogeneous research purposes often 
focuses on subregions of the genome. e.g. screening NGS samples for particular variants or over 
a disease specific panel of genes. 

7) Reproducibility and easy and fast deployment: The pipeline must be easily deployable and 
results reproducible on any machine. This is to favour both reproducibility of the initial research 
and collaborations through analysis pipeline sharing. 

8) Easy to use: It must be suitable for a wide range of users with different level of informatics 
expertise.
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RESULTS

Pipeline description

DNAscan pipeline consists of four stages (Figure 1), Alignment, Analysis, Annotation and Report 
generation, and can be run in three modes, Fast, Normal and Intensive, according to user 
requirements. Fast mode minimises the RAM and time required while Normal and Intensive modes 
improve the variant calling performance by performing an alignment and small indel calling 
refinement stage respectively. 

The user can tailor the DNAscan pipeline to their needs by performing any subset of the available 
analyses or restricting them to a subregion of the human genome. e.g. if variants have already 
been called (this is commonly the case when the sequencing is provided by companies such as 
Illumina, Novagen, etc) and we are only interested in a particular set of genes, the snv/indel calling 
steps would be skipped and DNAscan can be used to call SVs only and results visualisation on 
that set of genes. DNAscan accepts genome regions both as a bed file or a list of gene names. 
Optionally, the analysis can be restricted to the whole exome.

Alignment

DNAscan accepts sequencing data both in raw fastq (and its .gz compressed version) and as a 
Sequence Alignment Map (SAM) file (and its compressed version BAM). HISAT2 [20] and BWA are 
used to map the reads to the reference genome (Figure 1, left panel). This step is skipped if the 
user provides ready-aligned data in SAM or BAM formats. HISAT2 is a fast and sensitive alignment 
program for mapping next-generation sequencing reads to a reference genome. Based on an 
extension of BWT [21] for graphs [22], HISAT2 implements a large set of small graph FM indexes 
(GFM) [23] that collectively cover the whole genome. These “local” indexes, combined with several 
alignment strategies, enable rapid and accurate alignment of sequencing reads. This new indexing 
scheme is called a Hierarchical Graph FM index (HGFM). Thanks to this novel approach HISAT2 
can guarantee a high performance, comparable to state-of-the-art tools, in approximately one 
quarter of the time of BWA and Bowtie2 [24] (see Results).  

Variant calling pipelines based on HISAT2 generally perform poorly on indels [25] (see also 
Results). To address this issue, DNAscan uses BWA to realign soft-clipped and unaligned reads. 
This alignment refinement step is skipped if DNAscan is run in fast mode.

Samblaster [26] is used to mark duplicates during the alignment step and Sambamba [27] to sort 
the aligned reads. Both the variant callers, Freebayes [28] and GATK Haplotype Caller (HC) [29] 
used in the following step, are duplicate-aware, meaning that they automatically ignore reads 
marked as duplicate. The user can optionally exclude it from the workflow. This might be necessary 
in some studies, e.g. when an intensive PCR amplification of small regions is required.  

Analysis 

Various analyses are performed on the mapped sequencing data (Figure 1, right panel): SNV and 
small indel calling is performed using Freebayes, whose reliability is well reported [30, 31]. 
However, taking advantage of the documented better performance of GATK HC in small indel 
calling (see also our Results section), we decided to add a customised indel calling step to 
DNAscan, called Intensive mode. This step firstly extracts the genome positions for which an 
insertion or a deletion is present on at least one read, and secondly calls indels using GATK HC on 
these selected positions. The reduced number of positions where this occurs allows for a targeted 
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use of GATK HC, limiting the required computational effort and time. Resulting SNV and small 
indel calls are finally hard filtered with Bcftools [32] (see methods). 

Two illumina developed tools, Manta [33] and Expansion Hunter [34] are used for detecting 
medium and large structural variants (> 50bp) including insertions, deletions, translocations, 
duplications and known repeat expansions. These tools are optimised for high speed, and can 
analyse a 40x WGS sample in about 30 minutes using 8 threads, maintaining a very high 
performance. 

