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Abstract 1

Neuronal oscillatory activity has been reported in relation to a wide range of cognitive 2

processes. In certain cases changes in oscillatory activity has been associated with 3

pathological states. Although the specific role of these oscillations has yet to be determined, 4

it is clear that neuronal oscillations are abundant in the central nervous system. These 5

observations raise the question of the origin of these oscillations; and specifically whether 6

the mechanisms responsible for the generation and stabilization of these oscillations are 7

genetically hard-wired or whether they can be acquired via a learning process. 8

Here we focus on spike timing dependent plasticity (STDP) to investigate whether 9

oscillatory activity can emerge in a neuronal network via an unsupervised learning process 10

of STDP dynamics, and if so, what features of the STDP learning rule govern and stabilize 11

the resultant oscillatory activity? 12

Here, the STDP dynamics of the effective coupling between two competing neuronal 13

populations with reciprocal inhibitory connections was analyzed using the phase-diagram of 14

the system that depicts the possible dynamical states of the network as a function of the 15

effective inhibitory couplings. This phase diagram yields a rich repertoire of possible 16

dynamical behaviors including regions of different fixed point solutions, bi-stability and a 17

region in which the system exhibits oscillatory activity. STDP introduces dynamics for the 18

inhibitory couplings themselves and hence induces a flow in the phase diagram. We 19

investigate the conditions for the flow to converge to an oscillatory state of the neuronal 20

network and then characterize how the features of the STDP rule govern and stabilize these 21

oscillations. 22

Introduction 23

Synaptic plasticity is the basis for learning and memory. According to Hebb’s rule [1], which 24

constitutes the foundation for current views on learning and memory, the interaction 25

strength increases between two neurons that are co-activated. When extended to the 26

temporal domain by taking into account the effect of the causal relationship between pre- 27

and post-synaptic firing on the potentiation and depression of the synapse, this rule is 28

known as spike-timing dependent plasticity (STDP). STDP has been identified in various 29

systems in the brain, and a rich repertoire of causal relations has been described [2–12]. 30

STDP can be thought of as a process of unsupervised learning (but see also e.g. [13]). 31

Considerable theoretical efforts have been devoted to investigating the possible 32
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computational implications of STDP [14–32]. It was shown that certain STDP rules can 33

give rise to the emergence of response selectivity at the level of the post-synaptic 34

neuron [15,16,23], whereas other STDP rules can provide a homeostatic mechanism that 35

balances the excitatory and inhibitory inputs to the cell [26, 31,33]. For example, in the 36

visual system, modeling studies have shown how spatial correlations together with STDP 37

can develop response selectivity in the form of ocular dominance and directional 38

selectivity [18,34–39]. 39

The overwhelming majority of computational studies of STDP have focused on the 40

learning dynamics of feed-forward synapses, partly due to the mathematical difficulties 41

associated with investigating learning dynamics in recurrently connected networks. 42

Researchers have only recently been able to address this issue and provide a basic 43

framework for studying STDP in recurrent networks, see e.g. [21–25,40–42]. A linear 44

approximation is generally used to estimate neuronal response covariance, which serves as 45

the driving force for the STDP dynamics. As a result, the basic non-linear mechanism that 46

can account for the rich neuronal dynamical behavior is largely lacking. 47

Oscillatory activity has been reported and proposed to play an important role in relation 48

to various cognitive processes including the encoding of external stimuli, attention, learning 49

and consolidation of memory [43–46]. Although the functions of these oscillations remains 50

unresolved, it is clear that neuronal oscillations are abundant in the central nervous system. 51

In addition, oscillatory activity may have a strong effect on STDP since oscillations cause 52

neurons to fire repeatedly with a distinct spike timing relationship. Therefore, in context of 53

development, oscillations and repeated spatiotemporal patterns of activity may play an 54

important role in shaping neuronal connectivity maps [47,48]. 55

The effect and possible computational role of oscillations on STDP has been addressed in 56

several studies [49–57]. However, in all of these studies the oscillatory activity was either an 57

inherent property of the neuron or inherited via feed-forward connections from inputs that 58

were oscillating and had a clear preferred phase. This raises the question of the origin of 59

these oscillations: are the mechanisms for generating these oscillations genetically 60

hard-wired into the system or can they be acquired via a learning process? A recent 61

numerical study simulating a large scale detailed thalamocortical model argued that 62

oscillations may emerge with STDP [58]. However, the principles that underlie the 63

emergence of oscillations with STDP remain unclear. Under what conditions can STDP give 64

rise by itself to the emergence of oscillatory activity? 65

Moreover, neuronal oscillations have been reported to show robustness to various 66

perturbations [59]. Can STDP provide a homeostatic mechanism for the regulation and 67

maintenance of specific oscillatory behavior? If so what features of the STDP rule determine 68

oscillatory behavior? 69

Here we address these fundamental questions by studying the STDP dynamics of the 70

effective couplings between two rival populations. Because STDP dynamics is governed by 71

pre-post correlations it is essential to be able to analyze these correlations and in particular 72

understand how they depend on the synaptic weights themselves. Assuming separation of 73

time scales between fast neuronal responses and a slower learning process, we calculate these 74

correlations in the framework of a rate model for the neuronal responses. Below we describe 75

the rate model and analyze its phase diagram in the plane of the synaptic coupling 76

strengths. Next we define the STDP rule we will utilize and develop a mean field 77

