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Abstract 83 

Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with more than 35 84 

million people affected worldwide, and no curative treatment currently available. AD is highly 85 

heritable and recent genome-wide meta-analyses have conclusively identified over 20 genomic 86 

loci associated with the late onset type of AD, yet only explaining a small proportion of the 87 

genetic variance indicating that undiscovered loci exist. Here, we present the largest genome-88 

wide association study of AD and AD-by-proxy (71,880 AD cases, 383,378 controls) AD-by-proxy 89 

status is based on parental AD diagnosis, and showed strong genetic correlation with AD (0.81), 90 

Genetic meta-analysis identified 29 risk loci (confirming 19, 10 novel), implicating 215 potential 91 

causative genes. Independent replication further supports the genetic involvement of the novel 92 

loci in AD. Associated genes are strongly expressed in immune related tissues and cell types 93 

(spleen, liver and microglia). Furthermore, gene-set analyses confirm the genetic contribution 94 

of biological mechanisms involved in lipid-related processes and degradation of amyloid 95 

precursor proteins. We show strong genetic correlations with multiple health-related 96 

outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability 97 

on AD risk. These results are a step forward in identifying the genetic factors that contribute to 98 

AD risk, and add novel insights into the neurobiology of AD.  99 

 100 

Main text 101 

Alzheimer’s disease (AD) is the most frequent type of dementia with roughly 35 million affected 102 

to date.1 Results from twin studies indicate that AD is highly heritable, with estimates ranging 103 

between 60-80%.2 Genetically, AD can be roughly divided into 2 subgroups: 1) familial early-104 
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onset cases that are relatively often explained by rare variants with a strong effect,3 and 2) late-105 

onset cases that are influenced by multiple common variants with low effect sizes.4 Segregation 106 

analyses have linked several genes to the first subgroup, including APP5, PSEN16 and PSEN27. 107 

The identification of these genes has resulted in valuable insights into a molecular mechanism 108 

with an important role in AD pathogenesis, the amyloidogenic pathway,8 providing a prominent 109 

example of how gene discovery can add to biological understanding of disease aetiology.  110 

Besides the identification of a few rare genetic factors (e.g. TREM29 and ABCA710), 111 

genome-wide association studies (GWAS) have mostly discovered common risk variants for the 112 

more complex late-onset type of AD. APOE is the strongest genetic risk locus for late-onset AD, 113 

where heterozygous and homozygous Apoε4 carriers are predisposed for a 3-fold and 15-fold 114 

increase in risk, respectively.11 A total of 19 additional GWAS loci have been described using a 115 

discovery sample of 17,008 AD cases and 37,154 controls, followed by replication of the 116 

implicated loci with 8,572 AD patients and 11,312 controls.4 The current more than 20 loci do 117 

not fully explain the heritability of AD and increasing the sample size is likely to lead to more 118 

genome-wide significant risk loci, which will aid in understanding biological mechanisms 119 

involved in the risk for AD.  120 

In the current study, we included 455,258 individuals of European ancestry meta-121 

analysed in 3 stages (Figure 1). These consisted of 24,087 clinically diagnosed late-onset AD 122 

cases, paired with 55,058 controls (phase 1). In phase 2, we analysed an AD-by-proxy 123 

phenotype, based on individuals in the UK Biobank (UKB) for whom parental AD status was 124 

available (N proxy cases=74,793; N proxy controls=328,320; Online Methods). In the UKB 125 

sample, parental diagnosis for AD was available for N=376,113 individuals, of whom 393 126 
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individuals had a known diagnosis of AD themselves (identified from medical register data). The 127 

high heritability of AD implies that case status for offspring can to some extent be inferred from 128 

parental case status and that offspring of AD parents are likely enriched for a higher genetic AD 129 

risk load. We thus defined individuals with one or two parents with AD as proxy cases 130 

(N=47,793), while putting more weight on the proxy cases with 2 parents. Similarly, the proxy 131 

controls include subjects with 2 parents without AD (N=328,320), where older cognitively 132 

normal parents were up-weighted as proxy controls to account for the higher likelihood that 133 

younger parents may still develop AD. As the proxy phenotype is not a pure measure of an 134 

individual’s AD status and may include individuals that never develop AD, genetic effect sizes 135 

will be somewhat underestimated. However, the proxy case-control sample is very large (N 136 

proxy cases=47,793; N proxy controls=328,320), and therefore adds a substantial amount of 137 

power to detect genetic effects for AD. We first analysed the clinically defined case-control 138 

samples separately from the by-proxy case control sample to allow investigation of overlap in 139 

genetic signals for these two measurements of AD risk. Finally in phase 3, we meta-analysed all 140 

individuals of phase 1 and phase 2 together. 141 

 142 

Genome-wide meta-analysis for AD status 143 

Phase 1 involved a genome-wide meta-analysis for AD case-control status using cohorts 144 

collected as part of 3 independent main consortia (PGC-ALZ, IGAP and ADSP), totalling 79,145 145 

individuals of European ancestry and 9,862,738 genetic variants passing quality control (Figure 146 

1, Supplementary Table 1). The ADSP cohort obtained whole exome sequencing data from 147 

4,343 cases and 3,163 controls, while the remaining datasets consisted of genotype SNP array 148 
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data. AD patients were diagnosed according to generally acknowledged diagnostic criteria, such 149 

as the NINCDS-ADRDA (See Methods). All cohorts for which we had access to the raw genotypic 150 

data were subjected to a standardized quality control pipeline, and GWA analyses were run per 151 

cohort and then included in a meta-analysis, alongside one dataset (IGAP) for which only 152 

summary statistics were available (see Methods). The full sample liability SNP-heritability 153 

(h2
SNP), estimated with the more conservative LDSC method, was 0.055 (SE=0.0099), implying 154 

that 5.5% of AD heritability can be explained by the tested SNPs. This is in line with previous 155 

estimates for IGAP (6.8%) also estimated by LDSC regression method, which is based on 156 

summary statistics.12,13 We do note that previously reported estimates using a method based 157 

on raw genotypes (Genome-wide Complex Trait Analysis, GCTA), estimated that up to 53% of 158 

total phenotypic variance in AD could be explained by common SNPs, of which up to 6% could 159 

be explained by APOE alone, up to 13% by the then known variants, and up to 25% by 160 

undiscovered loci.14,15 The conservative LDSC estimate of h2
SNP is presumably a consequence of 161 

the underlying LDSC algorithm which is based on common HapMap SNPs and excludes all 162 

variants with extreme associations. 163 

The λGC=1.10 indicated the presence of inflated genetic signal compared to the null 164 

hypothesis of no association. The linkage disequilibrium (LD) score intercept13 was 1.044 165 

(SE=0.0084) indicating that most inflation could be explained by polygenic signal 166 

(Supplementary Figure 1). In the meta-analysis of AD case-control status, 1,067 variants 167 

indexed by 51 lead SNPs in approximate linkage equilibrium (r2<0.1) reached genome-wide 168 

significance (GWS; P<5×10-8) (Supplementary Figure 1; Supplementary Table 2). These were 169 

located in 18 distinct genomic loci (Table 1). 15 of these loci confirmed previous findings170 
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 (Lambert et al4) in a partially overlapping sample of the current study. The 3 remaining loci 171 

(lead SNPs* rs7657553, rs11257242 and rs2632516) have been linked more recently to AD in a 172 

genetic study16 of AD-related triglyceride levels while conditioning on lipid levels and in a 173 

transethnic genome-wide association study of AD.17  174 

We next (phase 2) performed a GWAS for AD-by-proxy using 376,113 individuals of 175 

European ancestry from the UKB version 2 release using parental AD status weighted by age 176 

and corrected for population frequency to construct an AD-by-proxy status (Figure 1; see 177 

Methods). The LD score intercept was 1.022 (SE=0.0099) indicating that most of the inflation in 178 

genetic signal (λGC=1.071) could be explained by polygenic signal (Supplementary Figure 1b). 179 

For AD-by-proxy, 719 GWS variants were indexed by 61 lead SNPs in approximate linkage 180 

equilibrium (r2<0.1) reached genome-wide significance (P<5×10-8), located in 13 loci 181 

(Supplementary Figure 1a). Of these, 8 loci overlapped with the significantly associated loci 182 

identified for clinical AD case control status (Table 1).  183 

We observed a strong genetic correlation of 0.81 (SE= 0.185, using LDScore regression) 184 

indicating substantial overlap between genetic effects on clinical AD and AD-by-proxy status, 185 

beyond shared GWS SNPs. Sign concordance tests indicated that 50.4% of all LD-independent 186 

(r2<0.1) genome-wide SNPs (significant and non-significant) had consistent direction of effects 187 

between the two phenotypes (N=344,581 overlapping SNPs), slightly greater than the chance 188 

expectation of 50% (exact binomial test P=2.45×10-7). Of the 51 lead SNPs identified by the 189 

case-control meta-analysis, all were available in UKB and 96.1% were sign-concordant 190 

(P=2.98x10-12), while of the 61 GWS lead SNPs identified in UKB, 48 were available in the case-191 
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control meta-analysis and 99.7% of  these were sign-concordant (P=5.98×10-14). Such 192 

substantial overlap suggests that the AD-by-proxy phenotype captures a large part of the 193 

associated genetic effects on AD.  194 

Given the high genetic overlap, in phase 3, we conducted a meta-analysis on the clinical 195 

AD case-control GWAS and the AD-by-proxy GWAS (Figure 1), comprising a total sample size of 196 

455,258 (71,880 (proxy) cases and 383,378 (proxy) controls). The LD score intercept was 1.0018 197 

(SE=0.0109) indicating again that most of the inflation in genetic signal (λGC=1.0833) could be 198 

explained by polygenic signal (Supplementary Figure 1b). There were 2,357 GWS variants, 199 

which were represented by 94 lead SNPs, located in 29 loci (Table 1, Figure 2). These included 200 

15 of the 18 loci detected in our case-control analyses, all of the 13 detected in the AD-by-proxy 201 

analyses, as well as 9 loci that were sub-threshold in both individual analyses, but reached 202 

significance in the meta-analysis. All 2,160 GWS SNPs that were available in both the case-203 

control and AD-by-proxy sub-samples were sign concordant (exact binomial test P<1×10-300), 204 

including all of the 82 available independent lead SNPs (P=1.68x10-23). There was evidence of 205 

substantial association signal in both AD and AD-by-proxy for 22 (out of 27 overlapping) loci for 206 

which SNP(s) in each locus had a robust P-value (P < .05/94 independent signals). Of the 29 207 

associated loci, 16 loci were previously identified by the GWAS of Lambert et al.,4 and 13 were 208 

newly implicated AD loci in our meta-analysis. Three of these (with lead SNPs rs184384746, 209 

rs187370608 and rs114360492) were only available in the UKB cohort (Table 1). Verifying our 210 

results against other9,18 and more recent16,19 genetic studies on AD, 3 loci (rs11257238, 211 

rs28394864 and rs187370608) were previously discovered, leaving 10 novel loci (rs4575098, 212 
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rs184384746, rs6448453, rs114360492, rs442495, rs117618017, rs59735493, rs113260531, 213 

rs76726049 and rs76320948). Considering all loci of Lambert et al, we were unable to replicate 214 

4 loci (MEF2C, NME8, CELF1 and FERMT2*) at a genome-wide significance level (observed P-215 

values were 1.6 x 10-5 to 0.0011), which was mostly caused by a lower association signal in the 216 