DNAscan also has options to scan the sequencing data for microbial genetic material. It performs a 
computational subtraction of human host sequences to identify sequences of infectious agents 
including viruses, bacteria or fungi, by aligning the non-human or unaligned reads to the whole 
NCBI database [35, 36] of known viral, bacterial or any custom set of microbial genomes and 
reporting the number of reads aligned to each non-human genome, its length and the number of 
bases covered by at least one read.

Annotation

Variant calls are then annotated using Annovar [37]. The annotation includes the use of databases 
such as ClinVar [11], Exac [12], dbSNP [13] and dbNSFP [38] (more information about how to 
customise the annotation, e.g. by selecting alternative databases and/or focusing on specific 
genome regions, are available on GitHub). 

Report generation

Finally, a user friendly, readable and customisable report is generated. Bcftools, Samtools and 
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) are used to generate statistics 
on the variants called by the pipeline, the quality of the sequencing data and its alignment. MultiQC  
[39] is used to wrap up these stats and make them available as html report (see Reports and 
visualisation utilities). A local deployment of a set of iobio services including the gene.iobio platform 
(gene.iobio.io) are available for an on-the-fly visualisation of the result variant files (gene.iobio and 
vcf.iobio) and sequencing data (bam.iobio [40]). 

Software availability

DNAscan is available on GitHub (https://github.com/KHP-Informatics/DNAscan). Docker and 
Singularity images are also available for fast deployment and reproducibility (see instructions on 
Github).

DNAscan benchmarking

Benchmarking every DNAscan component is beyond the aim of this article since a range of 
literature is available [30, 33, 34, 41]. However, to our knowledge, none exists assessing HISAT2 
either for small DNA read mapping or as part of DNA variant calling pipelines. In the following 
section, we both assess the performance of HISAT2 with BWA and Bowtie2 mapping 1.25 billion 
WGS reads sequenced with the Illumina Hiseq 2000 and 150 million simulated reads (see 
Methods), and compare our SNV/indel calling pipeline in Fast, Normal and Intensive modes with 
the Genome Analysis Toolkit best practices workflow and SpeedSeq [42] over the whole exome 
sequencing of NA12878. Illumina platinum calls are used as true positives. 
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We show how DNAscan represents a powerful tool for medical and scientific use by analysing real 
DNA sequence data from two ALS patients and of HIV infected human cells. For the ALS patients 
we use both a gene panel of 10 ALS-related genes, whose feasibility for diagnostic medicine has 
been previously investigated [5], and their equivalent WGS data from the Project MinE sequencing 
dataset. DNAscan is used to look for SNVs, small indels, SVs, and known repeat expansions. The 
WGS of an HIV infected human cell sample [43] is used to test DNAscan for virus detection.
 

The HISAT2 aligner assessment

To assess the performance of the HISAT2 aligner we used two datasets: 1.25 billion WGS reads of 
a human WGS DNA sample sequenced with an Illumina Hiseq 2000 (see Methods), and 150 
million simulated human reads (see Methods). In this assessment we took into consideration the 
memory footprint (RAM), the time needed to complete the alignment, percentage of reads mapped 
to the reference genome, and the percentage of uniquely mapped reads and properly paired 
reads. The performance of HISAT2 was compared with the BWA aligner (mem algorithm [44]) and 
Bowtie2, which are two of the most widely used small reads aligners. Table 1 shows the results 
from this test. 

On this real dataset, HISAT2 uses 4.2 gigabytes of RAM, slightly larger than Bowtie2 (3.8Gb 
RAM), while BWA has the biggest memory usage (9.1Gb RAM). In terms of speed, HISAT2 
completes the mapping in 4 hours while both the other aligners take about 4-5 times longer (19 
hours 27 minutes for BWA and 17 hours 50 minutes for Bowtie2). In terms of percentage of 
uniquely mapped reads, HISAT2 closely compares with BWA (86.17% and 86.80% respectively) 
outperforming Bowtie2 (75.14%). 

