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Abstract 

Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in 

translational medicine is limited by the unknown link of observed alterations to specific 

neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity 

changes in specific neurotransmitter systems remains unclear. We address this question by 

probing cerebral blood flow in healthy volunteers using seven established drugs with known 

dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a 

novel framework aimed at disentangling the observed effects to contribution from underlying 

neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of 

respective cerebral blood flow changes with underlying neurotransmitter receptor densities 

corresponding to their primary mechanisms of action. The strength of these associations with 

receptor density is mediated by respective drug affinities. These findings suggest that cerebral 

blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of 

neurotransmitter systems in humans. 
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Introduction 

Metabolic task-based and resting state magnetic resonance imaging (MRI) of blood oxygen level 

dependence and cerebral blood flow (CBF) are now commonly applied for studying human brain 

function, disease pathology and for evaluation of pharmacodynamic (PD) effects associated with 

pharmacological interventions 1–9. Both oxygen and glucose are delivered to brain structures by CBF to 

address their metabolic demands 10. In particular, state of the art arterial spin labeling (ASL) sequences 

now allow for quantitative CBF evaluation and are used for evaluation of metabolism associated with 

neural activity  11–15. Despite their wide-spread applications in healthy and diseased populations there is 

limited understanding of whether and how metabolic effects measured through these techniques reflect 

underlying activity in specific neurotransmitter systems 1,2,4,7,16. A better understanding could unveil 

potential mechanisms of disease and crucial components of complex drug action that underpin 

functional modulation 7,17. Major limitations discussed in that context are potential contributions of 

confounding physiological, e.g. cardiovascular effects, unclear association with specific neurotransmitter 

systems and agonist and antagonist effects and a narrow cross-species translational value restricting 

comparisons to a descriptive anatomical level 18–26.  Addressing those limitations is therefore key to 

wide-spread application of metabolic MRI in translational medicine. 

Receptor theory provides a possible way of addressing these limitations 7,27. This theory posits that 

relationships between drug kinetics and observed PD effects depend on both the drug (i.e. receptor 

affinity and mechanism of action) and the biological system (i.e. receptor density and activity). Based on 

this concept drugs affecting specific receptor systems should lead to higher metabolic changes in regions 

with higher respective receptor densities. The strength of this relationship should be further dependent 

on the affinity of the compounds to the respective receptor systems. However, this assumption only 

partially holds for drugs with an indirect mechanism of action (i.e. allosteric modulators and reuptake 

inhibitors). These drugs do not directly induce activation but rather facilitate the effects of activation 

induced through other mechanisms. One would therefore expect their effects to co-localize with such 

underlying activity. In contrast, direct a(nta)gonists should additionally also activate yet inactive regions 

with high respective receptor densities. 

Using this concept, we assess if ASL derived CBF changes (∆CBF) induced by seven established 

compounds with known direct or indirect dopaminergic, serotoninergic, glutamatergic and/or 

GABAergic mechanisms of action (escitalopram, methylphenidate, haloperidol, olanzapine, low and high 
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dose of risperidone, ketamine and midazolam, Table 1) are associated with respective receptor 

densities, underlying activity and affinities to the respective receptor types (Figure 1). Based on the 

above considerations, we hypothesize stronger ∆CBF in regions with higher respective receptor densities 

in particular for drugs with a direct mechanism of action and to a weaker extent for allosteric 

modulators and reuptake inhibitors. Furthermore, we expect stronger ∆CBF in regions with higher 

underlying activity for both compounds with direct (direct agonists and antagonists) and indirect 

mechanisms of action (allosteric modulators and reuptake inhibitors). Lastly, we hypothesize the 

association strength between ∆CBF and receptor densities to be dependent on the respective drug 

affinities. We test those hypotheses by first evaluating the link between drug-induced ∆CBF with ex vivo 

and in vivo estimates of different receptor densities and expected underlying activity. In a second step 

we then test if the association strength of these relationships is dependent on the respective drug 

affinities. 

Results 

Cerebral blood flow changes correlate with receptor densities 

Receptor density maps extracted from a review publication by Palomero-Galagher et al. 28  showed a low 

average co-localization; in addition, compounds with different mechanisms of action also showed low 

similarity of drug-induced CBF patterns (Figure 2B, Supplementary results, Figure S2 and S3). 