UKB dataset (Supplementary Table 3). By contrast, Lambert et al. were unable to replicate the 217 

DSG2 and CD33 locus with their second stage of their study. In our study, DSG2 locus also 218 

lacked significance (meta-analysis P = 0.030; UKB analysis P = 0.766; Table 1), implying 219 

invalidation of this locus, while we did observe a significant association (meta-analysis P = 6.34 220 

x 10-9; UKB analysis P = 4.97 x 10-5) for CD33 (rs3865444 in Table 1), implying a genuine genetic 221 

association to AD risk. 222 

Next, we aimed to find further support for the novel findings of the phase 3 meta-223 

analysis, by using an independent Icelandic cohort (deCODE20,21), including 6,593 AD cases and 224 

174,289 controls (Figure 1; see Methods; Supplementary Table 4). We were unable to test 225 

support of two loci as the lead SNPs (and SNPs in high LD) were missing in deCODE, which is 226 

most likely due to imputation differences (HRC reference for UKB dataset vs. 1000G reference 227 

for deCODE dataset). For 7 of the 8 novel loci tested for replication, we observed the same 228 

direction of effect in the deCODE cohort. Furthermore, 4 loci (rs6448453, rs442495, 229 

rs117618017, rs76320948) showed nominal significant association results (P < 0.05) for the 230 

same SNP or a SNP in high LD (r2 > 0.9) within the same locus (two-tailed binomial test 231 

P=3.7x10-4). The locus on chromosome 1 (rs45759098) was very close to significance (P = 232 

0.053). Apart from the novel loci, we also observed sign concordance for 95.6% of the 90 lead 233 

SNPs in all loci from the meta-analysis (P=1.60x10-20) that were available in deCODE (out of 94).234 
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As an additional method of testing for replication using genome-wide polygenic score 235 

prediction,22 the current results explain 7.1% of the variance in clinical AD at a low best fitting 236 

P-threshold of 1.69x10-5 (P=1.80x10-10) in an independent sample of 761 individuals. When 237 

excluding the APOE-locus (chr19: 45020859-45844508), the results explain 3.9% of the variance 238 

with a best fitting P-threshold of 3.5x10-5 (P=1.90x10-6). 239 

 240 

Functional interpretation of genetic variants contributing to AD and AD-by-proxy 241 

Next, we conducted a number of in silico follow-up analyses to interpret our findings in a 242 

biological context. Functional annotation of all GWS SNPs (n=2,178) in the associated loci 243 

showed that SNPs were mostly located in intronic/intergenic areas, yet in regions that were 244 

enriched for chromatin states 4 and 5, implying effects on active transcription (Figure 3A, 3B 245 

and 3C; Supplementary Table 5). 24 GWS SNPs were exonic non-synonymous (ExNS) (Figure 246 

3A; Supplementary Table 6) with likely deleterious implications on gene function. Converging 247 

evidence of strong association (Z> |7|) and a high observed probability of a deleterious variant 248 

effect (CADD23 score≥30) was found for rs75932628 (TREM2), rs142412517 (TOMM40) and 249 

rs7412 (APOE). The first two missense mutations are rare (MAF=0.002 and 0.001, respectively) 250 

and the alternative alleles were associated with higher risk for AD. The latter APOE missense 251 

mutation is the well-established protective allele Apoε2. The effect sizes for ExNS ranged from 252 

moderate to high. Supplementary Tables 5 and 6 present a detailed annotation catalogue of 253 

variants in the associated genomic loci. Partitioned analysis,24 excluding SNPs with extremely 254 

large effect sizes (i.e. APOE variants) showed enrichment for h2
SNP for variants located in 255 

H3K27ac marks (Enrichment=3.18, P=9.63×10-5), which are associated with activation of 256 
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transcription, and in Super Enhancers (Enrichment=3.62, P=2.28×10-4), which are genomic 257 

regions where multiple epigenetic marks of active transcription are clustered (Figure 3D; 258 

Supplementary Table 7). Heritability was also enriched in variants on chromosome 17 259 

(Enrichment=3.61, P=1.63x10-4) and we observed a trend of enrichment for variants with high 260 

minor allele frequencies (Enrichment=3.31, P=2.85x10-3), (Supplementary Figure 3; 261 

Supplementary Tables 8 and 9). Although a large proportion (23.9%) of the heritability can be 262 

explained by SNPs on chromosome 19, this enrichment is not significant, due to the large 263 

standard errors around this estimate (Supplementary Table 8). Overall these results suggest 264 

that, despite some nonsynonymous variants likely contributing to AD risk, most of the GWS 265 

SNPs are located in non-coding regions, and are enriched for regions that have an activating 266 

effect on transcription of coding regions. 267 

 268 

Implicated genes 269 

To link the associated variants to genes, we applied three gene-mapping strategies 270 

implemented in FUMA25 (Online Methods). We used all SNPs with a P-value < 5x10-8 and r2 of 271 

0.6 with one of the independently associated SNPs for gene-mapping. Positional gene-mapping 272 

aligned SNPs to 100 genes by their location within or immediately up/downstream (+/-10kb) of 273 

known gene boundaries, eQTL (expression quantitative trait loci) gene-mapping matched cis-274 

eQTL SNPs to 170 genes whose expression levels they influence in one or more tissues, and 275 

chromatin interaction mapping linked SNPs to 21 genes based on three-dimensional DNA-DNA 276 

interactions between each SNP’s genomic region and nearby or distant genes, which we limited 277 

to include only interactions between annotated enhancer and promotor regions (Figure 3B and 278 
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3C; Supplementary Figure 4; Supplementary Tables 10 and 11). This resulted in 192 uniquely 279 

mapped genes, 80 of which were implicated by at least two mapping strategies and 17 by all 3 280 

(Figure 4E). Eight genes (HLA-DRB5, HLA-DRB1, HLA-DQA, HLA-DQB1, KAT8, PRSS36, ZNF232 281 

and CEACAM19) are particularly notable as they are implicated via eQTL association in the 282 

hippocampus, a brain region highly affected early in AD pathogenesis (Supplementary Table 283 

10). Of special interest is the locus on chromosome 8 (rs4236673). In the GWAS by Lambert et 284 

al.4, this locus was defined as 2 distinct loci (CLU and PTK2B), while our meta-analysis specified 285 

this locus as a single locus based on LD-patterns. This is also supported by a chromatin 286 

interaction between the two regions (Figure 3E), which is observed in two immune-related 287 

tissues – the spleen and liver (Supplementary Table 11). Chromosome 16 contains a locus 288 

implicated by long-range eQTL association (Figure 3F) clearly illustrating more distant genes can 289 

be affected by a genetic factor (Figure 3F) and emphasising the relevance of considering 290 

putative causal genes or regulatory elements not solely on the physical location but also on 291 

epigenetic influences. Supplementary Figure 4 displays chromatin interactions for all 292 

chromosomes containing significant GWAS loci. 293 

Although these gene-mapping strategies imply multiple putative causal genes per GWAS 294 

locus, several of these genes in the novel loci (and significantly replicated by the deCODE 295 

cohort) are of particular interest, as the genes have functional or previous genetic association 296 

to AD. For locus 1 in Supplementary Table 10, ADAMTS4 encodes a protein of the ADAMTS 297 

family which has a function in neuroplasticity and has been extensively studied for their role in 298 

AD pathogenesis.26 For locus 19, the obvious most likely causal gene is ADAM10, as this gene 299 

has been conclusively associated to AD through the effect of rare coding variants. However this 300 
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is the first time that this gene is implicated as a common risk factor for AD. The lead SNP for 301 

locus 20 is a nonsynonymous variant in exon 1 of APH1B, which encodes for a protein part of 302 

the γ-secretase complex cleaving APP.27 Although previously reported functional information 303 

on genes can be of great value, it is preferable to consider all implicated genes as putative 304 

causal factors to guide potential functional follow-up experiments. 305 

We next performed genome-wide gene-based association analysis (GWGAS) using 306 

MAGMA.28 This method annotates SNPs to known protein-coding genes to estimate aggregate 307 

associations based on all SNPs in a gene. It differs from the gene-mapping strategies in FUMA as 308 

it provides a statistical gene-based test, whereas FUMA maps individually significant SNPs to 309 

genes. With GWGAS, we identified 97 significantly associated genes (Supplementary Figure 5; 310 

Supplementary Table 12), of which 74 were also mapped by FUMA (Figure 4E). In total, 16 311 

genes were implicated by all four strategies (Supplementary Table 13), of which 7 genes (HLA-312 

DRA, HLA-DRB1, PTK2B, CLU, MS4A3, SCIMP and RABEP1) are not located in the APOE-locus, 313 

and therefore of high interest for further investigation.  314 

 315 

Gene-sets implicated in AD and AD-by-proxy 316 

Using the gene-based P-values, we performed gene-set analysis for 6,994 biological-pathway-317 

based gene-sets, 53 tissue expression-based gene-sets and 39 brain single cell expression based 318 

gene-sets (24 derived from mouse data and 15 derived from human data). We found 4 Gene 319 

Ontology19 gene-sets that were significantly associated with AD risk: Protein lipid complex 320 

(P=3.93×10-10), Regulation of amyloid precursor protein catabolic process (P=8.16×10-09), High 321 

density lipoprotein particle (P=7.81x10-8), and Protein lipid complex assembly (P=7.96×10-7) 322 
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(Figure 4A; Supplementary Tables 14 and 15). Conditional analysis on the APOE locus showed 323 

associations with AD for these four gene-sets independent of the effect of APOE, as they 324 

remained significantly associated (P<0.0125), yet less strong, suggesting that APOE is 325 

contributing a substantial part to the association signal, but does not completely drive the 326 

signal. There was overlap between genes included in the 4 gene-sets, and conditioning on each 327 

significant gene-set association showed that 3 gene-sets were associated with AD 328 

independently of each other (Supplementary Table 14 and 15). All 25 genes of the High density 329 

lipoprotein particle pathway are also part of the Protein lipid complex (conditional analysis 330 

P=0.18), and these pathways are therefore not interpretable as independent associations.  331 

Linking gene-based P-values to tissue- and cell-type-specific gene-sets, no association 332 

survived the stringent Bonferroni correction, which corrected for all tested gene-sets (i.e. 6,994 333 

GO categories, 54 tissues and 39 cell types). However, we did observe associations when 334 

correcting only for the number of tests within all tissue types or cell-types. This was the case for 335 

gene expression across immune-related tissues (Figure 4C; Supplementary Table 16), 336 

particularly whole blood (P=5.61×10-6), spleen (P=1.50x10-5) and lung (P=4.67x10-4). In brain 337 

single-cell expression gene-set analyses, we found associations for microglia, both in the 338 

mouse-based expression dataset (P=1.96x10-3) (Figure 4B; Supplementary Table 17) and the 339 

human-based expression dataset (P=2.56x10-3) (Supplementary Figure 6; Supplementary Table 340 

18).  341 

 342 

Cross-trait genetic influences 343 
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For a more comprehensive understanding of the genetic background of AD, we next tested 344 

whether AD is likely to share genetic factors with other phenotypes. This might reveal some 345 

functional insights about the genetic aetiology of AD. We conducted bivariate LDscore13 346 

regression to test for genetic correlations between AD and 41 other traits for which large GWAS 347 

summary statistics were available. We observed significant negative genetic correlations with 348 

adult cognitive ability (rg=-0.22, P=7.28x10-5), age of first birth (rg=−0.33, P=1.22×10-4), 349 

educational attainment (rg=−0.25, P=5.01×10-4), and confirmed a very strong positive 350 

correlation with previous GWAS of Alzheimer’s disease (rg=0.90, P=3.29x10-16) (Figure 4D; 351 