On the simulated dataset, all aligners perform well, however HISAT2 is over 4 times faster than the 
others, although uniquely aligning slightly fewer reads (97.75% versus BWA-MEM 100%).   
These results highlight how HISAT2 performs comparably to BWA and Bowtie2 while keeping a 
low memory footprint (4.2Gb RAM) and the highest speed (over 4 times faster than the other 
aligners on the real dataset). All tests were run using 4 threads on a machine with 16GB RAM and 
two Intel Xeon E5-2670 processors.

Variant calling assessment

To assess the performance of the DNAscan variant calling pipeline with the GATK best practice 
workflow (GATK BPW) and SpeedSeq, we used the exome of the well studied NA12878 sample 
and the Illumina platinum calls [45] as a gold standard (our set of true calls). GATK BPW consists 
of using the BWA aligner, the removal of duplicates with Picard, a base recalibration step and 
variant calling with GATK-HC. The SpeedSeq pipeline uses BWA for alignment, Sambamba and 
Samblaster to sort reads and to remove duplicates, and Freebayes for variant calling. Considering 
the overlap in the software used by DNAseq and SpeedSeq, assessing their performance is 
therefore of interest. Figure 2A shows the results from this test. DNAscan in Fast mode performs 
comparably with both the GATK BPW and the SpeedSeq on SNVs. Their F-measure (Fm), a 
harmonic mean of precision and sensitivity defined in equation 1 (see Methods), is 0.923, 0.911 
and 0.928 respectively. 

For indels, DNAscan in Fast mode performs poorly (Fm= 0.570).  In Normal mode DNAscan shows 
improvements, reaching an indel calling precision and sensitivity comparable to SpeedSeq (Fm 
equal to 0.610 and 0.620 respectively). The better performance of the Normal mode is driven by a 
major increase in sensitivity, which reaches 0.734 from 0.596. However, GATK BPW outperforms 
SpeedSeq on indels (GATK BPW  Fm = 0.815). DNAscan, in Intensive mode, can perform 
comparably to GATK BPW also on indels with an Fm of 0.820.  
Figure 2B shows a comparison of the time needed by the tested pipelines and their memory 
usage. DNAscan in Fast mode completes the analysis in just 63 minutes while SpeedSeq takes 
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over twice the time (132 minutes) and GATK BPW 5 times longer (310 minutes). DNAscan in both 
Normal and Intensive mode completes the analysis in a reasonable time (77 and 98 minutes 
respectively). In terms of memory, DNAscan uses as little as 10GB of RAM in Fast mode, 12GB in 
Normal and Intensive mode, while GATK BPW 15GB and SpeedSeq over 25GB.

ALS Miseq and Whole-Genome-Seq test cases 

Using DNAscan in Fast mode, we analysed real DNA sequence data from two ALS patients (case 
A and case B). Case A carries a non-synonymous mutation in the FUS gene [46] (variant C1561T, 
AA change R521C, variant dbSNP id rs121909670 [47]) known to be a cause of ALS (ClinVar id 
RCV000017609.27,RCV000017611.25). Case B is a confirmed C9orf72 expansion carrier (see 
Methods), this repeat expansion is known to be strongly associated with ALS [48]. A panel of 10 
ALS related genes was sequenced with the Illumina Miseq platform for both cases, while 40x WGS 
data was generated with the Illumina Hiseq 2000 for case B only. The Miseq gene panel was 
designed and tested for diagnostic purposes [3] (see Methods). For these 10 genes (BSCL2, 
CEP112, FUS, MATR3, OPTN, SOD1, SPG11, TARDBP, UBQLN2, and VCP), the full exon set 
was sequenced, generating over 825,000 222-base-long paired reads. The WGS sample (paired 
reads, read length = 150, average coverage depth = 40) was sequenced as part of Project MinE 
sequencing dataset. For both the samples, SNVs, indels, and SVs were called. For the WGS 
sample, DNAscan also looked for the C9orf72 repeat.