[Figure 2] 

We then tested for direct relationships between drug-induced ∆CBF and underlying receptor density 

maps using correlational analysis. For all compounds beside the GABAergic positive allosteric modulator 

midazolam we find drug-induced ∆CBF to be consistently correlated with receptor densities 

corresponding to the known mechanisms of action of the respective drugs (Figure 2A, Table 1). For 

example, the serotonin agonist escitalopram showed the strongest correlation with serotonergic 5-HT 2 

receptor. Consistently, dopamine antagonists risperidone and haloperidol showed significant 

correlations with D1 and/or D2 receptor densities. Similarly, also olanzapine, methylphenidate and 

ketamine showed significant correlations (though not all survived Bonferroni correction) with receptor 

densities corresponding to their known dopaminergic, serotonergic and glutamatergic mechanisms of 

action. The results of non-parametric analyses using Spearman correlation coefficients were largely 

similar to the parametric analysis outcomes (Figure S5). 
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[Figure 3] 

As the above correlational analyses are based on coarse ex vivo receptor density estimates 28, we aimed 

to evaluate if more fine-grained in vivo density estimates as obtained using molecular receptor imaging 

of DAT and GABAa are more sensitive for identifying such associations. These correlational analyses 

revealed very strong and highly significant positive correlations with DAT for the dopamine antagonists 

haloperidol, olanzapine, and both low and high dose of risperidone but not for the reuptake inhibitor 

methylphenidate (Figure 3a). Correlation of ∆CBF obtained for the positive allosteric modulator 

midazolam with flumazenil-based GABAa receptor density estimates revealed a weak but significant 

association between both (Figure 3c). This correlation remained significant using Spearman correlation 

coefficient on all data (rho=-.43;p=.005) and after removing the outlier (rho=-.39;p=.013). 

Distinct contribution of different receptor systems to cerebral blood flow changes 

Whilst the above correlational analyses provide an estimate of the direct association strength between 

two measures they do not account for correlations between receptor densities and/or may miss 

potential weaker associations in presence of a strong effect. Multiple linear regression analyses address 

these limitations although this is at the cost of a potentially lower sensitivity when regressors are 

strongly correlated and/or explain similar variance in the dependent variable. To evaluate the distinct 

contributions of each receptor map to the drug induced ∆CBF and to test for additional associations not 

discovered through correlational analyses, we therefore computed multiple linear regressions including 

all receptor densities as regressors in the same model. Significant model fits were observed for all 

evaluated drugs beside midazolam and the negative control dataset (escitalopram: F(13,27)=2.7;p=.015, 

haloperidol: F(13,27)=3.2;p=.005, risperidone (low dose): F(13,27)=3.6;p=.002, risperidone (high dose): 

F(13,27)=5.0;p<.001, olanzapine: F(13,27)=2.8;p=.011, methylphenidate: F(13,27)=3.7;p=.002, ketamine: 

F(13,27)=2.4;p=.027, midazolam: F(13,27)=1.4;p=.219, negative control: F(13,27)=1.5;p=.175). 

To identify which neurotransmitter maps contributed most to these model fits, we then evaluated the 

significance of each receptor density regressor (Figure 2). These analyses largely replicate the 

correlational findings and provide evidence of a distinct contribution of the different receptor density 

maps to the drug-induced ∆CBF. Additionally, they reveal further significant noradrenergic and/or 

serotonergic contributions for methylphenidate and olanzapine, consistent with their known 

mechanisms of action. Despite the non-significant overall model fit for midazolam, GABAa was the only 
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significant single receptor density regressor for this compound, in line with midazolam’s mechanism of 

action. 

To assess the robustness of the obtained correlational and multiple regression profiles linking ∆CBF to 

receptor densities, we evaluated the test-retest reliabilities for compounds where more than one CBF 

acquisition was available for each subject (risperidone, olanzapine and haloperidol). The association 

strengths of ∆CBF to receptor density showed excellent test-retest reliability both within and between 

sessions (intra class correlation coefficients between 0.83 and 0.99; Supplementary results). 

Cerebral blood flow changes correlate with underlying activity 

Having established the link between ∆CBF and receptor densities for the respective compounds we then 

aimed to understand if underlying activity estimates derived from independent non-interventional data 

are also a predictor of PD effects on CBF. For this we computed correlation coefficient between 

expected underlying activity and observed ∆CBF for each compound. We observed significant 

associations between both for midazolam (r=-.48;p=002), methylphenidate (r=-.56;p<.001), haloperidol 

(r=-.52;p<.001), olanzapine (r=-.62;p<.001), low (r=-.34;p=.028) and high (r=-.57;p<.001)  dose of 

risperidone, a marginally significant effect for escitalopram (r=-.30;p=.055) and no significant effect for 

ketamine (r=.02;p=.913). When adjusting for the variance explained by receptor densities showing a 

significant association with respective compounds the effect of underlying activity remained significant 

for all compounds except escitalopram and ketamine (midazolam: p=.003; methylphenidate: p=.033; 

haloperidol: p<.001; olanzapine: p<.001; risperidone low dose: p=.050; risperidone high dose: p<.001; 

escitalopram: p=.471; ketamine: p=.585).   