Fokker-Planck approximation for the synaptic weights dynamics in the limit of slow learning 78

rate. This learning dynamics induces a flow on the phase diagram. Thus, the plane of 79

effective interactions, [J12, J21], which is the phase diagram that depicts the possible 80

solution for the neuronal responses, is also the phase plane for the STDP dynamics. We 81

then investigate which features of the STDP rule determine whether this flow will converge 82

to a state in which neuronal activity oscillates and how these oscillations are governed by 83

this rule. Finally, we summarize our results and discuss possible outcomes and extensions to 84
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the simplified model studied here. 85

Results 86

The rate model 87

We explored the STDP dynamics of the effective coupling between two neuronal populations 88

with reciprocal inhibition. We modelled the rate dynamics of the populations as: 89

τmṙ1 = −r1 + g(I1 − J12r2 − a1) (1)

τaȧ1 = −a1 +Ar1 (2)

τmṙ2 = −r2 + g(I2 − J21r1 − a2) (3)

τaȧ2 = −a2 +Ar2 (4)

where ri is the mean rate of population i that receives external excitatory input Ii. For 90

simplicity we take I1 = I2 ≡ I. g(x) is a sigmoidal function and throughout this paper it is 91

taken to be a threshold linear function of its input, g(x) = bxc+ = x for x > 0 and 0 92

otherwise. The terms a1 and a2 represent adaptation variables of populations 1 and 2 93

respectively and parameter A denotes the adaptation strength. Jij ≥ 0 is the strength of 94

inhibition from population j to population i. 95

Parameter τm is the membrane time constant and τa is the adaptation time constant. It 96

is assumed that adaptation is a slower process than the neural response to its input, 97

τa > τm. This model and its variants have been used in the past to model binocular rivalry 98

(Shamir & Sompolinsky unpublished). In the limit of ε = τm/τa → 0 a complete analytical 99

solution is possible, including the calculation of the limit cycle solution. Unless noted 100

otherwise (mainly in the numerical simulations) the results are given for the ε→ 0 limit. 101

This model and its architecture were chosen for their simplicity and analytical tractability 102

and the fact that they enable oscillatory activity. 103

The phase diagram 104

Fig 1A depicts the phase diagram of the model in the plane of J12 and J21 in the limit of 105

ε→ 0. If the inhibition from population 1 to population 2, J21 is sufficiently strong relative 106

to the adaptation, J21 > 1 +A, there exists a solution that we term Rival 1, in which 107

population 1 fully suppresses population 2 (r2 = 0). Similarly, the Rival 2 solution, in which 108

population 2 fully suppresses population 1, exists for J12 > 1 +A. The Rival states are 109

stable wherever they exist and may also co-exist. 110

For weak reciprocal inhibition , J21 < 1 +A and J12 < 1 +A, there exist a solution in 111

which both populations are active that we term the Fusion state. However, this fusion state 112

loses its stability if the inhibition is sufficiently strong, Ĵ ≡
√
J21J12 > 1 + ε. Consequently, 113

there is a region in the phase diagram in which there is no stable fixed point solution. In 114

this region the system relaxes to a limit cycle of anti-phase oscillation, Fig 1B. In the limit 115

of slow adaptation, ε→ 0, one can derive a complete solution for the limit cycle, see 116

Methods. In this case the limit cycle solution has two phases. During the first phase 117

population 1 is dominant and active, r1 > 0, whereas population 2 is quiescent, r2 = 0. 118

During the second phase population 2 is dominant and population 1 is quiescent. We denote 119

by T1 the dominance time of population i, and by T = T1 + T2 the period of the oscillations, 120

see Fig 1B. Along the diagonal of the phase diagram, J12 = J21 the dominance times are 121

equal, T1 = T2 = T/2 , and the oscillation period monotonically increases from zero on the 122

boundary of the stable Fusion solution, Ĵ = 1, to infinity on the boundary of the Rival 123

solutions, Ĵ = 1 +A, Fig 1C. The dominance time of population 1, T1, diverges to infinity 124

on the boundary of Rival 1 state, limJ21→(1+A) T1 =∞, and similarly T2, diverges on the 125

boundary of Rival 2 state. 126
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The correlation function 127

A central factor that shapes STDP dynamics is the pre-post correlation function. To this 128

end we modelled the spiking activity of neurons in population i as independent 129

inhomogeneous Poisson processes with instantaneous rate ri(t). Let us denote by ρx,i(t) the 130

spiking activity of neuron x in population i ∈ {1, 2}, which is a Dirac comb of the sum of 131

delta functions at the spike times of the neuron. Thus, the full correlation of different 132

neurons is given by the product of the mean firing rates 〈ρx,1(t)ρy,2(t′)〉 = r1(t)r2(t′). Due 133

to the separation of time scales in the limit of slow learning (see below) the STDP dynamics 134

are driven by the temporal average of the cross correlations. For a periodic solution we 135

define 136

Γij(∆) ≡
∫ T

0

dt

T
ri(t)rj(t+ ∆). (5)

Fig 1D shows the temporal average cross correlation, Γij(∆), in the asymmetric case, 137