For the WGS sample we ran DNAscan on the whole genome. However, both for practical reasons 
and to simulate a specific medical diagnostic interest, we focus our analysis report on the 126 ALS 
related genes reported on the ALSoD webserver [49] (http://alsod.iop.kcl.ac.uk/misc/
dataDownload.aspx#C5).

Frontotemporal Dementia (FTD) is a neurodegenerative disease which causes neuronal loss 
predominantly involving the frontal or temporal lobes. Considering its genetic and 
electrophysiological overlap with ALS [50, 51] we report variants linked to FTD as well as to ALS in 
the following results 

Table 2 shows the results from this analysis. For the Case A Miseq DNA gene panel, DNAscan 
detected 13 SNVs reported to be related to amyotrophic lateral sclerosis and 4 to FTD on ClinVar, 
6 non-synonymous variants and 6 variants with a deleteriousness CADD phred score [52] equal to 
or higher than 13, meaning that they are predicted to be in the top 5% most deleterious 
substitutions. Finally, the known pathogenic FUS SNV rs121909670 was detected. No SVs were 
found. The whole analysis was performed in ~30 minutes using 4 threads. Since no ALS related 
repeat expansions are known in these genes, DNAscan was not used to look for any repeat 
expansions in this analysis. 

On the WGS data of Case B, for the selected 126 genes, DNAscan identified 33 SNVs reported to 
be related to amyotrophic lateral sclerosis and 3 to frontotemporal dementia on ClinVar, 64 non-
synonymous variants, 748 variants with a deleteriousness CADD phred score equal to or higher 
than 13, one 60-base-pair long insertion, 3 over 100,000-base-pair long deletions and 1 tandem 
duplication. DNAscan was also able to detect the known C9orf72 expansion. 

Table 2 also shows the WGS findings restricted to the same regions sequenced with Miseq (table 2 
- WGS panel genes column). Considering these results together with the intersection between the 
WGS and Miseq results of the same ALS patient, thus case B (Miseq ∩ WGS), we can see how all 
the variants reported to be linked to ALS/FTD on ClinVar were also detected in the WGS data and 
no novel variants, among the classes considered in table 2, were spotted. The whole analysis was 
performed in 8 hours using 8 threads.
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Virus scanning

We used DNAscan to detect the presence of viral genetic material in a whole genome sequencing 
sample of HIV infected human cells (see Methods). The DNA sequencing data was produced using 
the Illumina Hiseq 2000 sequencer generating about 350 million 95-base-long paired reads (see 
Methods). Following the well-established approach of computational subtraction of human host 
sequences to identify sequences of infectious agents like viruses [53], the human reads (91%, 
Figure 4a) were subtracted by mapping the sequencing data to the reference human genome 
using HISAT2. To screen our sequencing sample for the presence of known viral DNA, HISAT2 
was then used to map the unmapped reads from the initial mapping phase of the pipeline (9%, 
Figure 4a) to all the viral genomes available on the NCBI virus database. 

Figure 4a shows in descending order, the 20 viral genomes to which the highest number of reads 
were mapped. They show both the presence of HIV DNA and bacterial DNA in our sample. Indeed, 
4,412,255 reads mapped to the human immunodeficiency virus (NCBI id NC_001802.1) and only 
the Escherichia virus phiX174 (NCBI id NC_001422.1), a bacterial virus, presented a comparable 
number of reads (4,834,017 reads). This phage is commonly found in Illumina sequencing 
protocols [54] probably because of transfer from gut microbes into blood. 