Strength of CBF to receptor density associations is linked to respective receptor affinities 

Whereas the above correlational and multiple linear regression analyses provide evidence of distinct 

and reliable associations between drug-induced ∆CBF and underlying receptor densities, they remain 

descriptive with respect to consistency of the observed associations with the respective mechanisms of 

action of the evaluated compounds. We formally tested this hypothesis by evaluating if the observed 

association strength profiles between ∆CBF and receptor densities can be explained by drug affinities to 

the corresponding receptor systems. In a pooled analysis across the three drugs for which the affinity 

was established using the same methodology we find a highly significant correlation (p<.001) between 

the obtained profiles and the respective receptor affinities (Figure 3d). Separate tests for each 

compound confirmed these significant associations for haloperidol and risperidone. 
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Discussion 

Here we evaluated for seven established compounds acting on dopamine, serotonin, catecholamine, 

glutamate and GABA the relationship between respective ∆CBF and receptor densities of the underlying 

neurotransmitter systems. For all compounds, with six out of seven being significant, we find direct and 

distinct spatial relationships between drug-induced ∆CBF and underlying receptor densities and activity. 

Moreover, in line with assumptions derived from receptor theory we show that the association strength 

of these relationships is dependent on the affinity of the drugs to the underlying receptor systems 27. 

Importantly, whilst we test by means of multiple linear regressions for direct linear relationships 

between ∆CBF and receptor densities, we do not evaluate potential interactions between receptor 

systems. Due to the often low selectivity the evaluated compounds show high affinity to various 

receptor systems interactions between neurotransmitter systems are not unlikely. Such interactions 

may also have resulted in differential CBF responses across regions with different combinations of the 

targeted receptors and lowered the sensitivity to detect associations between ∆CBF and specific 

receptor densities. Evaluation of such interactions would yet require larger datasets and more refined 

receptor density maps. 

More specifically, for all evaluated serotonin antagonists we find positive associations between 

serotonergic system as represented by 5-HT 1a and 2 receptors and drug-induced ∆CBF. These findings 

suggest that inhibition of this system may be associated with a net increased metabolic demand in the 

corresponding regions. A more complex picture was observed for serotonin agonists. Whilst ∆CBF 

induced by both reuptake inhibitors showed a significant negative association with 5-HT 2 receptor 

density, ketamine showed a significant positive association with this receptor in line with its direct 

agonist effect on serotonin 29,30. This finding suggests interactions between observed ∆CBF and 

underlying receptor systems, e.g. due to differential effects of orthosteric and allosteric agonists or due 

to the commonly reported interdependence of dopaminergic, serotonergic and glutamatergic systems 

31–34.  

In contrast, all dopamine agonists as well as antagonists evaluated here showed a significant positive 

association with the underlying D1 and/or D2 receptor densities suggesting a U-shaped association of 

dopamine levels and metabolic demand. These findings are consistent with previous research reporting 

increased striatal CBF after administration of both dopamine agonists and antagonists 35–38. These 

findings imply that the hypothesized U-shaped curve relating dopamine to cognitive performance may 
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be paralleled by a U-shaped curve relating dopamine to metabolic demand; for example, cognitive 

function might improve if dopamine levels are titrated to minimize resting metabolic demands in 

substrates most strongly associated with those functions 39,40.  Supportive for these findings with respect 

to dopamine are also the strikingly strong correlations observed for all three direct dopamine 

antagonists with in vivo DAT receptor density estimates being a close surrogate of ex vivo counts of 

dopaminergic neurons 41. The strength of these associations with DAT estimates was substantially 

increased for the high as compared to low dose of risperidone suggesting dose dependency of the 

observed associations. Supportive for the idea that the established associations between receptor 

densities and ∆CBF indeed reflect the primary mechanisms of action of the respective compounds are 

the observed significant correlations of these profiles with respective receptor affinities in the pooled 

analysis, and also separately for haloperidol and risperidone. 