J12 6= J21, for finite ε (green and blue) and in the limit of ε→ 0 in black. Note that the 138

main difference is the slight deviation in the oscillation period due to finite ε, which is more 139

significant at low T . A detailed derivation of the cross correlation functions appears in 140

Methods. To analyze the STDP dynamics it is convenient to use the following quantities: 141

Γ+(∆) = (Γ21(∆) + Γ12(∆))/2 and Γ−(∆) = Γ21(∆)− Γ12(∆), as shown in Figs 1E & F, 142

respectively, as a function of the time difference, ∆, for T = 2 and different values of T1 143

(differentiated by color). In general, Γ±(∆) are periodic functions of time with a period of T . 144

Γ+(∆) is an even function of time that is symmetric with respect to T/2, whereas Γ−(∆) is 145

an odd function of time that is anti-symmetric with respect to T/2. Importantly, on the 146

diagonal of the phase diagram, J12 = J21, one obtains that Γ−(∆) = 0. 147

The STDP rule 148

The above analysis was carried out for fixed values for the synaptic weights, assuming that 149

the time scales in which the synaptic weights change are longer than the characteristic time 150

of the neuronal population dynamics, τa. Next we consider the effect of STDP. We assume 151

that initially synaptic weights are relatively weak (i.e., near the origin of the phase diagram 152

in the Fusion state) and examine how activity dependent plasticity shapes its evolution, 153

which induces a flow on the phase diagram. Consequently, the phase diagram of the neuronal 154

activity becomes the phase plane of the synaptic weights. Following Luz and Shamir (2014) 155

the STDP rule is written as the sum of two processes, potentiation and depression, 156

∆J = λ (K+(∆t)− αK−(∆t)) (6)

where ∆J is the synaptic weight difference due to pre and post spikes with a time difference 157

of ∆t = tpost − tpre. The functions K±(t) are the temporal kernels for the potentiation (+) 158

and depression (-) of the STDP rule, respectively, and α is the relative strength of the 159

depression. Parameter λ is the learning rate. We assume that the learning process occurs on 160

a slower time scale than the adaptation. Specifically, here we focus on the family of 161

temporally a-symmetric exponential learning rules: 162

K±(t) =
1

τ ±
e∓Ht/τ±Θ(±Ht) (7)

where Θ(x) is the Heaviside step function, and τ± denote the characteristic time scales of 163

the LTP and LTD branches of the rule, respectively. The parameter H = ±1 governs the 164

nature of the learning rule, with H = 1 for a “Hebbian” rule (i.e., potentiating at the causal 165

branch, when the post fires after pre, ∆t > 0), and H = −1 for the “Anti-Hebbian” STDP 166

rule. Below we analyze the mean field approximation in the limit of λ→ 0. 167
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The mean field Fokker-Planck dynamics 168

Changes to the synaptic weights due to the plasticity rule of equation (6) in short time 169

intervals occur as a result of either a pre or post-synaptic spike during this interval. Thus, 170

we obtain 171

J̇(t) = λρpost(t)

∫ ∞
0

ρpre(t− t′) [K+(t′)− αK−(t′)] dt′ + (8)

λρpre(t)

∫ ∞
0

ρpost(t− t′) [K+(−t′)− αK−(−t′)] dt′

The mean-field approximation is obtained in the limit of λ→ 0, where the right hand side of 172

equation (8) can be replaced by its temporal mean due to the averaging of the slow learning 173

dynamics, yielding 174

J̇ij(t) = λ

∫ ∞
−∞

Γij(−t′) [K+(t′)− αK−(t′)] dt′. (9)

In regions of the phase diagram where a stable fixed point solution exists, i.e., ri(t) = r∗i , 175

the correlation function, Γ, is given by the product of the time independent means, 176

Γ(t) = r∗1r
∗
2 , and one obtains that J̇12 = J̇21. As the firing rates are non-negative and the 177

temporal kernels of the potentiation and depression, K±, have an integral of one, the sign of 178

J̇ is determined by 1− α. As a corollary, the synaptic weights will flow towards the region 179

of limit cycle solution from initial conditions close to the origin in the phase diagram if 180

α < 1. This result holds for any choice of temporal structure for the STDP rule. Note that 181

a similar condition (α < 1) was assumed for inhibitory plasticity in Luz and Shamir (2012). 182

Thus, initial conditions of weak synaptic coefficients (Jij close to the origin) will flow 183

towards the region of the limit cycle solution and will enter it near the diagonal, J21 = J12. 184

In the region of the limit cycle the STDP dynamics do not necessarily flow in parallel to 185

the identity line, but rather depend on the specific limit cycle solution and on the temporal 186

structure of the STDP rule. It is convenient to formulate the STDP dynamics in terms of 187

J+ ≡ (J21 + J12)/2 and J− ≡ J21 − J12, yielding 188

J̇±(t) = ±λ
∫ ∞
−∞

Γ±(t′) [K+(t′)− αK−(t′)] dt′ (10)

On the diagonal, J12 = J21, due to the symmetry of the limit cycle solution 189

Γ12(t) = Γ21(t) and as a result J̇− = 0. The mean correlation, Γ+, on the other hand, is a 190

positive even function of time with a period of T . Near the boundary of stable Fusion, the 191

oscillation frequency diverges, T → 0. In this limit (for ε→ 0) the limit cycle solution for 192

the neuronal responses will approach a square wave solution (with 50% duty cycle on 193

