
  
 

Bioscience-scale automated detection of figure element reuse 
Authors:  Daniel E. Acuna1*, Paul S. Brookes2, Konrad P. Kording3 

Affiliations: 
1School of Information Studies, Syracuse University, Syracuse, NY 
2Department of Anesthesiology, University of Rochester Medical Center, Box 604, 601 
Elmwood Avenue, Rochester, NY 14642, USA 

3Departments of Bioengineering and Neuroscience, University of Pennsylvania  
*Correspondence to: deacuna@syr.edu 

Abstract: Scientists reuse figure elements sometimes appropriately, e.g. when comparing 
methods, and sometimes inappropriately, e.g. when presenting an old experiment as a new 
control. To understand such reuse, automatically detecting it would be important. Here we 
present an analysis of figure element reuse on a large dataset comprising 760 thousand open 
access articles and 2 million figures. Our algorithm detects figure region reuse, while being 
robust to rotation, cropping, resizing, and contrast changes, and estimates which of the reuses 
have biological meaning. Then a three-person panel analyzes how problematic these biological 
reuses are using contextual information such as captions and full texts. Based on the panel 
reviews, we estimate that 9% of the biological reuses would be unanimously perceived as at least 
suspicious. We further estimate that 0.6% of all articles would be unanimously perceived as 
fraudulent, with inappropriate reuses occurring 43% across articles, 28% within article, and 29% 
within a figure. Our tool rapidly detects image reuse at scale, promising to be useful to a broad 
range of people that campaign for scientific integrity. We suggest that a great deal of scientific 
fraud will be, sooner or later, detectable by automatic methods. 

Introduction 

A good amount of scientific misconduct has been found through their inappropriate reuse 
of figure elements. For example, the infamous stimulus-triggered acquisition of pluripotency 
(STAP) through stress articles were retracted after several of their figures were found to be 
inappropriately reused (1). Similar investigations often appear in the popular news (2). Detecting 
these types of reuses, however, is tedious (3). While the US Office of Research Integrity (ORI) 
shares several tools to aid in such detection (4), ORI reports on approximately 10 new cases of 
scientific misconduct per year but it is unclear how many cases they open and how many of them 
involve images (5). Also, ORI does not proactively review potential fraud unless it is reported by 
anonymous sources. Automatically detecting figure reuse could make the process of fraud 
fighting more efficient.  

There have been several proposals to understand the extent of the problem of image reuse 
in the biological sciences. Recently, Bik, Casadevall and Fang (6) manually examined several 
thousand articles and their images to find problematic reuses. They found that 1.9% of articles 
analyzed had some deliberate manipulation. Similarly, for the detection of other types of 
problems, such as statistical inconsistencies, there are some works in progress (7). While there 
are some prototypes to scale the process (e.g., (8, 9)), their effectiveness has not been widely 
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tested. In general, these methods require significant effort and they only work within a figure of a 
single article. Methods that automatically scale across figures and across articles are lacking.  

Here we analyzed all figures published in the PubMed Open Access Subset (PMOS) 
dataset by 2015, containing more than 2 million figures. We first develop a pipeline for 
automatic detection of figure element reuse across sets of papers published by the same first or 
last author. We then develop a protocol to let a set of reviewers manually check the detected 
image element reuses. Overall, we found that our method is effective in detecting large-scale 
potentially problematic instances of reuse. 

Materials and methods 
Materials. We analyzed 760,036 articles from the PMOS repository obtained in early 

2015. This repository provides the full text of the articles, PDFs, images and datasets associated 
with each. There are 2,628,959 images contained in these articles. 

Data clean up. Not all images represent figures of the articles. Many of them represent 
equations contained within the articles and therefore we removed them from the analysis. Each 
article contained an average of 4.78 images (SD 3.79). There are 4,324 journals in this dataset, 
with the biggest 5 journals being PLoS ONE, The Journal of Cell Biology, The Journal of 
Experimental Medicine, Acta Crystallographica Section E: Structure Reports Online, and the 
British Journal of Cancer. However, the biggest contributors of images are PLOS ONE (23%), 
Acta Crystallographica Section E: Structure Reports Online (2.4%), The Journal of Cell Biology 
(2.3%), Nucleic Acids Research (2.2%), and Sensors (Basel, Switzerland) (1.7%).  