Supplementary Table 19).  352 

We then used Generalised Summary-statistic-based Mendelian Randomisation29 (GSMR; 353 

see Methods) to test for potential credible causal associations of genetically correlated 354 

outcomes which may directly influence the risk for AD. Due to the nature of AD being a late-355 

onset disorder and summary statistics for most other traits being obtained from younger 356 

samples, we do not report tests for the opposite direction of potential causality (i.e. we did not 357 

test for a causal effect of a late-onset disease on an early onset disease). In this set of analyses, 358 

SNPs from the summary statistic of genetically correlated phenotypes were used as 359 

instrumental variables to estimate the putative causal effect of these “exposure” phenotypes 360 

on AD risk by comparing the ratio of SNPs’ associations with each exposure to their associations 361 

with AD outcome (see Methods). Association statistics were standardized, such that the 362 

reported effects reflect the expected difference in odds ratio (OR) for AD as a function of every 363 

SD increase in the exposure phenotype. We observed a protective effect of cognitive ability 364 

(OR=0.89, 95% confidence interval[CI]: 0.85-0.92, P=5.07x10-9), educational attainment 365 
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(OR=0.88, 95%CI: 0.81-0.94, P=3.94×10-4), and height (OR=0.96, 95%CI: 0.94-0.97, P=1.84x10-8) 366 

on risk for AD (Supplementary Table 20; Supplementary Figure 7). No substantial evidence of 367 

pleiotropy was observed between AD and these phenotypes, with <1% of overlapping SNPs 368 

being filtered as outliers (Supplementary Figure 7). 369 

 370 

Discussion 371 

In conclusion, by using a non-conventional approach of including a by-proxy phenotype for AD 372 

to increase sample size, we have identified novel loci and gained novel biological knowledge on 373 

AD aetiology. Both the high genetic correlation between the standard case-control status and 374 

the UKB by proxy phenotype (rg=0.81) and the high rate of novel loci replication in the 375 

independent deCODE cohort, suggest that this strategy is robust. Through extensive in silico 376 

functional follow-up analysis, and in line with previous research,19,30 we emphasise the crucial 377 

causal role of the immune system - rather than immune response as a consequence of disease 378 

pathology - by establishing variant enrichments for immune-related body tissues (whole blood, 379 

spleen, liver) and for the main immune cells of the brain (microglia). Furthermore, we observe 380 

informative eQTL associations and chromatin interactions within immune-related tissues for 381 

identified genomic risk loci. Together with the AD-associated genetic effects on lipid 382 

metabolism in our study, these biological implications strengthen the hypothesis that AD 383 

pathogenesis involves an interplay between inflammation and lipids, as lipid changes might 384 

harm immune responses of microglia and astrocytes, and vascular health of the brain.31 385 

 In accordance with previous clinical research, our study suggests an important role for 386 

protective effects of several human traits on AD. As an example, cognitive reserve has been 387 
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proposed as a protective mechanism in which the brain aims to control brain damage with prior 388 

existing cognitive processing strategies.32 Our findings imply that some component of the 389 

genetic factors for AD might affect cognitive reserve, rather than being involved in AD-390 

pathology-related damaging processes, influencing AD pathogenesis in an indirect way through 391 

cognitive reserve. Similarly, in a largescale community-based study it was observed that AD 392 

incidence rates declined over decades, which was specific for individuals with at minimum a 393 

high school diploma.33 Combined with our Mendelian randomization results for educational 394 

attainment, this suggests that the protective effect of educational attainment on AD is 395 

influenced by genetics. 396 

The results of this study could furthermore serve as a valuable resource (e.g. 397 

Supplementary Tables 10 and 13) for selection of promising genes for functional follow-up 398 

experiments. We anticipate that functional interpretation strategies and follow-up experiments 399 

will result in a comprehensive understanding of sporadic late-onset AD aetiology, which will 400 

serve as a solid foundation for future AD drug development and stratification approaches. 401 

 402 

URLs: 403 

http://ukbiobank.ac.uk 404 

https://www.ncbi.nlm.nih.gov/gap 405 

http://fuma.ctglab.nl 406 

http://ctg.cncr.nl/software/magma 407 

http://genome.sph.umich.edu/wiki/METAL_Program 408 

https://github.com/bulik/ldsc 409 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/258533doi: bioRxiv preprint 

http://www.ukbiobank.ac.uk/
https://www.ncbi.nlm.nih.gov/gap
http://fuma.ctglab.nl/
http://ctg.cncr.nl/software/magma
http://ctg.cncr.nl/software/magma
http://genome.sph.umich.edu/wiki/METAL_Program
http://genome.sph.umich.edu/wiki/METAL_Program
https://github.com/bulik/ldsc
https://doi.org/10.1101/258533
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS META-ANALYSIS OF ALZHEIMER’S DISEASE RISK 

 
 

http://ldsc.broadinstitute.org/ 410 

https://data.broadinstitute.org/alkesgroup/LDSCORE/ 411 

http://www.genecards.org 412 

http://www.med.unc.edu/pgc/results-and-downloads 413 

http://software.broadinstitute.org/gsea/msigdb/collections.jsp 414 

https://www.ebi.ac.uk/gwas/ 415 

https://github.com/ivankosmos/RegionAnnotator  416 

http://cnsgenomics.com/software/gsmr/ 417 

 418 

Acknowledgments: This work was funded by The Netherlands Organization for Scientific 419 

Research (NWO VICI 453-14-005) and the Sophia Foundation for Scientific Research (grant nr: 420 

S14-27). The analyses were carried out on the Genetic Cluster Computer, which is financed by 421 

the Netherlands Scientific Organization (NWO: 480-05-003), by the VU University, Amsterdam, 422 

The Netherlands, and by the Dutch Brain Foundation, and is hosted by the Dutch National 423 

Computing and Networking Services SurfSARA. This research has been conducted using the UK 424 

Biobank resource under application number 16406 and the public ADSP dataset, obtained 425 

through the Database of Genotypes and Phenotypes (dbGaP) under accession number 426 

phs000572. We thank the International Genomics of Alzheimer's Project (IGAP) for providing 427 

summary results data for these analyses. The investigators within IGAP contributed to the 428 

design and implementation of IGAP and/or provided data but did not participate in analysis or 429 

writing of this report. IGAP was made possible by the generous participation of the control 430 

subjects, the patients, and their families. The i–Select chips was funded by the French National 431 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/258533doi: bioRxiv preprint 

http://ldsc.broadinstitute.org/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://www.genecards.org/
http://www.med.unc.edu/pgc/results-and-downloads
http://software.broadinstitute.org/gsea/msigdb/collections.jsp
https://github.com/ivankosmos/RegionAnnotator
http://cnsgenomics.com/software/gsmr/
https://doi.org/10.1101/258533
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS META-ANALYSIS OF ALZHEIMER’S DISEASE RISK 

 
 

Foundation on Alzheimer's disease and related disorders. EADI was supported by the LABEX 432 

(laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut 433 

Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by 434 

the Medical Research Council (Grant n° 503480), Alzheimer's Research UK (Grant n° 503176), 435 

the Wellcome Trust (Grant n° 082604/2/07/Z) and German Federal Ministry of Education and 436 

Research (BMBF): Competence Network Dementia (CND) grant n° 01GI0102, 01GI0711, 437 

01GI0420. CHARGE was partly supported by the NIH/NIA grant R01 AG033193 and the NIA 438 

AG081220 and AGES contract N01–AG–12100, the NHLBI grant R01 HL105756, the Icelandic 439 

Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was 440 

supported by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the 441 

Alzheimer's Association grant ADGC–10–196728. This paper represents independent research 442 

funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at 443 

South London and Maudsley NHS Foundation Trust and King’s College London. The views 444 

expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the 445 

Department of Health. 446 

Genotyping for the Swedish Twin Studies of Aging was supported by NIH/NIA grant R01 447 

AG037985. Genotyping in TwinGene was supported by NIH/NIDDK U01 DK066134. WvdF is 448 

recipient of Joint Programming for Neurodegenerative Diseases (JPND) grants PERADES (ANR-449 

13-JPRF-0001) and EADB (733051061). JB was supported by a grant from the Swiss National 450 

Science Foundation. JHL was supported by the Swedish Research Council (Vetenskapsrådet, 451 

award 2014-3863), the Wellcome Trust (108726/Z/15/Z), and the Swedish Brain Foundation 452 

(Hjärnfonden). NS was supported by the Wellcome Trust (108726/Z/15/Z). RD was supported 453 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/258533doi: bioRxiv preprint 

https://doi.org/10.1101/258533
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS META-ANALYSIS OF ALZHEIMER’S DISEASE RISK 

 
 

by National Institute for Health Research University College London Hospital’s Biomedical 454 

Research Centre, Arthritis Research UK, the British Heart Foundation, Cancer Research UK, the 455 

Chief Scientist Office, the Economic and Social Research Council, the Engineering and Physical 456 

Sciences Research Council, the National Institute for Social Care and Health Research, and the 457 

Wellcome Trust (grant number MR/K006584/1). 458 

We thank the numerous participants, researchers, and staff from many studies who collected 459 

and contributed to the data. Additional acknowledgments can be found in the Supplementary 460 

Information file. Summary statistics will be made available for download upon publication from 461 

http://ctglab.vu.nl.  462 

 463 

Author Contributions: I.E.J. and J.E.S. performed the analyses. D.P. and O.E.A. conceived the 464 

idea of the study. D.P. and S.R. supervised analyses. S.St. performed QC on the UK Biobank data 465 

and wrote the analysis pipeline. K.W. constructed and applied the FUMA pipeline for 466 

performing follow-up analyses. J.B. conducted the single cell enrichment analyses. J.H.L and 467 

N.S. contributed data. D.P. and I.E.J. wrote the paper. All authors critically reviewed the paper. 468 

 469 

Author Information: PF Sullivan reports the following potentially competing financial interests: 470 

Lundbeck (advisory committee), Pfizer (Scientific Advisory Board member), and Roche (grant 471 

recipient, speaker reimbursement). JHL: Cartana (Scientific Advisor) and Roche (grant recipient). 472 

All other authors declare no financial interests or potential conflicts of interest. 473 

Correspondence and requests for materials should be addressed to d.posthuma@vu.nl. 474 

 475 
 476 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/258533doi: bioRxiv preprint 

http://ctglab.vu.nl/
mailto:d.posthuma@vu.nl
https://doi.org/10.1101/258533
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS META-ANALYSIS OF ALZHEIMER’S DISEASE RISK 

 
 L

o
c
u
s

C
h
r

S
N

P
b
p

A
lle

le
 1

A
lle

le
 2

Z
p

S
N

P
b
p

A
lle

le
 1

A
lle

le
 2

Z
p

S
N

P
b
p

A
lle

le
 1

A
lle

le
 2

Z
p

d
ir
e
c
ti
o
n

1
1

rs
45

75
09

8
16

11
55

39
2

A
G

3.
78

0.
00

01
57

rs
45

75
09

8
16

11
55

39
2

A
G

5.
39

6.
88

E-
08

rs
45

75
09

8
16

11
55

39
2

A
G

6.
36

2.
05

E-
10

?+
++

2
1

rs
66

56
40

1
20

76
92

04
9

A
G

8.
54

1.
39

E-
17

rs
6
7
9
5
1
5

2
0
7
7
5
0
5
6
8

T
C

6
.1

3
8
.8

5
E

-1
0

rs
20

93
76

0
20

77
86

82
8

A
G

8.
82

1.
10

E-
18

++
++

3
2

rs
46

63
10

5
12

78
91

42
7

C
A

11
.2

1
3.