J12 = J21) transitioning between 0 and 2I/(2 +A) in anti-phase. The mean correlation 194

function, Γ+(∆), will approach a triangular wave starting at 0 for ∆ = 0 and peaking at 195

2I2/(2 +A)2 for ∆ = T/2. Consequently, for T → 0, the integral on the right hand side of 196

equation 10 will be dominated by the DC component of Γ+, yielding J̇+(t) = λI2 1−α
(2+A)2 in 197

this limit. Hence, the same condition that allows the STDP dynamics to enter the limit 198

cycle region from the Fusion region will also cause it flow in the J+ direction after entering 199

the Limit cycle region. 200

Eqs (10) provide two non-linear equations for J+ and J− that are coupled in a non 201

trivial manner via the dependence of the correlations on the synaptic weights. However, on 202

the diagonal of the phase diagram the situation is simplified; since J̇− = 0 the problem is 203

reduced to a one dimensional flow. To analyze the dynamics of J+ on the diagonal it is 204
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convenient to write it as the sum of two terms: 205

1

λ
J̇+ = J̇+,pot − αJ̇+,dep (11)

J̇+,pot/dep =

∫ ∞
−∞

Γ+(t)K+/−(t)dt (12)

Figs 2A & B show J̇+,pot and J̇+,dep, respectively, on the diagonal as a function of the 206

oscillation period, T (note that T is a function of Ĵ , see Fig 1C), for different values of A 207

(differentiated by color). As can be seen from the figure, J̇+,pot/dep decreases monotonically 208

from the value of I2/(2 +A)2 at T = 0 to 0 as T →∞ at J12 = J21 = 1 +A (at the crossing 209

to the bi-stable region). Due to the symmetry of the mean cross-correlation function, 210

Γ+(t) = Γ+(−t), one obtains that J̇+,pot, J̇+,dep and J̇+ are independent of H. Thus the 211

results of Fig 2 hold for both Hebbian and anti-Hebbian plasticity rules. Moreover, J̇+,pot 212

and J̇+,dep only differ by the time constant of K±. Fig 2C shows J̇+,pot as a function of the 213

oscillation period, T , for different values of τ+ (depicted in color). All the curves decrease 214

monotonically to zero, albeit with a different time scale; consequently, if τ+ < τ− then 215

J̇+,pot ≤ J̇+,dep and there is equality only at T = 0 (on the boundary of stable Fusion). 216

The dynamics of J+ along the diagonal are determined by the weighted sum of both 217

J̇+,pot and −αJ̇+,dep. J̇+ will be positive for α < 1 for small T - near the crossing from the 218

Fusion region. For τ+ < τ− and 1 > α > αc(τ+, τ−) (see Methods), J̇+ will change its sign 219

at T ∗; thus, the fixed point (note J̇− = 0 on the diagonal) at T ∗ will be stable along the J+ 220

direction. This scenario is illustrated in Fig 2D that shows J̇+ on the diagonal as a function 221

of T (for different values of A, depicted by color). Interestingly, for this choice of 222

exponential kernels for the STDP rule, the fixed point does not depend on the adaptation 223

strength, A. The oscillation period at the fixed point, T ∗, is zero for α = 1 and diverges as 224

α approaches a critical value αc(τ+, τ−), Fig 2E & F. For fixed α ≤ 1 and τ+, T ∗ is 225

minimal for τ− →∞, increases monotonically as τ− decreases and will diverge for a critical 226

value τ−,c < τ+ such that αc(τ+, τ−) = α. For τ− < τ−,c (and α ≥ 1) there will be no fixed 227

point along the diagonal and the STDP dynamics along the diagonal will flow outside of the 228

limit cycle region. 229

The stability of the STDP fixed point requires stability in the J− direction as well. On 230

the diagonal J̇− = 0. A small perturbation in the direction of J− will affect J− dynamics 231

via the cross correlation term Γ−(∆), Eq (10). The cross correlations depend on the 232

synaptic weight via the dominance times, T1 and T2. Hence, for a small perturbation 233

around the diagonal, ∆J− = J−, one obtains 234

dJ−
dt

≈ −λ
(
dT−
dJ−

∫ ∞
−∞

dΓ−(∆|T+, T−)

dT−
[K+(∆)− αK−(∆)] d∆

)
J− = −λMJ−.(13)

The geometry of the phase diagram (Fig 1A) reveals that increasing (decreasing) J− 235

results in advancing towards the Rival 1 (Rival 2) region, and consequently increasing T1 236

(T2) and (decreasing) T−; hence, dT−
dJ−

> 0. As above, we can define 237

dJ̇−,pot/dep

dT−
=
∫ dΓ−
dT−

K+/−d∆. Figs 3A & B show
dJ−,pot

dT−
and

dJ−,dep

dT−
, respectively, along the 238

diagonal as a function of T for different values of A (depicted by color) for Hebbian STDP, 239