Figure 5b shows a logarithmic representation of the number of reads aligned to the viral genomes, 
highlighting a smaller (3-4 orders of magnitude) number of reads belonging to other viruses. The 
disproportion between the presence of the first two hits (phiX174 and HIV) and the rest of the 
viruses is also shown in Figure 4b. Discussing this heterogeneous viral genetic material in this 
sample is beyond the aim of this article. The complete results with the list of the whole set of 
viruses (120 viruses) for which at least one read was aligned can be found on Github (https://
alfredokcl.github.io/sample_report/Virus_test.pdf). The whole screening was performed by 
DNAscan using 4 threads in ~2 hours.

Reports and visualisation utilities

DNAscan produces a wide set of QC and result reports and provides utilities for visualisation and 
interpretation of the results.

MultiQC is used to wrap up and visualise QC results of the sequencing data (FastQC), its 
alignment (Samtools) and variant calls (Bcftools). An example is available at the following link: 
https://alfredokcl.github.io/sample_report/multiqc_report.html

A tab delimited file including all variants found within a selected region is also generated. This 
report would include all annotations performed by Annovar in a format that is easy to handle with 
any Excel-like software by users of all levels of expertise.  An example is available at the following 
link: https://alfredokcl.github.io/sample_report/sample_variant_report.txt

Three iobio services are locally provided with the pipeline allowing for the visualisation of the 
alignment file (bam.iobio [40]), the called variants (vcf.iobio) and for a gene based visualisation and 
interpretation of the results (gene.iobio)

These utilities are also available for evaluation at the following links:
http://bam.iobio.io
http://vcf.iobio.io
http://gene.iobio.io

�8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2018. ; https://doi.org/10.1101/267195doi: bioRxiv preprint 

https://doi.org/10.1101/267195


Discussion

We have presented DNAscan, an extremely fast and computationally efficient pipeline for the 
analysis, annotation and visualisation of NGS DNA sequencing data. DNAscan can analyse 40x 
WGS data in 8 hours and WES data in one hour on a mid-range commercial computer. DNAscan 
also provides utilities for user friendly visualisation and interpretation of its output. 

After the assessment  showing a positive outcome of HISAT2 versus BWA and Bowtie2, we 
showed the performance of DNAscan is comparable to the widely used GATK BPW. Its three 
running modes (Fast, Normal and Intensive) allow the user to tailor the pipeline to their needs, 
while reducing the time and RAM needed compared to the current GATK BPW and SpeedSeq.

We also reported a few use cases such as the analysis of Miseq and WGS data of an ALS case for 
diagnostic purposes and the virus screening of HIV infected human cells. In the ALS test we 
showed how with both technologies DNAscan detected a range of reported ALS related variants in 
a reasonable time (half an hour for the Miseq panel and 8 hours for the WGS) reporting the 
presence of both the C9orf72 expansion and rs121909670. In the HIV test, DNAscan detected the 
expected viral presence by finding both the HIV virus and a phage commonly present in Illumina 
NGS DNA data.

Other DNA NGS data analysis pipelines exist. Omictools currently lists 101 such tools. Most of 
which do not cover the whole data analysis, annotation and visualisation process and are 
computationally more intensive. Among these SpeedSeq and GATK BPW are two of the most 
popular. SpeedSeq is a framework for fast genome analysis and interpretation. Analysing a 40x 
WGS sample with SpeedSeq would take 10 hours on a machine with 32 CPUs and 126Gb of 
RAM. GATK BPW is a pipeline designed and developed by the Broad institute (https://
www.broadinstitute.org) and aims to provide the community with best practice standard pipelines 
and software for the analysis of NGS data. At present it can be used for SNV and small indel 
calling. Analysing a WGS sample with the GATK BPW would take about 24 hours on a machine 
with  32 CPUs and 126Gb of RAM. Compared to these pipelines, DNAscan requires a substantially 
lower computational effort, provides user friendly utilities for the visualisation and interpretation of 
results and allows the user to screen the NGS data for microbial genetic material and detect known 
repeat expansions. Taking into consideration the well reported involvement of microbes and the 
role of repeat expansions in several diseases of genetic interest [55, 56], both these analyses are 
valuable research tools. 