58
E-

29
rs

4
6
6
3
1
0
5

1
2
7
8
9
1
4
2
7

C
A

1
0
.5

4
5
.4

6
E

-2
6

rs
46

63
10

5
12

78
91

42
7

C
A

13
.9

4
3.

38
E-

44
?+

++

4
2

rs
10

93
34

31
23

39
81

91
2

G
C

-4
.7

9
1.

67
E-

06
rs

1
0
9
3
3
4
3
1

2
3
3
9
8
1
9
1
2

G
C

-4
.7

1
2
.5

1
E

-0
6

rs
10

93
34

31
23

39
81

91
2

G
C

-6
.1

3
8.

92
E-

10
?-

--

5
3

N
A

rs
1
8
4
3
8
4
7
4
6

5
7
2
2
6
1
5
0

T
C

5
.7

0
1
.2

4
E

-0
8

rs
18

43
84

74
6

57
22

61
50

T
C

5.
69

1.
24

E-
08

??
+?

6
4

rs
64

48
45

3
11

02
60

28
A

G
2.

26
0.

02
36

41
rs

6
4
4
8
4
5
1

1
1
0
2
4
6
8
2

G
C

5
.7

0
1
.1

9
E

-0
8

rs
64

48
45

3
11

02
60

28
A

G
6.

00
1.

93
E-

09
?+

+-

7
4

rs
76

57
55

3
11

72
32

35
A

G
5.

60
2.

16
E-

08
rs

76
57

55
3

11
72

32
35

A
G

-0
.2

7
0
.7

9
rs

76
57

55
3

11
72

32
35

A
G

1.
95

0.
05

1
?+

-+

8
6

rs
92

69
85

3
32

55
03

22
A

C
5.

56
2.

66
E-

08
rs

69
31

27
7

32
58

33
57

T
A

-5
.2

2
1
.7

8
E

-0
7

rs
69

31
27

7
32

58
33

57
T

A
-6

.4
9

8.
41

E-
11

?-
--

9
6

N
A

rs
1
8
7
3
7
0
6
0
8

4
0
9
4
2
1
9
6

A
G

8
.2

6
1
.4

5
E

-1
6

rs
18

73
70

60
8

40
94

21
96

A
G

8.
26

1.
45

E-
16

??
+?

1
0

6
rs

93
81

56
3

47
43

26
37

C
T

5.
84

5.
35

E-
09

rs
9
3
8
1
5
6
3

4
7
4
3
2
6
3
7

C
T

4
.4

6
8
.1

0
E

-0
6

rs
93

81
56

3
47

43
26

37
C

T
6.

33
2.

52
E-

10
?+

++

1
1

7
rs

18
59

78
8

99
97

18
34

A
G

-5
.8

2
6.

05
E-

09
rs

7
3
8
4
8
7
8

9
9
9
3
2
0
4
9

C
T

-6
.3

4
2
.3

8
E

-1
0

rs
18

59
78

8
99

97
18

34
A

G
-7

.9
3

2.
22

E-
15

--
--

1
2

7
rs

11
76

32
30

14
31

08
84

1
T

C
-6

.6
7

2.
58

E-
11

rs
7
8
1
0
6
0
6

1
4
3
1
0
8
1
5
8

T
C

-4
.8

9
1
.0

1
E

-0
6

rs
78

10
60

6
14

31
08

15
8

T
C

-6
.6

2
3.

59
E-

11
?-

--

1
3

7
N

A
rs

1
1
4
3
6
0
4
9
2

1
4
5
9
5
0
0
2
9

T
C

5
.9

9
2
.1

E
-0

9
rs

11
43

60
49

2
14

59
50

02
9

T
C

5.
99

2.
10

E-
09

??
+?

1
4

8
rs

42
36

67
3

27
46

49
29

A
G

-9
.1

4
6.

36
E-

20
rs

1
5
3
2
2
7
8

2
7
4
6
6
3
1
5

T
C

-5
.7

8
7
.4

5
E

-0
9

rs
42

36
67

3
27

46
49

29
A

G
-8

.9
8

2.
61

E-
19

--
--

1
5

1
0

rs
11

25
72

42
11

72
11

19
C

G
-5

.5
8

2.
38

E-
08

rs
1
1
2
5
7
2
3
8

1
1
7
1
7
3
9
7

C
T

4
.0

2
5
.8

4
E

-0
5

rs
11

25
72

38
11

71
73

97
C

T
5.

69
1.

26
E-

08
?+

++

1
6

1
1

rs
79

35
82

9
59

94
28

15
G

A
-7

.1
6

8.
21

E-
13

rs
1
5
8
2
7
6
3

6
0
0
2
1
9
4
8

A
G

-5
.8

6
4
.7

2
E

-0
9

rs
20

81
54

5
59

95
83

80
A

C
-7

.9
7

1.
55

E-
15

--
--

1
7

1
1

rs
10

79
28

32
85

86
78

75
A

G
-8

.5
6

1.
12

E-
17

rs
3
8
4
4
1
4
3

8
5
8
5
0
2
4
3

C
T

-6
.5

6
5
.3

1
E

-1
1

rs
86

76
11

85
77

65
44

G
A

-8
.7

5
2.

19
E-

18
?-

--

1
8

1
1

rs
11

21
83

43
12

14
35

58
7

C
T

-6
.5

5
5.

57
E-

11
rs

1
1
2
1
8
3
4
3

1
2
1
4
3
5
5
8
7

C
T

-4
.6

8
2
.8

1
E

-0
6

rs
11

21
83

43
12

14
35

58
7

C
T

-6
.7

9
1.

09
E-

11
?-

--

1
9

1
4

rs
12

59
06

54
92

93
88

55
A

G
-5

.6
1

1.
98

E-
08

rs
1
2
5
9
0
6
5
4

9
2
9
3
8
8
5
5

A
G

-4
.6

3
3
.7

0
E

-0
6

rs
12

59
06

54
92

93
88

55
A

G
-6

.3
9

1.
65

E-
10

?-
--

2
0

1
5

rs
44

24
95

59
02

26
15

C
T

-3
.6

1
0.

00
03

09
rs

4
4
2
4
9
5

5
9
0
2
2
6
1
5

C
T

-5
.1

5
2
.6

5
E

-0
7

rs
44

24
95

59
02

26
15

C
T

-6
.0

7
1.

31
E-

09
?-

--

2
1

1
5

rs
11

76
18

01
7

63
56

99
02

T
C

2.
29

0.
02

21
78

rs
1
1
7
6
1
8
0
1
7

6
3
5
6
9
9
0
2

T
C

5
.1

5
2
.6

4
E

-0
7

rs
11

76
18

01
7

63
56

99
02

T
C

5.
52

3.
35

E-
08

++
++

2
2

1
6

rs
59

73
54

93
31

13
31

00
A

G
-3

.3
4

0.
00

08
25

rs
5
9
7
3
5
4
9
3

3
1
1
3
3
1
0
0

A
G

-4
.6

3
3
.7

2
E

-0
6

rs
59

73
54

93
31

13
31

00
A

G
-5

.4
9

3.
98

E-
08

?-
--

2
3

1
7

rs
11

32
60

53
1

51
38

98
0

A
G

4.
66

3.
21

E-
06

rs
9
9
1
6
0
4
2

4
9
8
4
4
4
7

A
G

5
.4

6
4
.7

3
E

-0
8

rs
11

32
60

53
1

51
38

98
0

A
G

6.
12

9.
16

E-
10

?+
++

2
4

1
7

rs
28

39
48

64
47

45
07

75
A

G
3.

97
7.

29
E-

05
rs

2
8
3
9
4
8
6
4

4
7
4
5
0
7
7
5

A
G

4
.5

0
6
.8

0
E

-0
6

rs
28

39
48

64
47

45
07

75
A

G
5.

62
1.

87
E-

08
?+

++

2
5

1
7

rs
26

32
51

6
56

40
90

89
C

G
-6

.0
5

1.
42

E-
09

rs
2
6
3
2
5
1
6

5
6
4
0
9
0
8
9

C
G

-2
.7

9
0
.0

0
5
2
8
8

rs
26

32
51

6
56

40
90

89
C

G
-4

.9
0

9.
66

E-
07

?-
--

2
6

1
8

rs
80

93
73

1
29

08
89

58
T

C
-5

.4
6

4.
63

E-
08

rs
8
0
9
3
7
3
1

2
9
0
8
8
9
5
8

T
C

-0
.3

0
0
.7

6
5
6

rs
80

93
73

1
29

08
89

58
T

C
-2

.1
7

0.
03

0
?-

-?

2
7

1
8

rs
76

72
60

49
56

18
94

59
C

T
2.

06
0.

03
92

61
rs

76
72

60
49

56
18

94
59

C
T

5
.2

2
1
.8

3
E

-0
7

rs
76

72
60

49
56

18
94

59
C

T
5.

52
3.

30
E-

08
?+

++

2
8

1
9

rs
41

47
92

9
10

63
44

3
A

G
5.

76
8.

64
E-

09
rs

3
7
5
2
2
4
1

1
0
5
3
5
2
4

G
C

-5
.5

5
2
.8

7
E

-0
8

rs
11

12
78

89
2

10
39

32
3

G
C

6.
50

7.
93

E-
11

?+
++

2
9

1
9

rs
41

28
95

12
45

35
15

16
G

C
29

.7
4

2.
70

E-
19

4
rs

7
5
6
2
7
6
6
2

4
5
4
1
3
5
7
6

T
C

3
6
.7

9
9
.5

E
-2

9
6

rs
41

28
95

12
45

35
15

16
G

C
35

.5
0

5.
79

E-
27

6
?+

++

3
0

1
9

rs
76

32
09

48
46

24
18

41
T

C
4.

32
1.

54
E-

05
rs

7
6
3
2
0
9
4
8

4
6
2
4
1
8
4
1

T
C

4
.2

9
1
.8

0
E

-0
5

rs
76

32
09

48
46

24
18

41
T

C
5.

46
4.

64
E-

08
?+

+?

3
1

1
9

rs
38

65
44

4
51

72
79

62
A

C
-5

.4
8

4.
25

E-
08

rs
3
8
6
5
4
4
4

5
1
7
2
7
9
6
2

A
C

-4
.0

6
4
.9

7
E

-0
5

rs
38

65
44

4
51

72
79

62
A

C
-5

.8
1

6.
34

E-
09

?-
--

3
2

2
0

rs
60

14
72

4
54

99
85

44
G

A
-5

.3
5

8.
72

E-
08

rs
6
0
1
4
7
2
4

5
4
9
9
8
5
4
4

T
C

-4
.5

2
6
.3

2
E

-0
6

rs
60

14
72

4
54

99
85

44
G

A
-6

.1
8

6.
56

E-
10

?-
--

C
a
s
e
-c

o
n
tr

o
l 
s
ta

tu
s

B
y
 p

ro
x
y
 A

D
O

ve
ra

ll

 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 

Ta
b

le
 1

. S
u

m
m

ar
y 

st
at

is
ti

cs
 f

o
r 

th
e

 m
e

ta
-a

n
al

ys
is

 o
f 

ca
se

-c
o

n
tr

o
l s

ta
tu

s,
 b

y 
p

ro
xy

 p
h

e
n

o
ty

p
e 

an
d

 b
o

th
. 