H − 1. In contrast with Γ+(∆) that was always positive and an even function of ∆, Γ−(∆) 240

and similarly dΓ−
dT−

is not necessarily positive and an odd function of ∆. Consequently, 241

dJ̇−,pot

dT−
and

dJ̇−,dep

dT−
in Figs 3A & B have different signs. The value of 242

M =
dJ−,pot

dT−
− αdJ−,dep

dT−
is depicted along the diagonal as function of the oscillation period, 243

T , for different values of A (differentiated by color) and α (shown by grey level) in Figs 3C 244
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& D, respectively. Here, M is positive, and as a result, STDP dynamics will be stable with 245

respect to fluctuations in the J− direction for Hebbian plasticity. 246

In contrast with Γ+, Γ− is an odd function of time, Γ−(t) = −Γ−(t). Switching from the 247

Hebbian plasticity rule, H = 1, to anti-Hebbian, H = −1, will change the sign of
dJ̇−,pot

dT−
, 248

dJ̇−,dep

dT−
and of M . As a result a fixed point (on the diagonal) that is stable in the J− 249

direction for Hebbian plasticity will be unstable for anti-Hebbian plasticity and vice versa. 250

Fig 4 shows the flow induced by the STDP on the phase diagram for the (A) Hebbian and 251

(B) Anti-Hebbian learning rules. As can be seen, the Hebbian learning rule is unable to 252

converge to a state that allows oscillatory activity. In contrast, the Anti-Hebbian STDP 253

generate symmetric (T1 = T2) anti-phase oscillatory activity, in which the oscillation period 254

is determined and controlled by the relative strength of depression, α. This specific learning 255

rule provides robustness with respect to the strength of adaptation, A. Fluctuations in A do 256

not affect the period of the oscillation. 257

Discussion 258

We examined whether oscillatory activity can emerge via an unsupervised learning process 259

of STDP. Our main result is that under a wide range of parameters, oscillatory activity can 260

develop via STDP. Specifically, we found that to develop the capacity for oscillatory activity 261

the STDP rule must obey the following conditions (i) a bias towards potentiation, α < 1 262

will lead the system into the oscillatory region of the phase diagram, (ii) a longer 263

characteristic time for depression than for potentiation, τ− > τ+, will enable the existence of 264

a fixed point on the diagonal that can be governed by the exact value of alpha, and (iii) the 265

stability of the fixed point in the orthogonal direction is governed by the ‘Hebbianity’ of the 266

plasticity rule. STDP may also provide a mechanism for selecting and stabilizing the desired 267

oscillations; for example, oscillation frequency can be governed and manipulated by the 268

relative strength of the depression, α, or changes in the time constants of the STDP rule, τ±. 269

Disruption of the STDP rule may result in changes to the oscillation frequency. 270

Analysis of STDP dynamics in recurrent networks is challenging. To facilitate the 271

analysis we used the framework of a simplified model for the neuronal responses, and 272

explored the learning dynamics of the effective couplings between the two populations. We 273

assumed a separation of three time scales τm � τa � λ−1. The separation of the neuronal 274

time constant from that of the adaptation enabled us to obtain an analytic expression for 275

the temporal correlations that drive the STDP dynamics. The assumption that long term 276

synaptic plasticity occurs on a longer time-scale allowed us to consider STDP dynamics as a 277

flow on the phase diagram. 278

The interplay of short and long term plasticity processes deserves consideration. 279

Oscillations would not be possible in this model without the short term plasticity; here, 280

adaptation. Thus, short term plasticity has a major role in shaping the temporal structure 281

of the neuronal cross-correlations, Γij(t) that drive the STDP dynamics, which in turn, may 282

or may not converge to a state that allows this oscillatory behaviour. 283

The reflection of the flow on the phase diagram with respect to the diagonal when 284

reflecting the STDP rule with respect to time stems from the inherent symmetry of the 285

cross correlation function which drives the dynamics (Γij(∆) = Γji(−∆)); hence, it is 286

general and holds regardless of the choice of model. Certain other assumptions can be easily 287

relaxed. For example, we assumed symmetry between the two competing populations. 288

However, using the (threshold) linearity of our model one can easily rescale the neuronal 289

responses to allow for different inputs and adaptation strengths. On the other hand, the 290

independence of the fixed point, T ∗, on the adaptation strength, A, is specific to this model 291

and for the choice of an exponentially decaying STDP rule. 292

A central assumption in this study was the choice of (a reciprocal inhibition) 293
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architecture. This choice was made to obtain a model that can be fully analyzed. However, 294

the choice of architecture (including the short-term-plasticity mechanism) shapes the phase 295

diagram, allows for the different regions of dynamical solutions (fixed points, In/Out 296

of/Anti -phase oscillations, etc.) and determines the cross correlations. Consequently, the 297

effect of the network architecture on STDP dynamics should not be underestimated. 298

Because this effect is highly non-linear, one cannot generalize these results to other 299

architectures in a straightforward manner. Nevertheless, the approach delineated here, 300

namely, studying the induced flow on the phase diagram of the system, can be applied to 301

other models in the limit of slow learning rate. 302

Methods 303

Phase diagram and limit cycle calculations 304

The fixed points of the dynamics 305

We distinguish two types of fixed points: Rival states, in which one population fully 306

suppresses the other, and Fusion, in which both populations are active. 307

The Rival states. The Rival-1 solution assumes r∗1 > 0 and r∗2 = 0, yielding 308

r∗1 = I/(1 +A), a∗1 = IA/(1 +A) and a∗2 = r∗2 = 0. The existence condition for this solution 309

is that the net input to population 2, I − J21r1 − a2 is non-positive, at the fixed point, 310