Similarly, the ketamine induced ∆CBF profile was significantly correlated with NMDA (though not 

surviving Bonferroni correction in the parametric analysis), 5-HT and several other receptor systems 

including AMPA, for which a ketamine related mechanism of action has only recently been discovered 

30,42. Though for the GABAergic positive allosteric modulator midazolam the overall model was not 

significant the finding of GABAa receptor density being the only significant regressor in the multiple 

linear regression analysis is consistent with its expected mechanism of action. In line with this, in vivo 

estimates of GABAa obtained through flumazenil PET also showed a significant association. 

Nevertheless, despite reaching significance the association strength with GABAa for midazolam remains 

weak. This observation is in line with its positive allosteric mechanism of action that would predict its 

effects to be primarily co-localized with the underlying activity of the system 43. Indeed, we find for 

midazolam and all other compounds with an indirect mechanism of action significant associations 

between ∆CBF and underlying activity estimates. The strong correlation observed for methylphenidate 

in that context also explains its weak correlation with DAT to which it directly binds. With a similar 

argumentation as for midazolam methylphenidate requires activity to take place to exhibit its 

pharmacological effect. Moreover, in line with our hypothesis we find underlying activity to be also a 

significant contributor to PD profiles for all compounds with a direct mechanism of action except 

ketamine. Potential reasons for the lack of such an association for ketamine might be in its wide-spread 

anesthetic effects that could interfere or alter underlying resting state activity patterns making the 

applied activity estimates imprecise 44. 
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That said several unexpected findings emerged from our analyses that may relate to limitations of the 

proposed approach. For example, we do not observe significant associations of escitalopram induced 

∆CBF with 5-HT 1a receptor density or between methylphenidate ∆CBF and D1 or DAT receptor density. 

These negative findings may be false negatives, but may alternatively relate to an important 

commonality between these compounds: their indirect mechanism of action. Both drugs act as reuptake 

inhibitors. They therefore require some underlying activity to facilitate its effects. These negative 

findings may therefore also indicate a relatively low activity of the associated receptor systems at rest. 

In line with this potential explanation are also the observed significant associations observed for both 

compounds with the underlying activity estimates. Similarly, despite a high affinity of olanzapine to the 

M1 receptor we do not observe a significant association between both. This negative finding could 

suggest a reduced sensitivity of ∆CBF to activity changes related to muscarinic system. However, 

contrary to this assumption we observe a significant association between M1 and ketamine induced 

∆CBF that is also known to have a high affinity to the respective receptor. Among other such discrepant 

findings may also arise from differences in demographic characteristics between cohorts (i.e. sex ratio) 

or different scanner types and ASL sequences used for evaluation of different compounds leading to 

differential sensitivity to detect respective associations. 

Differences in observed associations may also arise from the applied drug dosing, frequency, but also 

weight of the participants. For example, higher dosing may be expected to result in a higher proportion 

of primary and secondary targets occupied by the drug. This aspect is not unlikely considering that in 

healthy volunteers dosing was for safety reasons mostly lower as compared to doses applied in clinical 

routine. Higher variability in weight may increase variability in PK and associated CBF responses. 

Similarly, some PD effects may evolve on a slower temporal scale. We also observe some significant 

associations between drug-induced ∆CBF and receptor systems with known low affinity of the 

respective compounds. In example, a significant association is observed between methylphenidate 

induced ∆CBF and serotonergic system despite its low affinity to serotonergic receptors 45. Such effects 

are likely to be indirect in nature and may be due to a co-dependence of different networks systems, i.e. 

through recurrent/long-range interactions with other areas modulated by the compounds 46,47. As the 

applied correlational approach does not differentiate between direct and indirect effects the observed 

associations may well reflect some previously reported indirect effects of dopaminergic stimulation on 

the serotonin system 48,49. Due to this limitation to correlational relationships with receptor densities, it 

is also likely that further indirect effects are not detected by the proposed methodology. Lastly, some 

previous research reported evidence of differential vascular expression of specific dopamine receptors 
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across brain vessels and regions 20. This study suggested that such a differential expression may 

contribute to neurovascular coupling but its translatability to other receptor systems remains unknown. 

Modulation of such differentially expressed vascular receptors may also have contributed to the 

relationships between CBF and receptor densities observed in our study.   Importantly in that context, 

the interpretation of our findings with respect to receptor density is limited to a group level setting of 

drug induced CBF patterns being associated with spatial receptor density profiles associated with the 

respective compounds. Without further validation the results do not imply any within region 

relationship across subjects.  

