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ABSTRACT 

Attention-Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder 

characterized by inattention, hyperactivity and impulsivity. It is one of the most commonly 

diagnosed neurodevelopmental and psychiatric disorders of childhood and therefore presents 

a very high prevalence rate. However the high rate of ADHD misdiagnosis makes the 

discovery of neurophysiological ADHD biomarkers an important clinical challenge. This study 

proposes a novel non-stationary ADHD biomarker based on Echo State Networks to quantify 

EEG dynamical changes between low attention/arousal states (resting with eyes closed, or 

EC) and normal attention/arousal states (resting with eyes open, or EO). Traditionally, EEG 

biomarkers have revealed an increase in stationary power in the theta band along with a 

decrease in beta, with these frequencies largely accepted to be altered in the ADHD 

population. We successfully verify the hypothesis that measured differences between these 

two conditions are altered in the ADHD population. Statistically significant differences 

between a group of ADHD subjects and an aged-matched control population were obtained in 

theta and beta rhythms. Our network discriminates between EO/EC EEG regimes in the 

ADHDs better than in controls, suggesting that differences in EEG patterns between low and 

normal arousal/attention states are larger in the ADHD population. 

 

1. INTRODUCTION 

 

Attention deficit hyperactivity disorder (ADHD) [1] is a chronic, pervasive childhood disorder 

characterized by low frustration tolerance, excessive impulsivity, distractibility, and inability to 

sustain attention and concentration [2,3,4]. It is one of the most commonly diagnosed [2] and 

investigated [4] neurodevelopmental disorders of childhood. Three ADHD presentations or 

subtypes can be diagnosed from 9 symptoms of inattention (IN) and 9 symptoms of 

hyperactivity/impulsivity (HI) using DSM-IV [5]: Combined (6 or more IN and 6 or more HI 

symptoms), predominantly inattentive (6 or more IN and less than 6 HI symptoms), and 

predominantly hyperactive/impulsive (6 or more HI and less than 6 IN symptoms). ADHD 

has a high prevalence rate that is estimated between 5% and 7% [6, 7].  

 
Although ADHD is currently considered a neurodevelopmental disorder [8], the diagnostic 

criteria continue to be based primarily on subjective behavioral measures derived from 

parent and teacher reports, interviews, or direct observation. Therefore, as Crippa et al. 

(2017) point out, the diagnosis is heavily based on the experience and practical knowledge 

of clinicians. This has at least two important consequences. First, there is a social and 

scientific concern about the reliability and variability of this approach to diagnosis, and the 

potential for high probability of a misdiagnosis [9,10]. And, second, although some authors 

consider that brain structural and functional deficits have been proven to be associated with 
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ADHD [10], there is not a clear consensus about this point. Therefore, finding solid evidence 

of neuropsychophysiological dysfunction in ADHD has become one of the most relevant 

challenges in mental health research. 

 

In recent years, electroencephalographic (EEG) measures in resting-state conditions have 

been widely used to monitor neurophysiological abnormalities in the ADHD population [11]. 

Most reported findings have shown that the ADHD population presents an increased power 

in fronto-central regions in low frequencies (typically in the theta band) [12, 13] with 

decreased power in fast frequencies (typically in the beta band) [14, 15]. Theta/beta ratio 

(TBR) has long been used as an ADHD biomarker [16]. The US Food and Drug 

Administration (FDA) approved the Neuropsychiatric EEG-Based ADHD Assessment Aid 

(NEBA®), which uses the theta/beta ratio of the EEG measured in the central EEG electrode 

Cz combined with a clinician’s evaluation to support the diagnosis of ADHD. NEBA cutoffs 

for analysis were pre-established and are different for adolescents and children [17,18]. 

However, not all recent studies could validate the usage of TBR, as a biomarker for 

diagnosing ADHD. Recent studies documented an insufficient accuracy for TBR and theta 

power in distinguishing children with ADHD from a control group [11, 19 ,20]. Therefore the 

discovery of novel robust ADHD biomarkers remains a hot research topic.  