N
o

te
: I

n
d

ep
e

n
d

en
t 

le
ad

 S
N

P
s 

ar
e 

d
ef

in
ed

 b
y 

r2
 <

 .1
; d

is
ti

n
ct

 g
en

o
m

ic
 lo

ci
 a

re
 >

2
5

0
kb

 a
p

ar
t.

 A
lle

le
1

 is
 t

h
e 

ef
fe

ct
 a

lle
le

 f
o

r 
th

e 
m

et
a 

as
so

ci
at

io
n

 s
ta

ti
st

ic
. M

et
a-

an
al

ys
is

 e
ff

ec
t 

d
ir

ec
ti

o
n

 (
co

lu
m

n
 A

L)
 is

 in
 t

h
e 

fo
llo

w
in

g 
o

rd
er

: A
D

SP
, I

G
A

P
, U

K
B

, P
G

C
-A

LZ
, n

o
te

 t
h

at
 t

h
e 

fi
rs

t 
co

h
o

rt
 is

 o
ft

en
 m

is
si

n
g 

as
 t

h
is

 c
o

n
ce

rn
s 

ex
o

m
e 

se
q

u
e

n
ci

n
g 

d
at

a.
 C

o
rr

ec
te

d
 P

 v
al

u
e 

fo
r 

si
gn

if
ic

an
ce

 =
 5

E
-0

8
 (

m
ar

ke
d

 a
s 

b
o

ld
fa

ce
d

 a
n

d
 u

n
d

er
lin

ed
 

va
lu

es
).

 N
o

te
 t

h
at

 t
h

e 
le

ad
 S

N
P

 c
an

 d
if

fe
r 

b
et

w
ee

n
 t

h
e 

d
is

ti
n

ct
 a

n
al

ys
es

, w
h

ile
 it

 t
ag

s 
th

e
 s

am
e 

lo
cu

s 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/258533doi: bioRxiv preprint 

https://doi.org/10.1101/258533
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS META-ANALYSIS OF ALZHEIMER’S DISEASE RISK 

 
 

Figure 1. Overview of analyses steps. The main genetic analysis encompasses the procedures to detect 525 
GWAS risk loci for AD. The functional analysis part includes the in silico functional follow-up procedures 526 
with the aim to put the genetic findings in biological context. The Mendelian randomisation analysis has 527 
been performed on the results of phase 1 to account for sample overlap between our study and other 528 
traits for which they have used the UKB dataset. 529 
 530 
 531 

 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
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Figure 2. GWAS results for AD risk (N=455,258). Manhattan plot displays all associations per variant 541 
ordered according to their genomic position on the x-axis and showing the strength of the association 542 
with the –log10 transformed P-values on the y-axis. The y-axis is limited to enable visualization of non-543 
APOE loci.  544 
 545 

 546 
 547 
 548 
 549 
 550 
Figure 3. Functional annotation of association results. a) Heritability enrichment of 28 functional 551 
variant annotations calculated with stratified LD score regression. UTR=untranslated region; 552 
CTCF=CCCTC-binding factor; DHS=DNaseI Hypersensitive Site; TFBS=transcription factor binding site; 553 
DGF=DNAaseI digital genomic footprint; b) Functional effects of variants in genomic risk loci of the 554 
meta-analysis – the second bar shows distribution for exonic variants only; c) Distribution of 555 
RegulomeDB score for variants in genomic risk loci, with a low score indicating a higher probability of 556 
having a regulatory function. d) Distribution of minimum chromatin state across 127 tissue and cell 557 
types for variants in genomic risk loci, with lower states indicating higher accessibility and states 1-7 558 
referring to open chromatin states. e) Zoomed-in circos plot of chromosome 8. f) Zoomed-in circos plot 559 
of chromosome 16. Circos plots show implicated genes by significant loci, where blue areas indicate 560 
genomic risk loci, green indicates eQTL associations and orange indicates chromatin interactions. Genes 561 
mapped by both eQTL and chromatin interactions are red. The outer layer shows a Manhattan plot 562 
containing the negative log10-transformed P-value of each SNP in the GWAS meta-analysis of AD. Full 563 
circos plots of all autosomal chromosomes are provided in Supplementary Figures 4. 564 
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Figure 4. Functional implications based on gene-set analysis, genetic correlations and functional 566 
annotations. The gene-set results are displayed per category of biological mechanisms (A), brain cell-567 
types (B) and tissue types (C). The red horizontal lines indicates the significance threshold corrected for 568 
all gene-set tests of all categories, while the blue horizontal lines display the significance threshold 569 
corrected only for the number of tests within the three categories (i.e. gene-ontology, tissue expression, 570 
single cell expression). (D) Genetic correlations between AD and other heritable traits. (E) Venn diagram 571 
showing the number of genes mapped by four distinct strategies.  572 
 573 
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Online methods 591 

 592 

1.1 Study Cohorts 593 

1.1.1 PGC-ALZ cohorts 594 

Three non-public datasets (the Norwegian DemGene network, The Swedish Twin Studies of 595 

Aging and TwinGene) were meta-analyzed as part of the Alzheimer workgroup initiative of the 596 

Psychiatric Genomic Consortium (PGC-ALZ). 597 

We collected genotype data from the Norwegian DemGene Network consisting of 2,224 598 

cases and 1,855 healthy controls. The DemGene Study is a Norwegian network of clinical sites 599 

collecting cases from Memory Clinics based on standardised examination of cognitive, 600 

functional and behavioural measures and data on progression of most patients. We diagnosed 601 

2,224 cases of AD from 7 studies: the Norwegian Register of persons with Cognitive Symptoms 602 

(NorCog), the Progression of Alzheimer’s Disease and Resource use (PADR), the Dementia Study 603 

of Western Norway (DemVest), the AHUS study, the Dementia Study in Rural Northern Norway 604 

(NordNorge), HUNT Dementia Study and Nursing Home study, and the TrønderBrain study. 605 

These cases were diagnosed according to the recommendations from the National Institute on 606 

Aging–Alzheimer’s Association (NIA/AA) (AHUS), the NINCDS-ADRDA criteria (DemVest and 607 

TrønderBrain) or the ICD-10 research criteria (NorCog, PADR, NordNorge and HUNT). The 608 

controls from Norway were obtained through the AHUS, NordNorge, HUNT and TrønderBrain 609 

studies. Controls were screened with standardized interview and cognitive tests. Genotypes of 610 

the 4079 individuals from the DemGene Study were obtained with Human Omni Express-24 611 

v.1.1 (Illumina Inc., San Diego, CA, USA) at deCODE Genetics (Reykjavik, Iceland). To increase 612 
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the statistical power of our association analysis, the controls were combined with additional 613 

5786 population controls from Norwegian blood donor samples (Oslo University Hospital, 614 

Ullevål Hospital, Oslo) and controls from Thematically Organized Psychosis Research (TOP) 615 

Study27 (between 25-65 years). Control subjects of TOP Study were of Caucasian origin without 616 

history of moderate/severe head injury, neurological disorder, mental retardation and were 617 

excluded if they or any of their close relatives had a lifetime history of a severe psychiatric 618 

disorder, a history of medical problems thought to interfere with brain function or significant 619 

illicit drug use.            620 

 The Swedish Twin Studies of Aging (STSA) (n cases = 398, n controls = 1079) includes 621 

three sub-studies of aging within the Swedish Twin Registry34: The Swedish Adoption/Twin 622 

Study of Aging (SATSA)35, Aging in Women and MEN (GENDER)36, and The Study of Dementia in 623 

Swedish Twins (HARMONY)37. Informed consent was obtained from all participants and the 624 

studies were approved by the Regional Ethics Board in Stockholm and the Institutional Review 625 

Board at the University of Southern California. DNA was extracted from blood samples and 626 

genotyped using Illumina Infinium PsychArray. Alzheimer’s disease patients were diagnosed as 627 

part of the studies according to the NINCDS/ADRDA criteria38. In addition, information on 628 

disease after last study participation was retrieved from three population-based health care 629 

registers: The National Patient Register, the Causes of Death Register, and the Prescribed Drug 630 

Register. 631 

 TwinGene34 is a population-based study of older twins drawn from the Swedish Twin 632 

Registry. Written informed consent was obtained from all participants and the study was 633 

approved by the Regional Ethics Board in Stockholm. DNA was extracted from blood samples 634 
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and genotyped using Illumina Human OmniExpress for 1791 individuals. Information about 635 

Alzheimer’s disease (n cases = 343, n controls = 9070) was extracted from the National Patient 636 

Register, the Causes of Death Register, and the Prescribed Drug Register, all of which are 637 

population-based health care registers with nationwide coverage. 638 

 639 

1.1.2 IGAP 640 

Publically available (http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php) 641 

genome-wide association analysis results of the International Genomics of Alzheimer's Project 642 

(IGAP)4 were included as one of the four cohorts that were meta-analysed in our effort. IGAP is 643 

a large two-stage study based upon genome-wide association studies (GWAS) on individuals of 644 

European ancestry. We focused on results of stage 1, for which IGAP used genotyped and 645 

imputed data of 7,055,881 single nucleotide polymorphisms (SNPs) to meta-analyse four 646 

previously-published GWAS datasets consisting of 17,008 Alzheimer's disease cases and 37,154 647 

controls (The European Alzheimer's disease Initiative – EADI the Alzheimer Disease Genetics 648 

Consortium – ADGC The Cohorts for Heart and Aging Research in Genomic Epidemiology 649 

consortium – CHARGE The Genetic and Environmental Risk in AD consortium – GERAD). As the 650 

purpose of stage 2 (2, 11,632 SNPs were genotyped and tested for association in an 651 

independent set of 8,572 Alzheimer's disease cases and 11,312 controls) was replication of the 652 

significantly associated loci of stage 1, we limited the inclusion of the summary statistics for our 653 

own analyses to stage 1. Written informed consent was obtained from study participants or, for 654 

those with substantial cognitive impairment, from a caregiver, legal guardian or other proxy, 655 
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and the study protocols for all populations were reviewed and approved by the appropriate 656 

institutional review boards. 657 

 658 

1.1.3 ADSP 659 

The Alzheimer’s Disease Sequencing Project (ADSP) collaboration has the aim to identify novel 660 

genetic factors that contribute to AD risk by studying genetic sequencing data. ADSP has made 661 

their sequencing data available through the Genotypes and Phenotyps database (dbGaP) under 662 

the study accession: phs000572.v7.p (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-663 

bin/study.cgi?study_id=phs000572.v1 .p1). We have obtained access to 10,907 individuals 664 

(5,771 cases, 5,136 controls) with whole-exome sequencing data to include as the second 665 

cohort within our meta-analysis. A substantial proportion of the ADSP individuals were 666 

previously also included in IGAP. We applied two strategies to prevent inflated meta-analysis 667 

results due to sample overlap: (1) exclusion of ADSP individuals that were duplicates based on 668 

genotype data comparison of individual level genetic data between IGAP and ADSP, (2) perform 669 

meta-analysis while correcting for cross-study LD score regression intercept (see section 1.4.). 670 