In summary, our results provide strong evidence that CBF reflects specific metabolic demands from 

diverse underlying neurotransmitter systems. We further demonstrate that the proposed approach 

allows for disentangling of PD effects on CBF to underlying receptor densities and activity, in most cases 

closely reflecting the mechanisms of action of the respective compounds. These findings support the 

notion that distinct pharmacological compounds provide unique spatial patterns of CBF changes 

associated to receptor availability, affinity and function 1–3,5,24. With the additionally demonstrated 

excellent test-retest reliability of obtained CBF to receptor density profiles, these findings further 

strengthen the value of CBF as a promising tool for drug development and disease evaluation. Our 

findings and other recent research demonstrate that a combination of pharmacological modulations 

with neurophysiological read-outs can provide novel insight into specific mechanisms of brain function 

50,51. Overall, this research shows that the combination of both techniques may provide a unique cross-

species translational approach for studying local and remote neurophysiological and neurometabolic 

effects associated with modulation of specific neurotransmitter systems. In particular in drug 

development, the proposed approach may be used to generate data-driven hypothesis about the 

pharmacodynamic mechanisms of action of novel but also established compounds. Though subject to 

evaluation the proposed receptor density mapping approach may provide an easy implementable 

framework for application to other functional neuroimaging measures 7,16,17,52 and allows a direct 

integration of in vivo receptor density estimates as provided by molecular imaging 53–55. 

Materials and Methods 

[Table 1] 

 [Figure 1] 
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Subject and study details 

Data from 5 studies, all in young healthy volunteers, were included. An overview of all studies including 

medication and dosing details is provided in Table 1. All studies were part of a coordinated effort by 

F.Hoffmann-La Roche to collect CBF data from drugs with different mechanisms of action following 

similar fully counter-balanced, placebo controlled, cross-over designs. Adaptations of study designs 

were performed for each study to account for different administration modes, wash-out times and 

pharmacokinetic/pharmacodynamic profiles of the evaluated compounds. Study 1 and 2 were 

conducted using a double-blind, randomized, three-period (each one week apart) cross-over design. 

Study 1 included three imaging sessions following single dose administration of either low or high dose 

of risperidone or placebo. Similarly, study 2 included three imaging sessions following single dose 

administration of olanzapine, haloperidol or placebo. Study 3 was executed in a double-blind, single 

dose, randomized, four period (each two weeks apart) cross-over design. Evaluated drugs were 

methylphenidate, escitalopram, a Roche investigational compound (a glutamatergic subtype modulator 

whose development was terminated, data not reported here) and placebo. Study 4 was a single-blind, 

randomized, three period cross-over study with imaging performed following intravenous 

administration of ketamine, midazolam or placebo.  Study 5 was a non-treatment test-retest study 

comprising three MRI visits each including ASL. This study was used as a negative control dataset and to 

derive activity estimates for the drug studies. Dose selection for all drugs was performed based on the 

expected receptor occupancy, expected behavioral effects and safety and tolerability considerations. A 

detailed description of the mechanisms of action for all compounds is provided in Table 1 and 

Supplement 1. All studies were conducted in accordance with GCP guidelines. Written informed consent 

was obtained from all study participants. Study 1 and 2 were approved by the London (Brent) Human 

Research Ethics committee (REC reference: 13/LO/1183). Study 3 was approved by the Institutional 

Review Board at the University of California, San Diego (OMB No. 0910-0014). Study 4 was approved by 

the Health and Disability Ethics Committees of the Ministry of Health, Wellington (Ethics ref.: 

15/CEN/254). Study 5 was approved by the local Ethics Committee in Assen, Netherlands (Stichting 

Beoordeling Ethiek Biomedisch Onderzoek). 

ASL data 

Image acquisition onset for each study was based on the expected PK maximum for the corresponding 

compounds (2 hours post dose for Study 1, 5 hours post dose for Study 2, 4 hours post dose for Study 3). 

ASL data with varying sequences) were acquired for all studies and all visits among other study specific 
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imaging modalities. For Study 1 and 2 two runs of ASL were acquired at each session. For these studies, 

run 2 data of each session were used for primary analyses to reduce potential arousal effects at the 

beginning of the acquisition. Details on ASL acquisition and preprocessing of resulting cerebral blood 

flow data are provided in Supplement 1 (Supplementary methods, Table S1 and Figure S6). In brief, CBF 

computation for studies 1, 2, 4 and 5 was based a pseudo-continuous ASL acquisition whilst a FAIR 

QUIPSS II ASL sequence was used for study 3. For all studies, CBF was computed in standard 

physiological units (ml blood/100mg tissue/min) based on sequence specific recommendations 11,56.  All 

pseudo-continuous sequences included acquisition of a proton density image to enable appropriate CBF 

quantification. Due to lack of identical ASL sequences for different manufacturers and scanner types, the 

best available scanner-specific ASL protocol at the time of study conduct was used for each study.  