J21 ≥ 1 +A. This solution is always stable where it exists. 311

The Fusion state. The Fusion solution assumes r∗1 > 0 and r∗2 > 0, yielding 312(
r∗1
r∗2

)
=

I

(1 +A)2 − Ĵ2

(
1 +A− J12

1 +A− J21

)
(14)

a∗i = Ar∗i , (i = 1, 2) (15)

where Ĵ =
√
J12J21. The existence of the Fusion solution requires the inputs of both 313

populations to be non-negative. For Ĵ2 < (1−A)2 the existence condition requires 314

J12 ≤ 1 +A and J21 ≤ 1 +A (bottom left square in the phase diagram, Fig 1A, where no 315

Rival solution exists). By contrast, for Ĵ2 > (1−A)2 the existence condition requires 316

J12 ≥ 1 +A and J21 ≥ 1 +A (the region in the phase diagram where both Rival solutions 317

exist). However, the Fusion state is not always stable. By performing standard stability 318

analysis around the Fusion fixed point we expand the dynamics around the fixed point to a 319

leading order in the fluctuations 320

d

dt


δr1

δa1

δr2

δa2

 = −


1 1 J12 0
−εA ε 0 0
J21 0 1 1
0 0 −Aε ε




δr1

δa1

δr2

δa2

 (16)

where δx ≡ x− x∗, yielding the four eigenvalues for the stability matrix: 321

2λ∓1,±2 = −(1 + ε∓1 Ĵ)±2

√
(1 + ε∓1 Ĵ)2 − 4ε(1 +A∓1 Ĵ) (17)

The sum of the pair of eigenvalues λ+1,±2 is −Ĵ − (1 + ε) < 0 and their product is 322

ε(1 +A+1 Ĵ) > 0; hence, these eigenvalues are always stable. On the other hand, for the 323

pair of eigenvalues λ−1,±2 the sum is +Ĵ − (1 + ε), which is negative if and only if inhibition 324

is sufficiently week, Ĵ < 1 + ε (in that case their product will also be positive, assuming ε is 325

small). Thus, the Fusion state looses its stability when reciprocal inhibition becomes 326

sufficiently strong, Ĵ > 1 + ε. 327
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The Limit Cycle solution. In the region of the phase diagram where no stable fixed 328

point exists the network dynamics relaxes to anti-phase oscillations. Below we provide a 329

detailed solution for the limit cycle in the limit of ε→ 0. The limit cycle is solved using the 330

anti-phase oscillations ansatz. First the neuronal dynamics is solved for each phase, where 331

the dynamics are linear. This provides a piecewise solution with several parameters to be 332

determined. Then we apply two sets of constraints: periodicity and transition. 333

Assuming the anti-phase oscillations ansatz we separate the cycle into two phases. 334

During phase-1 population 1 is dominant and fully suppresses population 2, for times 335

t ∈ (0, T1). In the limit of slow adaptation, ε→ 0, dynamics during phase-1 are given by: 336

r1 = I − a1 (t ∈ (0, T1)) (18)

ȧ1 = −(1 +A)a1 +AI (19)

r2 = 0 (20)

ȧ2 = −a2 (21)

where we measure time in units of τa. Eqs (18)-(21) can be easily solved, yielding 337

a1(t) = a1(0)e−[1+A]t +
IA

1 +A
(1− e−[1+A]t), (t ∈ (0, T1)) (22)

a2(t) = a2(0)e−t (23)

Similarly, during phase-2, when population 2 is dominant and fully suppresses population 1, 338

t = t′ + T1 ∈ (T1, T1 + T2), we obtain 339

a1(t′ + T1) = a1(T1)e−t
′
, (t′ ∈ (0, T2)) (24)

a2(t′ + T1) = a2(T1)e−[1+A]t′ +
IA

1 +A
(1− e−[1+A]t′) (25)

Continuity of the adaptation variables, ai, dictates that, for example, the initial conditions 340

of Eq (25), a2(T1), will be given from Eq (23), a2(T1) = a2(0)e−T1 . We now need to 341

determine four parameters: a1(0), a2(0), T1 and T2. These parameters are determined by 342

two sets of constraints. One is periodicity, namely 343

ai(0) = ai(T1 + T2), i ∈ {1, 2} (26)

yielding, 344

a1(0) = I
A

1 +A
F (T1, T2) (27)

a2(T1) = I
A

1 +A
F (T2, T1) (28)

F (x, y) =
(1− e−[1+A]x)e−y

1− e−[1+A]x−y (29)

The second set of constraints is given by the transition conditions. Specifically, the 345

transition time from phase-1 to phase-2 at T1 is not arbitrary; rather, T1 is a special point 346

in time in which population 2 is released from being fully suppressed, such that, the net 347

input to population 2 changes its sign from negative to positive; thus, 348

0 = I − J21r1(T1)− a2(T1) (30)

0 = I − J12r2(0)− a1(0) (31)

which provides implicit equations for the dominance times, T1 and T2, 349

Jij =
1− A

1+AF (Ti, Tj)

1− A
1+AF (Tj , Ti)eTi

, (i, j) ∈ {(1, 2), (2, 1)} (32)
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Using Eq (32), and taking the limit of T1 →∞, we obtain J21 → 1 +A. Thus, the 350

dominance time of population i, Ti, diverges on the boundary of Rival-i. Taking the limit of 351