To accomplish the first approach we obtained access for all IGAP datasets for which individual 671 

level genotype data was available through dbGaP (phs000160.v1.p1 - https:// 672 

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id= phs000160.v1.p1; 673 

phs000219.v1.p1 - https://www.ncbi.nlm.nih.gov/projects/gap/cgi-674 

bin/study.cgi?study_id=phs000219.v1.p1; phs000372.v1.p1 - 675 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000372.v1 .p1; 676 

phs000168.v2.p2 - https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id= 677 
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phs000168.v2.p2; phs000234.v1.p1 - https://www.ncbi.nlm.nih.gov/projects/gap/cgi-678 

bin/study.cgi? study_id=phs000234.v1.p1) or NIAGADS (NG00026 - 679 

https://www.niagads.org/datasets/ng00026; NG00028 - 680 

https://www.niagads.org/datasets/ng00028; NG00029 - https://www.niagads.org/ 681 

datasets/ng00029; NG00031 - https://www.niagads.org/datasets/ng00030 ; NG00031 - 682 

https://www.niagads.org/datasets/ng00031; NG00034 - 683 

https://www.niagads.org/datasets/ng00034). By calculating identity-by-descent using PLINK39, 684 

we identified duplicates, which were excluded from the ADSP WES dataset for subsequent 685 

analyses.  686 

 687 

1.1.1 UK Biobank study 688 

The current study used data from the UK Biobank40 (UKB; www.ukbiobank.ac.uk), a large 689 

population-based cohort that includes over 500,000 participants and aims to improve insight 690 

into a wide variety of health-related determinants and outcomes across the UK. Between 2006 691 

and 2010, approximately 9.2 million invitations to participate in the study were sent to 692 

individuals aged 40-69 years who were registered with the National Health Service (NHS) and 693 

were living within 25 miles from one of the 22 study research centers. In total, 503,325 694 

participants were recruited in the study, from which we used a subsample of individuals of 695 

European ancestry with available phenotypic and genotypic data (M age = 56.5, 54.0% female), 696 

described in more detail below. Besides phenotypic information obtained from the NHS 697 

registries and associated medical records, participants completed an in-person visit at one of 698 

the study research centers where extensive self-report data were collected by questionnaire in 699 
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addition to anthropometric assessments, DNA collection from blood samples, and magnetic 700 

resonance imaging of body and brain. All participants provided written informed consent; the 701 

UKB received ethical approval from the National Research Ethics Service Committee North 702 

West-Haydock (reference 11/NW/0382), and all study procedures were in accordance with the 703 

World Medical Association for medical research. Access to the UK Biobank data was obtained 704 

under application number 16406. 705 

 706 

1.2 UKB by proxy phenotype 707 

A proxy phenotype for Alzheimer’s disease case-control status in UKB was assessed as part of 708 

the self-report questionnaire administered during the in-person assessment. Participants were 709 

asked to report whether their biological mother or father ever suffered from Alzheimer’s 710 

disease/dementia, and to report each parent’s current age (or age at death, if applicable). Of 711 

376,113 individuals in our analytic subsample who completed these questions, a diagnosis was 712 

reported for 32,327 mothers (8.6%) and 17,014 fathers (4.5%), resulting in 47,793 participants 713 

(12.7%) with one or both parents affected. We created a proxy phenotype from these questions 714 

to index genetic risk for Alzheimer’s based on parents’ diagnoses. The phenotype was 715 

constructed as a linear count of the number of affected biological parents (0, 1, or 2). The 716 

contribution for each unaffected parent to this count was weighted by the parent’s age/age at 717 

death to account for the fact that they may not yet have passed through the period of risk for 718 

this late-onset disease. Specifically, each affected parent contributed one full unit of “risk” to 719 

the count, while each unaffected parent contributed a proportion of one unit of “risk” inversely 720 

related to their age. This was calculated as the ratio of parent’s age to age 100 (approximately 721 
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the 95th percentile for life expectancy in developed countries, such that weight=(100-age)/100. 722 

The weight for unaffected parents was capped at 0.32, corresponding to a risk equivalent to 723 

that of the maximum population prevalence of AD.41 The phenotype thus ranged from 724 

approximately 0-2, with values near zero when both parents were unaffected (lower for older 725 

parents and possible values below zero if both parents were over age 100) and values of two 726 

when both parents were affected. Participants who were uncertain or chose not to answer 727 

questions about either parent’s disease status or age were excluded from analyses, resulting in 728 

a final N=364,859. 729 

 Additional information on Alzheimer’s disease risk was obtained from national medical 730 

records linked to participant data. This information pertained to the participants themselves 731 

(not their parents), and was extracted from hospital records obtained between 1996 and the 732 

present or from national death registries in the case of participants who passed away after 733 

initial enrolment in the study, as described in more detail in the UKB resources 734 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=146641; 735 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=115559). Briefly, primary and secondary 736 

diagnoses from inpatient hospital stays and primary and secondary causes of death from death 737 

records were recorded using ICD-10 codes. Participants with a diagnosis of “Alzheimer’s 738 

disease” (diseases of the nervous system chapter; code G30) or “Dementia in Alzheimer’s 739 

disease” (mental and behavioral disorders chapter; code F00) from any record of a hospital stay 740 

or as a cause of death were treated as Alzheimer’s cases as given the maximum possible “risk” 741 

score of 2, regardless of affectation status of their parents. The reported rate of Alzheimer’s in 742 

parents of cases (27.4%) was more than double that of non-cases (12.7%; 𝞆2(1)=71.7, P=2.45E-743 
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17). There were 393 individuals in the analytic subsample classified as affected by these 744 

records; due to the small number of cases and the limited representativeness of these types of 745 

health records, we use this information to supplement the proxy parent phenotype rather than 746 

as a primary outcome. This information reduces the possibility of misclassification in the proxy 747 

phenotype method, and also allows us to evaluate the performance of the proxy phenotype 748 

method. 749 

 750 

1.3 Genome-wide association analysis 751 

Except for IGAP (obtained summary statistics), we performed genome-wide association 752 

analyses for the ADSP, PGC-ALZ and UKB cohorts. For the UKB dataset, quality control and 753 

imputation procedures were slightly different, and therefore described separately in the 754 

sections below. 755 

 756 

1.3.1a Quality control and imputation procedures for ADSP and PGC-ALZ datasets 757 

Prior to individual quality control steps, all datasets were filters on a max missingness of 5%. 758 

Individuals were excluded when identified as a low quality sample (individual call rate < 0.98), 759 

heterozygosity outlier (F +/-.20), gender mismatch (females: F >0.2, males: F < 0.2) when 760 

comparing phenotypic and genotypic data, population outlier (defined by principal component 761 

boundaries of 1000 Genomes European samples) or being related (PI_HAT > 0.2). Inclusion 762 

criteria for variants encompassed a call rate > 0.98, a case-control missingness difference < 763 

0.02, a Hardy-Weinberg equilibrium p-value < 10e-6 for controls (<10e-10 for cases) and a valid 764 

association p-value (excluding the variants with low allele frequencies). 765 
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 Pre-imputation, the ADSP and PGC-ALZ datasets were checked for palindromic variants 766 

with allele frequency close to 0.5, incorrect reference allele definitions, false strand designation 767 

and extreme deviations from expected allele frequencies. Subsequently the ADSP and PGC-ALZ 768 

datasets were imputed with the 1000 Genomes Phase 342 reference panel. The reported SNPs 769 

all have a considerable imputation quality (INFO score>0.591) and variants with a low allele 770 

frequency (MAF<0.01) were excluded, resulting in a total of 7508 individuals (4343 cases and 771 

3165 controls) and 260,934 variants for the ADSP cohort and 17477 individuals (2,736 cases and 772 

14,471 controls) and 9,629,492 variants for the PGC-ALZ cohort.  773 

 774 

1.3.1b Quality control and imputation for UKB dataset 775 

We used second-release genotype data that were made available by UKB in July 2017. 776 

Genotype data collection and processing are described by the UKB in a previous overview 777 

paper43. DNA was extracted from blood samples and genotyping was completed for 488,366 778 

individuals on one of two Affymetrix genotyping arrays with custom content, the UK BiLEVE 779 

Axiom array (n=49,949) or UK Biobank Axiom array (n=438,417), covering 812,428 genetic 780 

markers common to both arrays. Of these, 488,377 individuals and 805,426 markers passed 781 

genotype quality control checks conducted by UKB (see 782 

http://www.biorxiv.org/content/early/2017/07/20/166298 for details). Samples were excluded 783 

for low DNA concentration, call rate < 95%, excess heterozygosity, sex chromosome 784 

abnormality, or sample duplication. Variants were excluded if they exhibited poor clustering of 785 

allele calls, batch, plate, array, or sex effects, departures from HWE, or discordance between 786 

technical replicate samples.  787 
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 After quality control, samples were imputed to approximately 92 million SNPs using 788 

both the reference panel of the Haplotype Reference Consortium (HRC)44 as well as a combined 789 

reference panel of the 1000 Genomes Project42 and UK10K. As recommended by UKB, we 790 

removed variants that were not imputed on the HRC reference panel due to technical errors in 791 

the imputation process of the combined panel. We converted imputed variants to hard calls 792 

(certainty > 0.9), filtered by imputation quality (INFO score >0.9), and excluded multi-allelic 793 

SNPs, indels, SNPs without unique rsID, and SNPs with minor allele frequency (MAF) <0.0001, 794 

resulting in 10,847,151 SNPs available for analysis. 795 

For the present study, we selected unrelated individuals of European ancestry. To 796 

empirically determine ancestry, we projected genetic principal components from known 797 

ancestral populations in the 1000 Genomes Project onto the UKB genotypes and assigned 798 

individuals to the continental ancestral superpopulation with the closest Mahalanobis 799 

distance.45 Within-ancestry principal components were created using FlashPCA246 to correct for 800 

any residual population stratification within the European ancestry subset. Unrelated 801 

individuals (less than 3rd degree relatives, as indicated by genomic relatedness coefficients 802 

calculated by UKB) were selected by sequentially removing participants with the greatest 803 

number of relatives until no related pairs remained. After applying these filtering criteria and 804 

removing any participants with missing phenotypic or covariate data and participants who 805 

withdrew consent, 364,859 individuals remained for analysis in the UKB sample. 806 

 807 

1.3.2 Single-marker association analysis 808 
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Genome-wide association analysis (GWAS) for the ADSP, PGC-ALZ and UKB datasets was 809 

performed in PLINK39, using logistic regression for dichotomous phenotypes (cases versus 810 

controls for ADSP and PGC-ALZ cohorts), and linear regression for phenotypes analysed as 811 

continuous outcomes (by proxy parental AD phenotype for UKB cohort). For the ADSP and PGC-812 

ALZ cohorts, association tests were adjusted for gender, batch (if applicable), and the first 4 813 

principal components. Twenty principal components were calculated, and depending on the 814 

dataset being tested, additional principal components (on top of the standard inclusion of 4 815 

PCAs) were added if significantly associated to the phenotype. Furthermore, for the PGC-ALZ 816 

cohorts age was included as a covariate. For 4,537 controls of the DemGene cohort, no detailed 817 

age information was available, besides the age range the subjects were in (20-45 years). We 818 

therefore set the age of these individuals conservatively to 20 years. For the ADSP dataset, age 819 

was not included as a covariate due to the enrichment for older controls (mean age cases = 820 

73.1 years (SE=7.8); mean age controls = 86.1 years (SE=4.5)) in their collection procedures. 821 