Cloud computing and storage services offer practically unlimited computational power and storage. 
However, this has a cost, and its optimisation, in particular for large scale sequencing projects, is 
of primary importance. Amazon Web Services (AWS) is one of the most popular cloud computing 
services. Performing the alignment, variant calling and annotation using DNAscan Fast mode on 
an EC2 instance (https://aws.amazon.com/ec2/pricing/on-demand/) would cost about $2.96 (8 
hours of usage of a t2.2xlarge machine with 8 CPUs). The same analysis using SpeedSeq would 
cost about $22.28 (10 hours of usage of a c3.8xlarge machine with 32 CPUs). These prices do not 
take into account the storage, were updated on 28th of January 2017 and take into consideration 
the cheapest machines available in the US East (Ohio) region matching the pipeline computational 
requirements proposed by the authors (8 CPUs and 16Gb RAM for DNAscan and 32 CPUs and 
128Gb RAM for SpeedSeq [42]).

DNAscan is also available as a Docker and a Singularity image. These allow the user to quickly 
and reliably deploy the pipeline on any machine where either of these programmes is available. 
Singularity also allows for the deployment of the pipeline on environments for which the user does 
not have root permission. This could be particularly useful for users working on shared HPC 
facilities.
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DNAscan is a novel and powerful pipeline which can be used for genetic research as well as 
medical research. It is suitable for both small and large scale analysis. Covering the whole end-to-
end analysis process, from sequencing data in fastq format to results visualisation, generating user 
friendly reports and providing result navigation utilities. DNAscan is suitable for a wide audience of 
users, ranging from research and medical workers with basic command line usage knowledge to 
expert bioinformaticians.   

Methods

Hardware.

The tests using four threads were performed on a single machine with 16GB RAM and an Intel 
i7-670 processor. The tests using more than four threads were performed on a Dell PowerEdge 
R630 server.

Performance profiling

Memory usage was recorded using the following command lines: 

$ nohup bash -c 'while true; do (echo "%CPU %MEM ARGS $(date)" && ps -e -o pcpu,pmem,args --
sort=pcpu | cut -d" " -f1-5 | tail) >> ps.log; sleep 5; done' &

Peak memory usage was parsed by:

$ cat ps.log | grep -e $proc_name  -e ARGS | awk 'BEGIN{max=0}{ if (SUM>max) max=SUM; if 
($3=="ARGS") print SUM, SUM=0; else SUM+=$2}END{print max}' 

Variant calling assessment

To assess the performance of DANscan in calling SNVs and indels, we used the Illumina Genome 
Analyzer II whole exome sequencing of NA12878 (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
technical/working/20101201_cg_NA12878/NA12878.ga2.exome.maq.raw.bam). Illumina platinum 
calls (ftp://platgene_ro@ussd-ftp.illumina.com/) were used as true positives. 

GATK BPW calls were generated using default parameters and following the indications on https://
software.broadinstitute.org/gatk/ (https://software.broadinstitute.org/gatk/best-practices/
bp_3step.php?case=GermShortWGS) for germline snvs and indels calling. These include the Pre-
processing (https:/ /software.broadinst i tute.org/gatk/best-pract ices/bp_3step.php?
case=GermShortWGS&p=1) and variant discovery steps for single sample, i.e. skipping the Merge 
and Join Genotype steps (https://software.broadinstitute.org/gatk/best-practices/bp_3step.php?
case=GermShortWGS&p=2).

SpeedSeq calls were generated running the “align” and “var” commands as described on Github 
(https://github.com/hall-lab/speedseq)

RTG Tools [57] (“vcfeval” command) was used to evaluate the calls (https://github.com/
RealTimeGenomics/rtg-tools).
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F-measure, Precision and Sensitivity were defined as in Equation 1.

Equation 1: Precision, Sensitivity and F-measure definitions. Tp is true positives, Fp false positives 
and Fn false negatives. 