T1, T2 → 0 such that T1/T2 = β, yields J21 → 1+β(1+A)
1+A+β and from symmetry 352

J12 → 1+1/β(1+A)
1+A+1/β , which obeys J12J21 → 1; hence, the limit of zero oscillation period is 353

obtained on the boundary of stable Fusion (note that these calculations were done for 354

ε→ 0). 355

On the diagonal, J12 = J21 ≡ Ĵ , dominance times are equal, T1 = T2 = T/2, 356

Ĵ =
1− A

1+AF (T/2, T/2)

1− A
1+AF (T/2, T/2)eT/2

(33)

Consequently, the oscillation period, T , increases monotonically along the diagonal of the 357

phase-diagram from zero at the transition to Fusion (Ĵ = 1) to infinity at the transition to 358

the Rival states (Ĵ = 1 +A) 359

Calculation of the cross-correlation function 360

Calculation of the (temporally averaged) cross-correlation function, Eq (5), is done using the 361

analytical solution for the neuronal responses in the limit of slow adaptation, ε→ 0. When 362

the system relaxes to a fixed point solution, ri(t) = r∗i (i = 1, 2), the cross-correlations are 363

constant in time, 364

Γij(t) = r∗i r
∗
j (34)

Thus, correlations will be zero in the Rival states; hence, there will be no STDP. In the 365

Fusion state the cross-correlations will be symmetric, Γ12(t) = Γ21(t). As a result, the 366

STDP dynamics for J12 and J21 will be identical and the flow will be in the uniform 367

direction, parallel to the diagonal line. 368

At the Limit cycle we use the analytical solution, Eqs (22)-(29), to calculate the 369

cross-correlations in a straightforward manner.For ∆ ∈ [0,min{T1, T2}] we obtain 370

Γ21(∆) =
I2

T (1 +A)2
(G0 +G1 +G2 +G3) (35)

G0 = ∆ (36)

G1 =
A

1 +A
C(T1, T2)

(
1− e−[1+A]∆

)
(37)

G2 =
A

1 +A
C(T2, T1)

(
e[1+A]∆ − 1

)
e−[1+A]T2 (38)

G3 =
A2

2(1 +A)
C(T1, T2)C(T2, T1)

(
e2[1+A]∆ − 1

)
e−[1+A](T2+∆) (39)

where 371

C(x, y) = 1− F (x, y) =
ey − 1

ey − e−[1+A]x
(40)

For ∆ > min{T1, T2}, assuming without loss of generality that T1 ≥ T2 372

Γ21(∆) =
I2

T (1 +A)2
(H0 +H1 +H2 +H3) (41)

H0 = T2 (42)

H1 =
A

1 +A
C(T1, T2)

(
e[1+A]T2 − 1

)
e−[1+A]∆ (43)

H2 =
A

1 +A
C(T2, T1)

(
1− e−[1+A]T2

)
(44)

H3 =
A2

2(1 +A)
C(T1, T2)C(T2, T1)

(
e2[1+A]T2 − 1

)
e−[1+A](T2+∆) (45)
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Along the diagonal, on the edge of the stable Fusion state region, T → 0, the 373

cross-correlation will resemble a triangular chainsaw function (in the ε→ 0 limit) with 374

period T and peak 2I2/(2 +A)2. Consequently, as T goes to zero, the overlap between the 375

cross-correlation function and the STDP rule will be governed by the DC component, 376

yielding 377

lim
T→0

J̇+ = (1− α)

(
I

2 +A

)2

(46)

The above expressions for the cross-correlations were given in terms of the dominance 378

times, {Ti} instead of the effective couplings Jij . The translation to the synaptic weights 379

from the dominance times is possible by Eq (32). However, because we were interested in 380

studying the ability to learn and stabilize a specific oscillatory activity it was more 381

convenient to think of the dynamics in terms of the dominance times. Similarly, to consider 382

stability with respect to the J− direction we utilized the derivative of Γ− = Γ21 − Γ12 with 383

respect to ∆T = T1 − T2. On the diagonal, T1 = T2 ≡ T̄ 384

dΓ−
dT−

(∆) =
I2

T (1 +A)2

AC(T̄ , T̄ )

1 +A
(I1 + I2 + I3) (47)

I0 =
eT̄ − (1−A)e−[1+A]T̄

eT̄ − e−[1+A]T̄
− eT̄

eT̄ − 1
(48)

I1 = I0(1− e−[1+A]∆) (49)

I2 = e−[1+A]T̄ (1 +A− I0)(e[1+A]∆ − 1) (50)

I3 = A(1 +A)C(T̄ , T̄ )e−[1+A]T̄ sinh([1 +A]∆) (51)

Calculation of αc 385

On the diagonal T1 = T2 = T/2, in the limit of slow oscillations, T →∞, one obtains 386

Γ+(∆) =
I2

T (1 +A)2

(
∆ +

A

1 +A

(
1− e−[1+A]∆

))
. (52)

Using Eq (52) yields 387

J̇+,pot/dep =
I2

T (1 +A)2
K(τ±), (T →∞) (53)

K(x) =
A

1 +A
+ x− A

1 +A

1

x[1 +A] + 1
(54)

Hence, if α is less than a critical value αc = K(τ+)/K(τ−), J̇+ will always be positive 388