Correcting for age in ADSP would remove a substantial part of genuine association signals (e.g. 822 

well-established APOE locus rs11556505 is strongly associated to AD (P=1.08x10-99), which is 823 

lost when correcting for age (P=0.0054). For the UKB dataset, 12 components were included as 824 

covariates, as well as age, sex, genotyping array, and assessment centre. We used the genome-825 

wide threshold for significance of P<5×10-8). 826 

 827 

1.3.3 Multivariate genome-wide meta-analysis 828 

Two meta-analyses were performed, including: 1) cohorts with case-control phenotypes (IGAP, 829 

ADSP and PGC-ALZ datasets), 2) all cohorts, also including the by proxy phenotype of UKB. 830 
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The per SNP test statistics is defined by 831 

 832 

 833 

 834 

where wi and Zi are squared root of the sample size and the test statistics of SNP k of cohort i, 835 

respectively. CTI is cross trait LD score intercept estimated by LDSC using genome-wide 836 

summary statistics as 837 

 838 

 839 

where Nsij and rij are overlapping samples and phenotypic correlation between cohort i and j, 840 

respectively.13 Test statistics per SNP per GWAS was converted from P-value by taking sign of 841 

either beta or odds ratio. When direction is aligned the conversion is two-sided. To avoid 842 

infinite value, we replaced P-value 1 with 0.999999 and P-value < 1e-323 to 1e-323 (the 843 

minimum >0 value in Python). 844 

The effective sample size (Neff) is computed for each SNP k from the matrix M, 845 

containing the sample size Ni of each cohort i on the diagonal and the estimated number of 846 

shared data points Nsijxij= CTIijx√𝑁𝑖𝑁𝑗 for each pair of cohorts i and j as the off-diagonal 847 

values. Neff is computed recursively as follows. Starting with the first cohort in M, Neff is first 848 

increased by M1,1, corresponding to the sample size of that cohort. The proportion of samples 849 

shared between cohort 1 and each other cohort j is them computed as p1,j = M1,j/Mj,j, and M is 850 

then adjusted to remove this overlap, multiplying all values in each column j by 1-p1,j. This 851 

amounts to reducing the sample size of each other cohort j by the number of samples it shares 852 
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with cohort 1, and reducing the shared samples between cohort j and subsequent cohorts by 853 

the same proportion. After this, the first row and column of M are discarded, and the same 854 

process is applied to the new M matrix. This is repeated until M is empty. The script for the 855 

multivariate GWAS is available from https://github.com/Kyoko-wtnb/mvGWAMA. 856 

 857 

1.5 Replication of meta-analysis result in Icelandic sample 858 

The study group included 6,593 Alzheimer's disease cases (4,923 of whom were chip-typed) and 859 

174,289 controls (88,581 of whom were chip-typed). In 16% of patients, the diagnosis of 860 

Alzheimer's disease was established according to the criteria for definite, probable, or possible 861 

Alzheimer's disease of the National Institute of Neurological and Communicative Disorders and 862 

Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA). In 77% 863 

of patients, the diagnosis was established according to the criteria for code 331.0 in ICD-9, or 864 

for F00 and G30 in ICD-10. Seven percent of the patients were identified in the Directorate of 865 

Health medication database as having been prescribed Donepezil (Aricept), a palliative 866 

treatment for Alzheimer's disease. The controls were drawn from various research projects at 867 

deCODE Genetics, excluding those in whom Alzheimer's disease had been diagnosed. 868 

The study was approved by the National Bioethics Committee and the Icelandic Data Protection 869 

Authority. Written informed consent was obtained from all participants or their guardians 870 

before blood samples were drawn. All sample identifiers were encrypted in accordance with 871 

the regulations of the Icelandic Data Protection Authority. 872 

Chip-typing and long-range phasing of 155,250 individuals was carried out as described 873 

previously.20 Imputation of the variants found in 28,075 whole-genome sequenced individuals 874 
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into the chip-typed individuals and 285,664 close relatives was performed as detailed earlier.20 875 

Association analysis was carried out using logistic regression with Alzheimer’s disease status as 876 

the response and genotype counts and a set of nuisance variables including sex, county of birth, 877 

and current age as predictors.21 Correction for inflation of test statistics due to relatedness and 878 

population stratification was performed using the intercept estimate from LD score regression 879 

(1.29) as described in.13 880 

 881 

1.6 Genomic risk loci definition 882 

We used FUMA25, an online platform for functional mapping and annotation of genetic variants, 883 

to define genomic risk loci and obtain functional information of relevant SNPs in these loci. We 884 

first identified independent significant SNPs that have a genome-wide significant P-value 885 

(<5×10-8) and are independent from each other at r2<0.6. These SNPs were further represented 886 

by lead SNPs, which are a subset of the independent significant SNPs that are in approximate 887 

linkage equilibrium with each other at r2>0.6. We then defined associated genomic risk loci by 888 

merging any physically overlapping lead SNPs (LD blocks <250kb apart). Borders of the genomic 889 

risk loci were defined by identifying all SNPs in LD (r2
>0.6) with one of the independent 890 

significant SNPs in the locus, and the region containing all these candidate SNPs was considered 891 

to be a single independent genomic risk locus. LD information was calculated using the UK 892 

Biobank genotype data as a reference.  893 

 894 

1.7 Cohort Heritability and Genetic Correlation 895 
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LD score regression13 was used to estimate genomic inflation and heritability of the AD in each 896 

of the 7 cohorts (PGC-ALZ, ADSP, IGAP, UKB, DemGene, STSA, TwinGene) using their post-897 

quality control summary statistics, and to estimate the cross-cohort genetic correlations.47 Pre-898 

calculated LD scores from the 1000 Genomes European reference population were obtained 899 

from https://data.broadinstitute.org/alkesgroup/LDSCORE/. Genetic correlations were 900 

calculated on HapMap3 SNPs only. LD score regression was also used on the case-control and 901 

by-proxy phenotype result to estimate heritability and genetic correlations for the two 902 

phenotype definitions. 903 

 904 

1.8 Polygenic risk scoring 905 

We calculated polygenic scores (PGS) based on the SNP effect sizes of meta-analyses. PGS were 906 

calculated using an independent genotype dataset of 761 individuals (379 cases and 382 907 

controls) from the ADDNeuroMed study.48 The same QC and imputation approach was applied 908 

as for the other datasets with genotype-level data (see Method section 1.3.1a). PRSice PGS 909 

were calculated on hard-called imputed genotypes using P-value thresholds from 0.0 to 0.5 in 910 

steps ranging from 5x10-8 to 0.001. The explained variance (ΔR2) was derived from a linear 911 

model in which the AD phenotype was regressed on each PGS while controlling for the same 912 

covariates as in each cohort-specific GWAS, compared to a linear model with GWAS covariates 913 

only. 914 

 915 

1.9 Stratified Heritability 916 
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To test whether specific categories of SNP annotations were enriched for heritability, we 917 

partitioned SNP heritability for binary annotations using stratified LD score regression 918 

(https://github.com/bulik/ldsc)13. Heritability enrichment was calculated as the proportion of 919 

heritability explained by a SNP category divided by the proportion of SNPs that are in that 920 

category. Partitioned heritability was computed by 28 functional annotation categories, by 921 

minor allele frequency (MAF) in six percentile bins and by 22 chromosomes. Annotations for 922 

binary categories of functional genomic characteristics (e.g. coding or regulatory regions) were 923 

obtained from the LD score website (https://github.com/bulik/ldsc). The Bonferroni-corrected 924 

significance threshold for 56 annotations was set at: P<0.05/56=8.93×10−4. 925 

 926 

1.10 Functional Annotation of SNPs 927 

Functional annotation of SNPs implicated in the meta-analysis was performed using FUMA25 928 

(http://fuma.ctglab.nl/). We selected all candidate SNPs in associated genomic loci having an 929 

r2≧0.6 with one of the independent significant SNPs (see above), a P-value (P<1x10-8) and a 930 

MAF>0.0001 for annotations. Functional consequences for these SNPs were obtained by 931 

matching SNPs’ chromosome, base-pair position, and reference and alternate alleles to 932 

databases containing known functional annotations, including ANNOVAR49 categories, 933 

Combined Annotation Dependent Depletion (CADD) scores23, RegulomeDB50 (RDB) scores, and 934 

chromatin states51,52.  ANNOVAR annotates functional consequence of SNPs on genes (e.g. 935 

intron, exon, intergenic). CADD scores predict how deleterious the effect of a SNP with higher 936 

scores referring to higher deleteriousness. A CADD score above 12.37 is the threshold to be 937 

potentially pathogenic53. The RegulomeDB score is a categorical score based on information 938 
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from expression quantitative trait loci (eQTLs) and chromatin marks, ranging from 1a to 7 with 939 

lower scores indicating an increased likelihood of having a regulatory function. Scores are as 940 

follows: 1a=eQTL + Transciption Factor (TF) binding + matched TF motif + matched DNase 941 

Footprint + DNase peak; 1b=eQTL + TF binding + any motif + DNase Footprint + DNase peak; 942 

1c=eQTL + TF binding + matched TF motif + DNase peak; 1d=eQTL + TF binding + any motif + 943 

DNase peak; 1e=eQTL + TF binding + matched TF motif; 1f=eQTL + TF binding / DNase peak; 944 

2a=TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b=TF binding + 945 

any motif + DNase Footprint + DNase peak; 2c=TF binding + matched TF motif + DNase peak; 946 

3a=TF binding + any motif + DNase peak; 3b=TF binding + matched TF motif; 4=TF binding + 947 

DNase peak; 5=TF binding or DNase peak; 6=other;7=None. The chromatin state represents the 948 

accessibility of genomic regions (every 200bp) with 15 categorical states predicted by a hidden 949 

Markov model based on 5 chromatin marks for 127 epigenomes in the Roadmap Epigenomics 950 

Project39. A lower state indicates higher accessibility, with states 1-7 referring to open 951 

chromatin states. We annotated the minimum chromatin state across tissues to SNPs. The 15-952 

core chromatin states as suggested by Roadmap are as follows: 1=Active Transcription Start Site 953 

(TSS); 2=Flanking Active TSS; 3=Transcription at gene 5’ and 3’; 4=Strong transcription; 5= Weak 954 

Transcription; 6=Genic enhancers; 7=Enhancers; 8=Zinc finger genes & repeats; 955 

9=Heterochromatic; 10=Bivalent/Poised TSS; 11=Flanking Bivalent/Poised TSS/Enh; 12=Bivalent 956 

Enhancer; 13=Repressed PolyComb; 14=Weak Repressed PolyComb; 15=Quiescent/Low.  957 

 958 
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1.11 Gene-mapping 959 

Genome-wide significant loci obtained by GWAS were mapped to genes in FUMA25 using three 960 

strategies: 961 

1. Positional mapping maps SNPs to genes based on physical distance (within a 10kb 962 

window) from known protein coding genes in the human reference assembly 963 

(GRCh37/hg19).  964 

2. eQTL mapping maps SNPs to genes with which they show a significant eQTL association 965 

(i.e. allelic variation at the SNP is associated with the expression level of that gene). 966 

eQTL mapping uses information from 45 tissue types in 3 data repositories (GTEx54, 967 

Blood eQTL browser55, BIOS QTL browser56), and is based on cis-eQTLs which can map 968 