 

EEG band-power assessments assume a large degree of temporal stability in brain 

oscillations. Typically, in EEG analysis the signal is split into short-time epochs that are 

considered to be pseudo-stationary. Band power is estimated at each epoch and 

subsequently averaged across them [21]. However, it is well known that the brain is a 

complex system that generates non-stationary EEG patterns of high dimensionality [22, 23]. 

Such dynamic, chaotic behavior advocates for the use of non-stationary EEG analysis 

techniques for EEG feature extraction and classification. Here we apply this approach to 

reexamine the hypothesis that ADHD is associated with a hypoaroused brain state, 

suggested by scientific evidence over the past decades. This hypothesis is based on the fact 

that arousal and attention are related and overlapping concepts [24]. Arousal acts as a 

modulator of attention levels, with changes in arousal followed by changes in attention [25]. 

Recent theories, such as the cognitive-energetic model [26], include the concepts of arousal, 

activation, and alertness as basic mechanisms in ADHD [27, 28, 29].  

 

Following the hypoarousal ADHD theory, our hypothesis is that the magnitude of EEG 

differences between low attention/arousal states (during EC) with respect to normal 

attention/arousal states (during EO), may be altered in the ADHD population. We test here 

this hypothesis through the study of band-power stationary features, but also dynamical 

alterations in the temporal dynamics. To this effect, a novel approach based on recurrent 

neural networks (RNN) in its reservoir computing (RC) form (echo-state networks) is 

proposed here.  

 

EEG Differences between eyes open (EO) and closed (EC) conditions have been largely 

reported in the alpha band. Arousal increase during resting state withEO with respect toEC 

has been associated with a global decrease of EEG alpha levels [30]. Alpha levels are in 

general substantially reduced in amplitude by eye opening [31] and its regime is 

characterized by a dominating oscillatory rhythm known as the peak alpha frequency (PAF). 

This rhythm is however not strictly monotonic, varying over a range of about 1 Hz [32]. 

Regarding EO-EC changes in other EEG bands, in resting-state EO conditions, reductions of 
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absolute power levels in the delta, theta and beta bands between the two conditions have 

been reported in children. Power topographic changes across the scalp have been also 

observed in all bands [33].  

 

 

 

We expect the EEG dynamic regimes, as measured through RC, during interleaving 

intervals of EC-EO, to differently discriminate in a different fashion for ADHD and healthy 

subjects. RC has been applied in the past to several EEG feature extraction and 

classification problems such as brain computer interfaces [34,35], epileptic seizure [36], 

prognosis in Parkinson’s disease [37] or event detection [38]. In a previous work [39] we 

have demonstrated RC capacities to well characterize complex dynamics among EEG 

channels when a dominating frequency in the EEG spectrum is elicited. Here we explore 

EO-EC discrimination capabilities within EEG frequency bands, that as alpha may be 

characterized by a dominant oscillatory regime. To the best knowledge of the authors, RC 

has never been applied in the field of ADHD biomarkers.  

 

2 Reservoir Computing 

 

Artificial Neural Networks (ANNs) are computational models inspired in the functioning of the 

brain [40, 41, 42]. Their structure consists of a network of interconnected artificial neurons 

also known as nodes or units. Artificial neurons transmit signals from one to another along 

the network simulating the biological synapse process. In practice, artificial neurons receive 

signals from connected neurons, with a fixed weight (𝑤𝑖) that is set during the network 

training process. The activation function of each neuron maps the sum of input weighted 

connections into the signal transmitted to other neurons. Typical activation functions in ANN 

are the rectified linear unit, the sigmoid, the hyperbolic tangent or the unit step.  A 

representation of an artificial neuron is displayed in Figure 1A.  

  

ANNs in general present three stratums of neurons: the input, hidden and output layer. 