(along the diagonal). On the other hand, if α is larger than αc then J̇+ will always be 389

negative for large T , and a fixed point will exist if α < 1. 390
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Fig 1. Neuronal dynamics. A. The phase diagram. The regions of different types of
solutions for the neuronal dynamics are depicted in the (quarter of the) plane of
(non-negative) J21 and J12. B. The limit cycle solution. The firing rate of populations 1 and
2 are plotted in black and blue, respectively, as a function of time (measured in units of τa)
in the anti-phase oscillatory solution with T1 = 1.2 and T2 = 0.8, yielding J21 ≈ 2.36 and
J12 ≈ 1.87 (see Eq (32)). In this specific example we used I = 2, A = 2, the solid lines show
the solution for ε = 0.01 and the dashed depict the solution in the limit of ε→ 0. C. The
oscillation period along the diagonal. The oscillation period on the diagonal is shown as a
function of the reciprocal inhibition strength for different values of the adaptation strength,
A = 0.25, 0.5, 1, 1.5 from left to right. Solid lines show the analytical relation of Eq (33) in
the ε→ 0 limit. The circles depict the ε = 0.01 case. D. The cross-correlation function. The
neuronal cross-correlations Γ12 (green and black) and Γ21 (blue) are plotted as function of
the time difference, ∆ (measured in units of the adaptation time constant τa). The black
line depicts the correlations in the ε→ 0 limit, whereas the green and blue lines show the
ε = 0.01 case. Parameters were identical to B. For the ε = 0.01 case the correlations were
evaluated from the numerical solution for the dynamics. E. The ‘mean cross-correlation’
function. The mean correlation, Γ+, in the limit of ε→ 0, (see Methods) is plotted as a
function of ∆ for T = 2 and different values of the T1 = T [0.1, 0.2, . . . 0.9] shown by color.
Note that the plots for T1 = x and T1 = T − x overlap. F. The ‘difference cross-correlation’.
The difference in the cross-correlation, Γ−, in the limit of ε→ 0, is plotted as a function of
∆ for T = 2 and different values of the T1 = T × {0.1, 0.2, . . . 0.9} shown by color from
yellow (T1 = 0.1T ) to blue (T1 = 0.9T ). In E and F A = 2 and I = 2 were used.
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Fig 2. The dynamics of J+ along the diagonal. A. The potentiation term, J̇+,pot, of
the mean synaptic weights, J+, equation (12), is shown as a function of the oscillation
period along the diagonal for different values of A = 1/4, 1/2, 3/4, 1, 3/2, . . . 4 (from top at
low A values to bottom). B. The depression term, J̇+,dep, of the mean synaptic weights, J+,
Eq (12), is shown as a function of the oscillation period along the diagonal for different
values of the adaptation strength, A (as in A). C. The effect of the STDP time constant.
The potentiation term, J̇+,pot, is shown as a function of the oscillation period along the
diagonal for different values of τ+ = 1/4, 1/5, . . . 5, by different colors from blue (low τ+) to
red. Here A = 2 was used. D The J+ dynamics along the diagonal. The value of J̇+ is
shown as a function of the oscillation period along the diagonal for different values of A
using the same values and color code as in A, using α = 0.9. E. The effect of the relative
strength of depression. The value of J̇+ is plotted as a function of the oscillation period
along the diagonal for different values of α = 0.5, 0.55, . . . 1 from top (α = 0.5) to bottom
(with A = 4). F. Oscillation period at the STDP fixed point. The ‘learned’ oscillation
period, T ∗, is shown as a function of α. In all panels I = 2 was used, and λ = 1 was taken
in D and E - for purpose of illustration. Unless otherwise stated (C) were τ+ = 0.5 and
τ− = 1 used. All units of time were measured in units of τa.
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Fig 3. Stability in the J− direction along the diagonal. A. The value of
dJ̇−,pot

dT−
is

shown as a function of T along the diagonal of the phase-diagram in the Limit cycle region
for different values of A = 1/4, 1/2, 3/4, 1, 3/2, . . . 4 (from top at low A values to bottom).
Here τ+ = 0.5 was used. All units of time were measured in units of τa. B. The value of
dJ̇−,dep

dT−
is shown as a function of T for different values of the adaptation strength, A (as in

A). Here τ− = 1 was used. C J− dynamics along the diagonal. The value of dJ̇−
dT−

is shown

as a function of the oscillation period along the diagonal for different values of A (same
values and color code as in A), using α = 0.9. D. The effect of the relative strength of

depression. The value of dJ̇−
dT−

is plotted as a function of the oscillation period along the

diagonal for different values of α = 0.5, 0.55, . . . 1 from bottom (dark, α = 0) to top (bright,
α = 1), using A = 2.
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Fig 4. The flow on the phase diagram. The direction of the dynamic flow, i.e., the
normalized vector (J̇21, J̇12), is shown in the Limit cycle region of the phase diagram for A.
Hebbian plasticity, H = 1 in Eq (7), and B. Anti-Hebbian plasticity, H = −1. The
parameters used here were: A = 2, τ+ = 0.5 and τ− = 1

19/19

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2018. ; https://doi.org/10.1101/269712doi: bioRxiv preprint 

https://doi.org/10.1101/269712
http://creativecommons.org/licenses/by-nc/4.0/