C9orf72 repeat primed PCR

C9orf72 gene Hexanucleotide Expansions were determined using a Repeat Primed PCR (RP-
PCR), previously published by DeJesus-Hernandez et al. [58]. 

Simulated reads

150,000,000 Illumina 100-bases-long paired-end human reads were generated using pIRS [59] 
with default parameters and hg19. 

Whole-Genome-Sequencing data of ALS patients

Venous blood was drawn from patients and controls from which genomic DNA was isolated using 
standard methods. We set the DNA concentrations at 100ng/ul as measured by a fluorometer with 
the PicoGreen® dsDNA quantitation assay. DNA integrity was assessed using gel electrophoresis. 
All samples were sequenced using Illumina’s FastTrack services (San Diego, CA, USA) on the 
Illumina Hiseq 2000 platform. Sequencing was 150bp paired-end performed using PCR-free library 
preparation, and yielded ~40x coverage across each sample.

Miseq ALS gene panel

The ALS gene panel was designed using Illumina TruSeq Custom Amplicon and implemented on 
an Illumina Miseq platform. This utilises polymerase chain reaction amplicon-based target 
enrichment and screens for variants in 10 ALS disease genes: BSCL2, CEP112, FUS, MATR3, 
OPTN, SOD1, SPG11, TARDBP, UBQLN2, and VCP. For these genes full exon sequencing was 
examined.

Whole-Genome-Sequencing of HIV infected human cells 

Genomic libraries were prepared using the TruSeq® DNA Sample Prep kit V2 (Illumina) following 
the manufacturer’s instructions. Briefly, 1 μg of genomic DNA was sheared with the Covaris 2 
system (Covaris). The DNA fragments were then end-repaired, extended with an ‘A’ base on the 3′ 
end, ligated with indexed paired-end adaptors and PCR amplified. PCR amplification was carried 
out as follows: initial denaturation at 98°C for 30 sec, followed by 8 cycles consisting of 98°C for 10 
sec, 60°C for 30 sec and 72°C for 30 sec, then a final elongation at 72°C for 5 min. Four different 
genomic libraries were pooled and sequenced in one lane of an Illumina Hiseq 2000 sequencer 
using a 2 x 95bp paired end indexing protocol. Demultiplexed fastq files were obtained for each 
sample using the Illumina CASAVAv1.8.1 software. The complete high throughput sequencing 
dataset was downloaded from the Sequence Read Archive (SRA) [60] under accession number 
SRA056122.
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Viral database

In this paper DNAscan makes use of the whole non-redundant NCBI database of complete viral 
genomes (9334 genomes). These can be downloaded both as a multi sequence fast file, together 
with its fai index and HISAT2 index from our GitHub repository (link) and directly from the NCBI 
database ftp server (ftp.ncbi.nlm.nih.gov/refseq/release/viral)
DNAscan can also be used to screen for the DNA of other organisms including bacteria or fungi in 
which case the user can download the preferred database from the NCBI ftp server or from our 
GitHub where the corresponding index files can also be found (e.g. ftp.ncbi.nlm.nih.gov/refseq/
release/bacteria or  ftp.ncbi.nlm.nih.gov/refseq/release/) 

List of tools used in this work

- Genome Analysis Toolkit 3.8 
- BWA 0.7.15
- Picard 2.2.1
- Samtools 1.5
- HISAT2 2.1.0
- Bcftools 1.5
- RTG Tools 3.6.2
- Python 3.5
- MultiQC 1.2
- FastQC v0.11.7
- Docker 1.7.1
- Docker-compose 1.4.2
- Freebayes 1.0.2
- ExpansionHunter 2.0.9 
- Manta 1.0.3
- Annovar "Version: $Date: 2016-02-01 00:11:18 -0800 (Mon, 1 Feb 2016)”
- Bedtools2 2.25
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Figures and tables