Receptor density maps 

Receptor density maps for 41 regions (Brodmann areas and subcortical nuclei) were extracted for the 

following 13 receptor types from the publication by Palomero-Gallagher et al. 28: for glutamate (AMPA, 

NMDA and Kainate), for GABA (GABAa), for acetylcholine and muscarine (M1 and M2), for nicotine 

(nicotinic α4/β2), for catecholamines (α1 and α2), for serotonin (5-HT 1A and 5-HT 2), for dopamine (D1 

and D2) (Table S2). A 3 point coarse scale provided by the authors was applied for all receptor systems, 

e.g. 1=low, 2=intermediate, 3=high, For some regions intermediate levels of receptor densities between 

those 3 levels were reported. Those were coded as 1.5 or 2.5. Brodmann regions have been shown to 

provide distinct functional information as measured through resting state MRI if at all rather under-

parcellating such data 57. Additionally, as for each receptor map for about 5% of regions the density was 

reported as unknown we aimed to reduce data loss for the multiple linear regression analyses requiring 

a full data matrix. For this an interpolated version of the receptor density table was created replacing 

the missing values by the mode of other densities for the corresponding receptor. A detailed description 

of receptor density map extraction is provided in Supplement 1. 

As these coarse receptor density maps were obtained from a review publication of ex vivo studies, we 

aimed to additionally evaluate if more fine grained in vivo density estimates provided by molecular 

receptor imaging further improve the observed associations. For this we extracted dopamine 

transporter (DAT) and GABAa density estimates as measured through DAT-SPECT and flumazenil PET for 

the 41 regions reported above. DAT-SPECT data were obtained from a publicly available control cohort 

of healthy volunteers (Parkinson’s Progression Marker Initiative) (Figure 3B). GABAa density estimates 
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were obtained using flumazenil PET data of 6 healthy volunteers acquired at the Imperial College 

London. Details on these cohorts, pre-processing and DAT and GABAa density estimation are provided in 

Supplement 1. 

Pharmacodynamic CBF profiles 

A Brodmann area map as included in the MRIcron tool 58 was normalized into the Montreal Neurological 

Institute space using the Statistical Parametric Mapping (SPM12) normalize function 59. For putamen, 

caudate and fusiform gyrus regions the corresponding automated anatomical labeling atlas regions were 

used. Mean CBF values were extracted for each subject for drug and placebo images from the 41 regions 

corresponding to Brodmann and subcortical areas covered by the receptor density maps described 

above. A delta drug minus placebo (change versus placebo) was then computed for each subject and 

region. A ∆CBF profile for each drug was calculated as an effect size per region for the whole group by 

computing the average regional drug-induced change across all subjects divided by the standard 

deviation of the change in the respective region across all subject (Figure 2B and Supplementary Figure 

4). Major differences in receptor densities and pharmacological effects across individuals have been 

reported in earlier animal studies that are also likely to apply to human experiments 60,61. Effect size 

normalizes the mean signal in each region by the variability of the signal. Therewith, it takes this 

variability into account whilst providing an index of the drug effect. It was therefore chosen to minimize 

the potential impact of such between subject and region variability in signal to noise but also due to site, 

scanner and sequence differences across different studies. For Study 5, test retest data of each subject 

for visit 1 and 2 were randomly assigned to either drug or placebo condition. All group-level ∆CBF 

imaging data alongside with receptor density maps and activity estimates are provided in 

Supplementary material. 

Mapping ∆CBF to receptor densities 

For interpretation of subsequent correlations between receptor density and ∆CBF maps we first aimed 

to understand if and how the obtained receptor maps provide similar or differential information 

regarding spatial receptor density distribution. Pearson correlations and coefficients of determination 

were computed between each pair of receptor density maps to estimate their association strength. 

Validity of the parametric statistics described below (parametric and normality assumptions for Pearson 

correlations and multiple linear regression models) was established using permutation statistics and 

Shapiro-Wilk tests for normality (s. Supplementary methods and results for description and outcomes of 
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those analyses, Figure S1). Additionally, to further ensure that the choice of parametric tests did not bias 

the results we repeated all analyses using Spearman correlation coefficients (Figure S5). 