SNPs to genes up to 1Mb apart. We used a false discovery rate (FDR) of 0.05 to define 969 

significant eQTL associations. 970 

3. Chromatin interaction mapping was performed to map SNPs to genes when there is a 971 

three-dimensional DNA-DNA interaction between the SNP region and another gene 972 

region. Chromatin interaction mapping can involve long-range interactions as it does not 973 

have a distance boundary. FUMA currently contains Hi-C data of 14 tissue types from 974 

the study of Schmitt et al57. Since chromatin interactions are often defined in a certain 975 

resolution, such as 40kb, an interacting region can span multiple genes. If a SNPs is 976 

located in a region that interacts with a region containing multiple genes, it will be 977 

mapped to each of those genes. To further prioritize candidate genes, we selected only 978 

genes mapped by chromatin interaction in which one region involved in the interaction 979 

overlaps with a predicted enhancer region in any of the 111 tissue/cell types from the 980 
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Roadmap Epigenomics Project52 and the other region is located in a gene promoter 981 

region (250bp up and 500bp downstream of the transcription start site and also 982 

predicted by Roadmap to be a promoter region). This method reduces the number of 983 

genes mapped but increases the likelihood that those identified will have a plausible 984 

biological function. We used a FDR of 1×10-5 to define significant interactions, based on 985 

previous recommendations44 modified to account for the differences in cell lines used 986 

here. 987 

 988 

1.12 Gene-based analysis 989 

To account for the distinct types of genetic data in this study, genotype array (PGC-ALZ, IGAP, 990 

UKB) and whole-exome sequencing data (ADSP), we first performed two gene-based genome-991 

wide association analysis (GWGAS) using MAGMA28, followed by a meta-analysis. SNP-based P-992 

values from the meta-analysis of the 3 genotype-array-based datasets were used as input for 993 

the first GWGAS, while the unimputed individual-level sequence data of ADSP was used as 994 

input for the second GWGAS. 18,233 protein-coding genes (each containing at least one SNP in 995 

the GWAS) from the NCBI 37.3 gene definitions were used as basis for GWGAS in MAGMA. 996 

Bonferroni correction was applied to correct for multiple testing (P<2.74x10-6). 997 

 998 

1.13 Gene-set analysis 999 

Results from the GWGAS analyses were used to test for association in three types of 7,087 1000 

predefined gene-sets: 1001 
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1. 6,994 curated gene-sets representing known biological and metabolic pathways derived 1002 

from Gene Ontology (5917 gene-sets), Biocarta (217 gene-sets), KEGG (186 gene-sets), 1003 

Reactome (674 gene-sets) catalogued by and obtained from the MsigDB version 6.158 1004 

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp) 1005 

2. Gene expression values from 54 (53 + 1 calculated 1st PC of three tissue subtypes) 1006 

tissues obtained from GTEx54, log2 transformed with pseudocount 1 after winsorization 1007 

at 50 and averaged per tissue. 1008 

3. Cell-type specific expression in 173 types of brain cells (24 broad categories of cell types, 1009 

‘level 1’ and 129 specific categories of cell types ‘level 2’), which were calculated 1010 

following the method described in 30. Briefly, brain cell-type expression data was drawn 1011 

from single-cell RNA sequencing data from mouse brains. For each gene, the value for 1012 

each cell-type was calculated by dividing the mean Unique Molecular Identifier (UMI) 1013 

counts for the given cell type by the summed mean UMI counts across all cell types. 1014 

Single-cell gene-sets were derived by grouping genes into 40 equal bins based on 1015 

specificity of expression. 1016 

4. Nucleus specific gene expression of 15 distinct human brain cell-types of study 1017 

described in59. The value for each cell-type was calculated with the same method as 1018 

explained in point 3 above. 1019 

These gene-sets were tested using MAGMA. We computed competitive P-values, which 1020 

represent the test of association for a specific gene-set compared with genes not in the gene-1021 

set to correct for baseline level of genetic association in the data. The Bonferroni-corrected 1022 

significance threshold was 0.05/7,087 gene-sets=7.06×10-6. The suggestive significance 1023 
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threshold was defined by the number of tests within the category. Conditional analyses were 1024 

performed as a follow-up using MAGMA to test whether each significant association observed 1025 

was independent of all others and of APOE (a gene-set including all genes within genomic 1026 

region chr19:45,020,859-45,844,508). Furthermore, the association between each of the 1027 

significant gene-set was tested conditional on each of the other significantly associated gene-1028 

sets. Gene-sets that retained their association after correcting for other sets were considered to 1029 

represent independent signals. We note that this is not a test of association per se, but rather a 1030 

strategy to identify, among gene-sets with known significant associations and overlap in genes, 1031 

which set (s) are responsible for driving the observed association. 1032 

 1033 

1.14 Cross-Trait Genetic Correlation 1034 

Genetic correlations (rg) between AD and 41 phenotypes were computed using LD score 1035 

regression13, as described above, based on GWAS summary statistics obtained from publicly 1036 

available databases (http://www.med.unc.edu/pgc/results-and-downloads; http:// 1037 

ldsc.broadinstitute.org/; Supplementary Table 19). The Bonferroni-corrected significance 1038 

threshold was 0.05/41 traits=1.22×10-3. 1039 

 1040 

1.15 Mendelian Randomisation 1041 

To infer credible causal associations between AD and traits that are genetically correlated with 1042 

AD, we performed Generalised Summary-data based Mendelian Randomisation29 (GSMR; 1043 

http://cnsgenomics.com/software/gsmr/). This method utilizes summary-level data to test for 1044 

putative causal associations between a risk factor (exposure) and an outcome by using 1045 
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independent genome-wide significant SNPs as instrumental variables as an index of the 1046 

exposure. HEIDI-outlier detection was used to filter genetic instruments that showed clear 1047 

pleiotropic effects on the exposure phenotype and the outcome phenotype. We used a 1048 

threshold p-value of 0.01 for the outlier detection analysis in HEIDI which removes 1% of SNPs 1049 

by chance if there is no pleiotropic effect. To test for a potential causal effect of various 1050 

outcomes on risk for AD, we selected phenotypes in non-overlapping samples that showed 1051 

(suggestive) significant (P<0.05) genetic correlations (rg) with AD. With this method it is typical 1052 

to test for bi-directional causation by repeating the analyses while switching the role of the 1053 

exposure and the outcome; however, because AD is a late-onset disease, it makes little sense to 1054 

estimate its causal effect on outcomes that develop earlier in life, particularly when the 1055 

summary statistics for these outcomes were derived mostly from younger samples than those 1056 

of AD cases. Therefore, we conducted these analyses only in one direction. For genetically 1057 

correlated phenotypes, we selected independent (r2=<0.1), GWS lead SNPs as instrumental 1058 

variables in the analyses. The method estimates a putative causal effect of the exposure on the 1059 

outcome (bxy) as a function of the relationship between the SNPs’ effects on the exposure (bzx) 1060 

and the SNPs’ effects on the outcome (bzy), given the assumption that the effect of non-1061 

pleiotropic SNPs on an exposure (x) should be related to their effect on the outcome (y) in an 1062 

independent sample only via mediation through the phenotypic causal pathway (bxy). The 1063 

estimated causal effect coefficients (bxy) are approximately equal to the natural log odds ratio 1064 

(OR)29 for a case-control trait. An OR of 2 can be interpreted as a doubled risk compared to the 1065 

population prevalence of a binary trait for every SD increase in the exposure trait. For 1066 

quantitative traits the bzx and bzy can be interpreted as a one standard deviation increase 1067 
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explained in the outcome trait for every SD increase in the exposure trait. This method can help 1068 

differentiate the causal direction of association between two traits, but cannot make any 1069 

statement about the intermediate mechanisms involved in any potential causal process. 1070 

 1071 

Data availability 1072 

Summary statistics will be made available for download upon publication (https://ctg.cncr.nl).  1073 
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Supplementary Figure 1. Manhattan and QQ plots of single variant association results per main 
cohort. For each cohort, Manhattan and QQ plots are shown. A) The Manhattan plot displays all 
associations per variant ordered according to their genomic position on the x-axis and showing the 
strength of the association with the –log10 transformed P-values on the y-axis. The y-axis is limited 
to enable visualization of non-APOE loci. B) The QQ plot displays the expected –log10 transformed p-
values on the x-axis and the observed –log10 transformed p-values on the y-axis. 
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Supplementary Figure 2. Regional plot for the 29 significant loci of the meta-analysis. Every point 

represents a SNP, which are colour-coded based on the highest r2 to one of the most significant 

SNPs, if greater or equal to r2 of 0.6. Other SNPs are coloured in grey.  
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Supplementary Figure 3. Partitioned heritability results for the meta-analysis. Variants were binned 
by chromosome or minor allele frequency and tested for a significant over- or underrepresentation 
as to what is expected by chance. A) Enrichment results for heritability calculations where variants 
have been partitioned per chromosome. B) Enrichment results for heritability calculations where 
variants have been partitioned into multiple categories based on minor allele frequency. 
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Supplementary Figure 4. Full circos plots of chromatin interactions and eQTLs for all chromosomes 
with significantly associated loci. The distinct layers and colors correspond to various features. The 
outer layer contains zoomed in Manhattan plots containing only SNPs with P < 0.05. SNPs in genomic 
risk loci are color-coded as a function of their maximum r2 to the one of the independent significant 
SNPs in the locus, as follows: red (r2 > 0.8), orange (r2 > 0.6), green (r2 > 0.4) and blue (r2 > 0.2). 
SNPs that are not in LD with any of the independent significant SNPs (with r2 ≤ 0.2) are grey. The 
second layer displays the position of the genomic risk loci in blue. The third layer contains the 
mapped genes that are implicated by chromatin interactions and/or eQTL analysis (orange = 
chromatin interaction; green = eQTL; red = chromatin interaction and eQTL). 
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Supplementary Figure 5. Gene-based association results with MAGMA. A) The Manhattan plot 
displays all associations per gene ordered according to their genomic position (start of gene) on the 
x-axis and showing the strength of the association with the –log10 transformed P-values on the y-
axis. B) The QQ plot displays the expected –log10 transformed p-values on the x-axis and the 
observed –log10 transformed p-values on the y-axis. 
 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/258533doi: bioRxiv preprint 

https://doi.org/10.1101/258533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 6. Single-cell expression gene-set results of human brain tissue. The black 
vertical line indicates the significance threshold correcting for number of tests within category. MG = 
microglia; ExCA1 = Hippocampal CA 1 pyramidal neurons; END = Endothelial cells; ExPFC2 = 
Prefrontal glutamergic neurons 2; ExPFC1 = Prefrontal glutamergic neurons 1; ODC1 = 
Oligodendrocytes; ASC2 = Astrocytes 2; OPC = Oligodendrocyte precursor cells 1; GABA1 = 
GABAergic interneurons 1; NSC = Neuronal stem cells; GABA2 = GABAergic interneurons 2; OPC2 = 
Oligodendrocyte precursor cells 2; ExCA3 = Hippocampal CA 3 pyramidal neurons; ASC1 = Astrocytes 
1; ExDG = Dentate gyrus granule neurons. 
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Supplementary Figure 7. Mendelian Randomization tests for the effect of correlated phenotypes on 
risk for Alzheimer’s disease. For independent significant SNPs from each correlated phenotype, effect 
sizes of the SNPs for Alzheimer’s disease (bzy) are shown on the x-axis and effect sizes for correlated 
phenotypes are on the y-axis (bzx). The dotted line represents a line with slope of (bxy) and an 
intercept of 0.Red dots represent outliers that were excluded for the Mendelian Randomization 
analysis. 
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