Figure 1. Central panel: Pipeline overview. DNAscan accepts sequencing data, and optionally 
variant files. The pipeline firstly performs an alignment step (details in the left panel), followed by a 
customisable data analysis protocol (details in the right panel). Finally, results are annotated and a 
user friendly QC report is generated. Right panel: detailed description of the post alignment 
analysis pipeline (Intensive mode). Aligned reads are used by the variant calling pipeline 
(Freebayes + GATK HC + Bcftools); both aligned and unaligned reads are used by Manta and 
ExpensionHunter (for which no repeat description files have to be provided) to look for structural 
variants. The unaligned reads are mapped to a database of known viral genomes (NCBI database) 
to screen for their DNA in the input sequencing data. Left panel: Alignment stage description. Raw 
reads are aligned with HISAT2. Resulting soft-clipped reads and unaligned reads are realigned 
with BWA mem and then merged with the others using Samtools. 
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Table 1: Alignment assessment results. HISAT2, BWA and Bowtie2 were tested on 150 million 
simulated Illumina paired end human reads and 1.250 billion real Illumina paired end human reads. 
For the three aligners on the two dataset the table shows the time taken, their memory fingerprint 
and the percentage of aligned-one-or-more-times reads, aligned-only-once reads and properly 
pared. All tests were run using 4 threads. 

Simulated reads Real reads

HISAT2 BWA-MEM BOWTIE2 HISAT2 BWA-MEM BOWTIE2

Number of 
reads (Millions 150 150 150 1250 1250 1250

Time (minutes) 32 130 115 245 1167 1070

Memory 
fingerprint 

(Gigabytes) 4.2 6.6 3.8 4.2 9.1 3.8

Aligned reads 
(%) 99.82 100 99.98 90.14 96.22 93.89

Uniquely 
aligned reads 

(%) 97.7 100 99.98 86.17 86.80 75.14

Properly paired 
reads (%) 99.46 100 52.48 85.61 95.60 62.55
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Figure 2: Variant calling assessment. Graph A shows the precision, sensitivity and F-measure of 
DNAscan in Fast, Normal and Intensive mode, SpeedSeq and GATK best practice workflow (BPW) 
in calling SNVs and small indels over the whole exome sequencing of NA12878. Illumina platinum 
calls were used as true positives. The first three columns show the results for SNVs and the last 
three columns for indels. Graph B shows the time needed and the memory fingerprint for the same 
pipelines.
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  Table 2. Analysis of the ALS patients’ WGS and Miseq data. 

Miseq Miseq
∩

WGS 
Case B

WGS

Case A Case B gene
panel 

Case B

ALS
genes

Case B

Analysis time 
(minutes) 30 30 --- --- 460

Data size 
(MBs) 40 40 --- --- 70,000

N. of ALS-
related variants 13 11 11 11 33

N. of FTD-
related variants 4 1 1 1 3

N. of non-
synonymous 

variants 6 7 3 3 64

N. of variants 
with CADD>13 6 9 4 4 748

N. long 
insertions 0 0 0 0 1

N. long 
deletions 0 0 0 0 3

N. Duplications 0 0 0 0 1

N. Inversions 0 0 0 0 0

C9orf72 
expansion --- --- --- --- Yes

rs121909670 Yes --- --- --- ---
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Figure 4. Pie chart a shows the proportion of human reads (blue), viral reads (red) and unknown 
reads (yellow). Pie chart b shows the proportion for viral reads belonging to HIV (blue), PhiX174 
(red) and to other viruses (yellow). Human reads are defined as reads which aligned to the human 
reference genome, viral reads as the reads which did not align to the human reference genome but 
aligned to at least one of the NCBI viral genomes and unknown reads as the reads which did not 
align neither to the human nor to any viral reference genomes.

Figure 5. The reads which HISAT2 failed to align to the human reference genome were aligned to 
the whole NCBI database of viral genomes. In the graphs we plotted numbers of aligned reads in 
linear (a) and logarithmic (b) scale, for the 20 viral genomes to which the highest number of reads 
was aligned.
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