We next aimed to understand if and how receptor density maps are linked to observed drug-induced 

∆CBF profiles (1) separately for each receptor type and (2) whilst controlling for the variance explained 

by other receptor density maps. For these we performed two types of analyses: (1) simple pair-wise 

Pearson correlations between each receptor density map and each ∆CBF map and (2) multiple linear 

regression models using each ∆CBF map as a dependent variable and including all 13 receptor maps as 

regressors in a single model. To ensure that the outcomes of analysis (1) are not biased by coarse 

receptor density scale, outliers or distribution assumptions we recomputed all correlations using 

Spearman correlation coefficients (Figure S5).  All analyses were implemented using default parameters 

in IBM SPSS Statistics (Version 23.0, IBM Corp., Armonk, NY). For analysis (1) we report if correlations 

survive strict Bonferroni correction (accounting for the number of tests performed per compound) and 

additionally as exploratory findings all correlations surviving an uncorrected p<.05. For analysis (2) to 

reduce data loss due to missing values the interpolated receptor density maps described in Supplement 

1 were used. To ensure that the interpolation did not bias the results, this analysis was repeated using 

the initial receptor density maps excluding regions with missing values (s. Supplementary results). In 

analysis (2) we test for significance of each overall model and each single receptor density regressor to 

predict ∆CBF profiles (p<.05) whilst controlling for the effects of all other regressors included in the 

model. 

We then tested if continuous in vivo receptor density estimates further improve the associations 

between receptor densities and ∆CBF. For this we computed for all compounds with known 

dopaminergic mechanism correlation coefficients with DAT density estimates obtained through DAT-

SPECT. Similarly, we computed for midazolam being the only GABAergic compound its correlation with 

flumazenil-based GABAa receptor density estimates. To ensure that the putative outlier region showing 

a very low GABAa expression (Figure 3c) did not bias the results we further repeated the correlation 

analysis with GABAa using non-parametric Spearman correlation coefficient with all data and after the 

removing the outlier. 

Lastly, as several ASL acquisitions were available for some of the compounds, we used those data to 

estimate the reliability of the obtained ∆CBF to receptor density and affinity mappings: (1) within 

session data of ASL run 1 and 2 for haloperidol, olanzapine and risperidone and (2) between session data 

for low and high dose data of risperidone. For both, within session and between session data we then 
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used intra-class correlation coefficients (ICC(C,k)) to assess reliability of established receptor density to 

∆CBF profiles (s. Supplement 1 for detailed outcomes of those analyses). 

Testing for associations with underlying activity 

To evaluate if drug-induced ∆CBF is also linked to underlying activity we used the non-drug study 5 data 

from all visits to compute a quantitative average CBF map (Figure 1). Mean CBF values across all subjects 

extracted from this map for the 41 regions introduced above were used as independent expected 

activity estimates for the respective regions for all drug data. Similarly to the above associations with 

receptor density we followed a two-step procedure to test if drug-induced ∆CBF is associated with 

expected activity profile. In a first analysis, we tested for associations between activity profile and ∆CBF 

using Pearson correlations. We then tested using multiple linear regressions if these relationships still 

hold when controlling for the contributions of significant receptor density regressors identified above.  

Testing for associations with receptor affinity 

To further understand if the observed relationships between receptor densities and ∆CBF are also 

associated with the respective receptor affinities (Ki) we first extracted the affinities for compounds with 

direct receptor binding mechanism of action established using the same methodology (risperidone, 

olanzapine and haloperidol) from Bymaster et al. (Table S3) 62. For receptors with no detectable drug 

binding (Ki>10000 nM) the value 10000 was used. If affinities to several receptor subtypes were 

reported the average affinity of these subtypes was used. For further analyses receptor binding affinities 

for all drugs were converted to log values (e.g. log(10000)=4) 63. Further, we hypothesized that if ∆CBF 

are indeed related to the underlying receptor systems, stronger (positive or negative) correlations 

should be observed between both for receptors with higher drug affinities. To test this assumption we 

used the absolute Fisher’s z transformed Pearson correlation coefficients obtained in analysis (1) for 

each of the 3 drugs and each receptor density map (13 values). These association strength profiles 

between receptor densities and ∆CBF were then correlated with the respective receptor affinities for 

each drug (pooled and separately for each compound). 
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Table 1 Study data and medication details 

  Compound 

  Risperidone Olanzapine Haloperidol Methyl-
phenidate 

(Ritalin) 

Escitalopram 
(Lexapro) 

Ketamine Midazolam Test- 
retest 

N subjects 21 21 21 18 18 26 26 29 

Study ID 1 2 2 3 3 4 4 5 

Demo-
graphics  
(n male, 
age±SD) 