 

Fig. 1. Pipeline for detection and judgement of figure element reuse. A. A detection of copy-
move reuses is run across all figures. B. A pre-trained classifier detects whether the type of copy 
is biological or not. C. A panel of three reviewers goes through each of the copy-move biological 
copies and tags it as OK, suspicious, potential fraud, or fraud. None of the figure elements shown 
here are actually fraudulent, these are just schematics. 

Methods. The methods used in this article are a combination of computer assisted 
tagging of potential image copy-move detection, algorithmic classification of image patches, a 
combination of human reviewers of copy-move biological patches, and an analysis of the inter-
rater reliability. We will examine each of these results in turn. 
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Fig. 2. Detection of copy-move reuses. A. Original example of an cancerous cell and zoomed 
portion. B. Computation of keypoints (areas of high entropy) C. Nearest neighbor matching. D. 
Clustering keypoints, matching across cluster, and affine transform. 

Copy-move detection algorithm. (Fig. 1A) Algorithmic detection of copy-move elements. 
The first step to detect any type of reuse is to detect them at large scale. We will first apply the a 
key-point based method described in (10). Specifically, we run our model through the following 
pipeline: 

1. (Fig. 2A) Compute keypoints using SIFT keypoint detection algorithm with a low 
threshold (11). We use this feature since it has a good compromise between speed and 
robustness (10). 

2. (Fig 2B) Find a set of matching features using the following procedure: find the two 
nearest neighbors in Euclidian space across all keypoints detected in the image, if the 
distance of the nearest neighbor is 60% or less than the distance of the second nearest 
neighbor. Remove keypoints that do not have matches or that have matches that are less 
than 40 pixels apart. 

3. (Fig. 2C) Perform an agglomerative clustering of keypoints using a minimum distance 
of 30 pixels to form flat clusters and using a single linkage method. Remove clusters 
with less than 40x40 square pixels of area. 

4. If within a cluster, more than three keypoints are matched against the same cluster, then 
define those two clusters as matched clusters 

5. (Fig. 2D) Use the RanSac algorithm to find the affine transformations between matched 
clusters. We follow the guidelines of the method described in (10). If less than 80% of 
the keypoints are used by the RanSac algorithm or the mean squared error of the affine 
transformation is more than 40, we will remove the matched cluster. Also, if the sheer of 
the estimated transformation is more than 15 degrees, remove the matched cluster. 

We focused our analysis on figures from the same last authors and first authors. This was 
because the time complexity of performing a nearest neighbor search across several million of 
images is high. Therefore, this analysis leaves outside potential reuses between arbitrary set of 
authors. 

A.Original

B. Keypoints

C. Keypoint matching (NN)

D. Clustering and transformation
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Biomedical patches detector. (Fig 1B) Many images in scientific articles share areas that 
are naturally similar. For example, many images use similar text and shapes to describe areas of 
a graph, such as axis labels and arrows. Therefore, many of the matches found by the initial 
phase of the algorithm are these types of copies. We developed an additional step where one of 
the authors labeled patches detected as copy move elements. This was an active learning 
approach in which we ask the human to label patches in which a Random Forest algorithm would 
be most confused about whether the image patch is a Biomedical patch. We sample a set of 20K 
matches from the copy-move detection previous part and ask the Random Forest to predict the 
probability that the matches were biomedical matches. We then ranked those matches by the 
entropy of the prediction and show to the user the matches with highest entropy (prediction 
closest to 50%). After the human label, we added the data point to the training set and repeated 
the procedure. For each pair of patches in a matched cluster, the following features are 
computed:  

• color or black and white 

• 15-bin three channel histogram of pixel intensity 

• From the gray level co-occurrence matrix using 20 pixel distances at 0 angles with 256 
levels, symmetric, and normed, extract the following texture features (12): 

o Expected absolute difference in gray levels 

o Expected correlation between gray levels 

• 10-bin histogram of gradients with 8 orientations and 16 pixels per cell 
The final algorithm for constructing the patch–non-patch classifier is based on Gradient 

Boosting (GB) with scikit-learn. GB achieved a cross validated Area Under the Curve (AUC) of 
0.865. To present cases to the reviewers that likely involved only biomedical images, we set the 
classification for the algorithm so that it achieved a 0.5% False Positive Rate. The True Positive 
Rate of such threshold was 13.1%. This generated a total of 30,870 matches from 17,069 figures 
from 11,814 articles.  
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Fig. 3. Different types of modifications that the algorithm is able to detect.  