Figure 1B represents a network similar to the one used in this work with 2 input units and 

one output unit. In the network two input signals 𝑢1(𝑛) and  𝑢2(𝑛) feed the two units of the 

input layer whose goal is to interface with input data. Input weights 𝑊𝑖𝑛 map the input nodes 

into the hidden layer. Internal weights (𝑊) interconnect hidden layer units while output 

weights (𝑊𝑜𝑢𝑡) map the hidden nodes into a single output node. Adding loops to the hidden 

layer transforms (𝑊𝑏𝑎𝑐𝑘) what would otherwise be a standard feedforward network 

(multilayer perceptron) into a recurrent network, and allows the model to encode time-

resolved information and thus to incorporate memory, converting it into a dynamical system 

[43].  

 

In the 2000s, reservoir computing (RC)–a new approach for training, understanding and 

using Recurrent Neural Networks– was proposed independently and simultaneously under 

the names of Echo State Networks (ESNs) [44] and Liquid State Machines [45]. Reservoir 

computing is based on the principle that certain structural properties of the network make the 

supervised training of all weights unnecessary. In particular, if the network obeys an 

algebraic property known as the echo state property (ESP) only readout connections need to 

be adapted in a supervised way. The untrained network, whose weights are fixed and 
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randomly generated, is known as the dynamical reservoir (DR) and consists of input-scaling, 

back-projection and internal weights. The reservoir provides memory while nonlinearly 

expanding  the input signal [46]. 

 

The echo-state property holds if the state of the network asymptotically depends only on the 

input signal, implying that initial conditions dependencies are lost progressively. In practice, 

input and back-propagation weights do not affect the echo state property, that only depends 

on internal weights of the hidden layer. In most applications if the spectral radius of internal 

weights, calculated as the largest absolute eigenvalue of the adjacency matrix of the 

reservoir, is kept below one, the ESP holds [46], although unlikely exceptions have been 

reported [47]. 

 

According to ESN best practices [46], the most important global-parameters that shall be 

optimized in order to achieve a good performance are the: 1) input scaling, 2) spectral 

radius, 3) leaking rate and 4) reservoir size. When scaling the network inputs, in practice the 

same input scaling factor is applied to 𝑢1(𝑛) and 𝑢2(𝑛). The input scaling drives the degree 

of non-linearity in the reservoir. Linear tasks require small input scaling factors while 

complex tasks demand larger input scaling values, easily saturating the nodes and thus 

transforming them into binary switches. The spectral radius governs the time scale of the 

reservoir, and thus determines how the influence of inputs remains in the system [48], and 

the leak rate determines the speed of the reservoir to update dynamics. The reservoir size is 

given by the number of internal units and is in general larger in ESNs compared to other 

neural network approaches [49]. It has to be large enough to learn the dynamics of the input 

signals, but not too large so it generalizes well with non-training data. The best approach for 

output weight training is ridge regression regularization, which removes the requirement of 

injecting noise in the network inputs to ensure a good generalization [46, 50].  

 

Reservoir computing greatly simplifies the training of recurrent neural networks. The 

dynamical reservoir is randomly constructed according to selected hyperparameters. Once 

the DR weights are fixed, readout connections are learnt using a training input and a 

teacher-forced output. The network is thus able to efficiently perform tasks with complex 

temporal information with a low-training cost, since only the readout weights need to be 

trained. 

 
 

 

 
 

Fig.  1 A) Artifical neuron and B) recurrent neural network Representation 
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3. METHODS 

 

3.1 Participants 

 

52 children aged 7-11 participated in this study. All subjects brought signed parental 

informed consent and were assigned to one of two groups: clinical diagnosed ADHD group 

or healthy controls. Children diagnosed with ADHD were recruited from clinical units 

specialized in pediatric disorders in Palma de Mallorca, Spain. To be considered for the 

ADHD group, children had to fulfill the following inclusion criteria: (1) being clinically 

diagnosed with ADHD by a specialist based on DSM-IV criteria (2) not having comorbidity 

problems of mental retardation, autism, bipolar or psychotic disorders, history of epileptic 

seizures or any other relevant medical disorder. 28 children were first recruited and 

assessed into this group, but during the data analysis 7 of them had to be rejected: 3 

because they had taken medication 24h prior to the EEG assessment, and other 4 due to 

noisy EEG recordings. The final ADHD group thus included 21 children: 12 with combined 

ADHD subtype (11 males and 1 female) and 9 with inattentive subtype (3 males and 6 

females). 