21, 
28±7 

21, 
28±6 

21, 
28±6 

9, 
25±8 

9, 
25±8 

26, 
26±5 

26, 
26±5 

7, 
25±6 

ASL 
acquisitions  
per session 
(N) 

2 2 2 1 1 1 1 1 

Location KCL KCL KCL UCSD UCSD UA UA UG 

Dose (in mg) 0.5 and 2 7.5 3 30 20 0.25 mg/kg 
(bolus), 0.25 

mg/kg/hr 
(infusion) 

0.03 mg/kg 
(bolus, 

0.03 
mg/kg/hr 
(infusion) 

- 

Scanning 
time (post 
adminstratio
n) 

2h 5h 5h 4h 4h 0h* 0h* - 

T-max 1.3h 4h 6h 4.7h 5h - - - 

Primary drug 
indication 

SZ, Bipolar SZ, Bipolar SZ, Bipolar, 
Tourette 

syndrome, 
Mania 

ADHD Depression,  
anxiety 

disorders 

Anesthesia,  
chronic pain 

Anesthesia - 

Mechanism 
of action 

Direct receptor  
binding 

Direct receptor  
binding 

Direct receptor  
binding 

Reuptake inhibitor Reuptake  
inhibitor 

Direct 
receptor 

binding and 
reuptake 
inhibitor 

Positive 
allosteric 

modulator 

- 

Agonist 
effects 

- - - Dopamine, 
catecholamines, 

(serotonin) 

Serotonin Dopamine, 
norepinephri
ne, serotonin 

GABA - 

Antagonist 
effects 

Dopamine, 
serotonin, 

catecholamines 

Dopamine, 
serotonin, 

catecholamines 

Dopamine, 
serotonin,  

catecholamines 

- - Glutamate, 
acetylcholine 

- - 

Receptors D1-4, 5-HT 1a 
and 2a, α1, α2 

D1,D2,D4, 5-HT 
1, 2a and 3,  D1, 

α1, α2, 
muscarinic, H1 

D1-3, 5-HT 2a, 
α1, σ1 

DAT, NET, SERT SERT NMDA, D2, 
5-HT 2, 

AMPA, MAT, 
nicotinic 

a4b2, 
muscarinic 

BZD - 

Highest 
affinity to 

D2, 5-HT 2a, 
D3, α2 

5-HT 2a, D2 D2, D3 - - NMDA BZD - 

ADHD – Attention Deficit Hyperactivity Disorder, AMPA - , ASL – Arterial Spin Labeling, BZD – Benzodiazepine,  DAT – dopamine 

transporter, GABA - Gamma-Amino butyric acid, KCL – King’s College London, MAT – monoamine transporter, NET – 

norepinephrine transporter, NMDA - N-methyl-D-aspartate receptor, SERT – serotonin transporter, SZ – Schizophrenia, UCSD – 

University of California San Diego, UA – University of Auckland, UG – University of Groningen, * intravenous infusion 
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Fig. 1 Schematic overview of the proposed mapping of cerebral blood flow (CBF) changes to underlying 

receptor densities, activity and affinities 

Fig. 2 Results of Pearson correlation, multiple linear regression and effect size analyses. a) Results of 

Pearson correlation (left) and multiple linear regression analyses between receptor densities and CBF 

changes are displayed as bar plots. For drugs with only one evaluated dose the drug profiles are colored 

as “high dose”. Red line for Pearson correlation plots indicates significance at an uncorrected two-sided 

p<.05 and yellow star indicates significant Bonferroni corrected findings, For multiple linear regressions 

a plus indicates a marginally significant (p<.1) and red star a significant (p<.05) effect of the 

corresponding regressor. b) Voxel-wise effect size maps (Cohen’s d) are displayed for drug treatments 

matching the order of drugs displayed in a). For risperidone the outcomes for the high dose are 

displayed. 

Fig. 3 Results of correlational analyses with molecular imaging based receptor density estimates and 

affinities. a) Correlational plots between regional cerebral blood flow (CBF) changes and respective 

dopamine transporter (DAT) density profiles are displayed for each drug with dopaminergic mechanism 

of action. b) DAT density estimates obtained from a healthy volunteer cohort provided by the 

Parkinson’s Progression Marker Initiative. c) Correlational plot between midazolam induced CBF changes 

and GABAa density estimates obtained from flumazenil positron emission tomography. d) Correlations 

of cerebral blood flow (CBF) changes to receptor density profiles with drug affinities. Colors indicate 

different receptors. Shapes indicate different drugs. Solid line in all plots indicates the linear regression 

fit. 
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[Figure 3] 
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