Human review of potential problematic copies. (Fig 1C) The previous step developed a 
method to detect copy-move patches that contain biomedical images. The goal of this work, 
however, is to evaluate the extent of problematic copies. To achieve this, we ran a classification 
algorithm to detect biological matches, described above. We use a threshold that achieves a 0.5% 
false positive rate. The idea behind such low false positive was to present human judges with 
cases where the algorithm is highly confident that there is a Biological sciences image. 

We provided a panel of three human reviewers (all authors) with a web-based tool. The 
web-based tool presented 10,000 cases of potentially problematic cases, which were 
independently reviewed by the authors of this study. The web-page presented the matches with a 
link to the PUBMED figure where the judges could review the captions of the figures, the 
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articles themselves, and elucidate whether the match originated from an inappropriate reuse of a 
biological image. This secondary evaluation included the reviewers reading figure legends, for 
example to ascertain whether the same images had been used to represent different experimental 
conditions. 

 

Fig. 4. Results of the algorithm and panel review A. Of the proportion of biological elements 
found by the algorithm, a set of reviewers found that at least 0,59% of all articles have fraud. B. 
Given the type of votes for a match, what is the distribution of types of matches that occur. Of 
the type of matches found, the unanimously fraudulent, 43.1% are matches across articles. 

Results 
Here we built a pipeline to automatically detect candidates for inappropriate image reuse. 

We first removed images that were likely just text or equations represented as images. This left 
us with around 2 million images. We found on average around 1K high-entropy key points per 
image. This produced a large similarity detection problem, which we solve using approximate 
nearest neighbor algorithms. We then use a machine learning algorithm to estimate if a patch 
shows a biological image. Lastly, we use human evaluations of inappropriate reuse. This three-
stage pipeline allows us to detect inappropriate image reuse at scale. 

There are many kinds of reuses, some of which are necessary. For example, authors 
usually repeat symbols and axis names within panels in figures. Also, they copy panels between 
figures of the same paper to make it easier for the users to compare results. Also, authors reuse 
figures across papers and cite the reused papers accordingly. We considered these cases non-
biological because they do not relate to biological phenomena. There are other kinds of 
biological images that naturally contain many harmless reuses, such as tissue staining. Out of 
these uninteresting cases, we found that around 6.03% of them are interesting biological reuses. 
There are many kinds of reuses but only the biological ones were used for our pipeline.  

The panel of reviewers was then fed the results of the biologically interesting matches. 
The three authors acted as reviewers. The reviewers could mark the potential matches as: No 
problem, suspicious, potential fraud, and likely fraudulent. Additionally, the reviewers could add 
comments to the annotations. Author 1 went through 3,495 matches, author 2 went through 1,147 
matches, and author 3 went through 3,375 matches. Of them, 1,055 matches where reviewed by 
the three reviewers, 2,193 matches were reviewed by two reviewers, and 466 matches were 
reviewed by one reviewer. For these 1,055 matches, we found that reviewers agree 88% of the 
time on whether the matches are at least suspicious, 90% of the time on whether the matches are 
at least potentially fraudulent, and 94% of the time on whether the matches are likely fraudulent. 
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We additionally found that consistency and agreement of the score is high (ICC(1) = 0.481 
[0.445, 0.516], F(1054, 2110) = 3.78, p < 0.001) when considering matches as random effects, 
and slightly more consistent when considering matches and reviewers as random effects (ICC(1) 
= 0.49, F(1054, 2108) = 3.89, p < 0.001). According to (13), an ICC between 0.4 and 0.59 is 
considered "fair". On average, reviewers found that 9% of the matches were at least suspicious 
(author 1: 9.1% (out of 3,495), author 2: 3.6% (out of 1,147), author 3: 10.7% (out of 3,375)), 
5.7% at least potentially fraudulent, and 3.6% fraudulent.  