Healthy controls were selected from standard school age-matched classrooms. The 

research team met with the schools’ principals and tutors, and gave them a dossier 

(including the informed consent) explaining the project. This dossier was sent home with the 

kids for their parents. Inclusion criteria for this group were: (1) not having any 

psychopathology diagnosis, neither mental retardation or learning disorders, (2) not showing 

behavioral problems nor learning difficulties in class (as asserted by their tutors) (3) not 

having major family problems that could interfere with their participation in the study. In the 

original control sample there were 43 children, but 13 had to be rejected at the final analysis: 

7 of them due to academic problems, other 5 due to noisy EEG recordings, and the 

remaining one due to visual difficulties that prevented him from carrying out one of the 

experimental tasks. Thus, the final group of healthy controls consisted of a sample of 30 

participants. The demographic characteristics of the experimental groups are summarized in 

Table 1 below. 

 ADHD (n = 21) Control (n = 30) 

Age in years M 9.6 (SD 1.4) M 9.3 (SD 1.5) 

Male/Female 14 / 7 13 / 17 

ADHD C/I 12 / 9  - 

ADHD Medication (Yes/No) 6 / 15 - 

Table 1: Experimental population description. 

 

3.2 Experimental Procedure 

 

The most relevant findings in ADHD biomarkers have been obtained in fronto-central regions 

[51]. Following this, in this study we measured the brain activity of the participants in C3, Cz, 

C4, F3, Fz and F4 using six Ag/AgCl electrodes according to the 10/10 EEG standard 

positioning system [52]. EEG data were obtained with a Neuroelectrics Enobio® recording 
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system at a sampling rate of 500 Hz. The CMS/DRL electrical reference was placed in the 

right mastoid. The experimental protocol consisted of a 3-minutes resting-state eyes-open 

(EO) recording followed by a 3-minute eyes-closed (EC) recording. Participants were 

instructed to stay still looking at a fixation cross displayed in a computer screen at one 

meter-distance.  

 

3.3 ESN-Based Dynamical Synchronization Metric  

 

We now introduce our ESN-based approach aiming at quantifying within-subject dynamical 

differences between resting EO and EC states at specific frequency bands. The final goal is 

to employ such performance measure as a surrogate for the differences of EEG signal 

dynamics, and therefore as a biomarker for characterizing ADHD patients. The following 

paragraphs describe the signal processing and analysis pipeline that lead to the computation 

of the aforementioned biomarker.  

 

Recordings are first filtered using a finite impulse response filter (FIR) at the following bands: 

theta1 (4-6 Hz), theta2 (6 -10 Hz), alpha1 (8 - 11 Hz), alpha2 (10 - 13 Hz), beta1 (13-20 Hz), 

beta2 (20-30 Hz), gamma1 (25-35 Hz) and gamma2 (35-45 Hz). The reference method has 

a substantial impact on potential measurements. Many reference strategies can be used in 

EEG analysis, including single electrode reference, linked-ears, linked-mastoids, ipsilateral-

ear, contralateral-ear, bipolar references, the tip of the nose or weighted average electrodes 

subset among others [53]. Each modality has its own advantages and disadvantages. In 

practice, the electrode reference is chosen based on the electrode montage and 

characteristics of the feature to be computed. In this work the average reference of central 

electrodes C3, Cz and C4 has been used as reference. Frontal electrodes were not selected 

for referencing as they are likely affected by ocular artifacts. Given we are explicitly taking 

EO intervals into account, the use of frontal signals in the referencing process could distort 

the EEG dynamics of other channels. 

 

After referencing, channels C3, Cz, C4, F3, Fz and F4 are split into 10-second epochs with 

no overlap. Epochs containing samples larger than 75uVs at any channel after detrending 

are rejected, as they are considered to be contaminated by artifacts. Since we are only 

interested in signal dynamics, each 10-second epoch is individually standardized to mean 

zero and standard deviation one, in order to remove the amplitude information. EC and EO 

standardized epochs are then sequentially concatenated creating a continuous EO-EC 

series for each channel and frequency band. The envelope of this series is then computed 

using the Hilbert transform [54].  