Based on the panels' judgements of the biological matches and the true positive rate of 
the classified that selected them, we can estimate how many figures and articles are expected to 
be problematic. Overall, of the articles in PMOS, 1.47% of the articles would be considered 
suspicious by at least one of a panel of three reviewers, which somewhat resembles the findings 
in (6). 0.59% of articles would be unanimously considered fraudulent (Fig. 4A).  

Finally, we examined how matching occurred within articles and across articles. We 
found that most of the suspicious behavior was found within an article (Fig. 4B), while for cases 
that were unanimously considered fraudulent, they were more likely to be found across articles 
(43.1) than when they are considered suspicious (26.7%). Overall, this indicates that almost half 
of the reuses are happening across articles. 

Conclusion 

In this article, we have built a pipeline to analyze potential inappropriate reuse of figures 
in the biological sciences literature. The analysis relies on a copy-move detection algorithm and 
then a classification of the potential matches into biological or non-biological. After that, a panel 
of reviewers reviews the context in which those matches occur. Overall, our results suggest that 
around 0.59% of the articles in PubMed Open Access would be unanimously considered 
fraudulent by a panel of three scientists. We now discuss some problems with our analysis. 

One potential shortcoming of our results is that some degree of understanding of the 
intent of the authors behind the reuses is required to draw firm conclusions regarding the 
benign/fraudulent nature of each case. We may not be familiar with all the techniques presented 
in the figures. One of the authors, however, has investigated these types of cases extensively 
(14), and the authors of (6) have also spoken about the need for a “trained eye” in such matters.  
It is also possible that the reuses marked as fraudulent are indeed plausible errors during the 
production of the articles, such as cases from the past (15). Standards for scientific image 
preparation are constantly evolving, and practices that may have been permitted in the past (e.g. 
undisclosed splicing of western blots) are no longer considered benign. Our plan is to let 
academic research integrity offices review these types of cases with the identifiable information 
of the authors but have clear disclosure of the limitations of our method. 

Another potential problem is that we are only accessing Open Access publications added 
to the PubMed repositories and are only reviewing potential reuses within the first and last 
author's articles. The dataset analyzed here contains 4,085 Open Access journals out of the 
estimated 9,455 journals in Open Access (from the Directory of Open Access Journals, doaj.org) 
and only 760,036 articles of the estimated total of 120 million articles (16). However, we focus 
our analysis on Biomedical sciences which has a much-reduced number of publications. Whether 
our findings are generalizable to the largely pay-walled biomedical sciences literature at large, 
remains to be seen.  Currently however, widespread access to figures of such articles is not easy, 
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and may lead to interesting ethical problems. A clear conflict of interest also exists, wherein 
journal publishers may be disinclined to allow access a repository of articles, by researchers 
whose main goal is to identify problems that arguably should have been detected in the initial 
peer review process. Also, because we only analyze first and last author's papers, we are missing 
on reuses across authors. Extending our approach to all of science and across authors seem 
highly desirable. 

Our method produces findings at a much larger scale than before. We are able to do the 
bulk of our analysis automatically and let reviewers analyze those cases that are almost certainly 
biological matches. Additionally, our method can compare reuses across articles, which is very 
difficult to do if the reviewers of the copies are humans. Even though our method is now trained 
to detect biomedical images, it would be relatively easy to train it to detect other reuses of 
artifacts such as graphs or tables. We believe that the widespread adoption of this method by 
scientific publishers as a screening tool during article submission could act as a deterrent 
mechanism. We also believe that are many other uses of this technology, such as finding where 
images and other scientific artifacts are reused in other publications for credit purposes.  

Regarding the downstream consequences of the specific cases of image reuse identified 
herein, an automated tool to notify journal editors, authors, academic research integrity officers 
and other interested parties is not widely available. Thus, our tool automates what is currently 
only the first step in a long and laborious process of actually correcting the scientific literature. A 
potentially serious issue arising from these results is that they may cause harm to careers, and as 
such we have chosen not to release the results of our automated screening. In the future, as we 
scale this approach further, we plan on allowing access to the list of papers to institutions that go 
through an access agreement to protect authors during potential investigations. Overall, the 
reasons why scientists may commit misconduct are still poorly understood (17-19), but 
regardless of motive the requirement to “tread carefully” when handling such matters remains 
paramount. 
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