 

ESN networks are fed with the previously defined interleaving temporal dynamics of EO and 

EC series coming from two EEG channels filtered at the same band. A teacher-forced signal 

with EO samples to 1 and EC samples to -1 is used for training, through which the network 

learns to distinguish between the two regimes. In previous works we have demonstrated that 

among other dynamics, ESNs are capable of detecting complex synchronization between 

two temporal time-series such as generalized synchronization [55]. We thus expect ESN to 

be capable of detecting synchronization variations among channels between the EO and EC 

regimes. This is why we will define the resulting biomarker as Channel Dynamical 

Synchronization Metric (CDSM). We set the ESN node activation function to the hyperbolic 

tangent, the spectral radius to 0.8, the input-scaling factor to 0.1, the leak rate to 0.5, and the 
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number of units in the hidden layer to 500. The network output is low-pass filtered at 5 Hz in 

order to remove high-frequency components. 

 

As explained above, we train the network to discriminate between EO and EC regimes for 

every combination of pairs of electrodes at one frequency band. To quantify these changes 

we compute the mean squared error (MSE) between the teacher-forced signal and the 

trained ESN output. We call this measure the channel dynamical synchronization metric 

(CDSM). This feature quantifies how well the network learns to discriminate between the EO 

and EC conditions at a certain band for a pair of electrodes. The dynamical connectivity 

index (DCI) of an electrode for a certain band is defined as the average DSM of its 

combination with every other electrode. In order to reduce the random effect introduced by 

the dynamical reservoir construction, we calculate the average DSM over five independent 

instantiations of the ESN, and use these replicates for further statistical analysis.  

 

3.4 Stationary Analysis  

 

We performed a comparative evaluation of the newly proposed approach with the 

conventional stationary spectral analysis, in order to obtain a better understanding of the 

ESN results and to explore stationary changes in the EEG rhythms. The average stationary 

spectral response and power at frequency bands defined in 2.3 is computed for each subject 

at EO and EC conditions using as reference also the average of C3, Cz and C4. The ratio of 

the average band power per channel between EC and EO conditions was calculated to 

measure the stationary differences between these two conditions at subject level. 

 

3.5 Statistical Analysis 

 

The performed statistical analysis aim at measuring if the samples under comparison, 

belonging respectively to ADHD and control groups are independent and therefore coming 

from populations with different distribution. According to the Kolgomorov-Smirnoff test [56] 

we could not guarantee a Gaussian distribution of all samples under test. Therefore, we 

used a nonparametric two-sided Wilkoxon rank-sum test [57], which unlike the t-test does 

not assume normal distributions, to identify statistical differences between the ADHD and 

control groups. The null hypothesis was rejected only if the obtained probability value was 

less than 5%. Statistical significance between groups is here represented by * for 

probabilities below 5%, ** for probabilities below 1% and *** for probabilities below 0.1%. 

 

4. RESULTS 

 

4.1. Dynamical Synchronization Metric Analysis 

 

CDSM feature has been computed for every possible combination of pair of electrodes and 

frequency bands. Electrodes used in this study are presented in Figure 2A. Figure 2B shows 

a connectivity representation of the statistically significant p-values (p<0.05) obtained when 

comparing ADHD and control populations.  We observe that the synchronization metric 

proposed here discriminates well between populations, especially in theta and beta bands. 

Figure 2C and 2D depicts the ADHD (blue) and control (red) CDSM grand averages and 

standard error of the mean (SEM) in the theta1 and beta1 bands. Given that the CDSM 

quantifies the error between the ESN output and the EO-EC ground truth, we can conclude 
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that the network learned better differences between the two conditions in the ADHD 

population. This advocates for the presence of larger differences in dynamical EEG regimes 

in the ADHD group than in the healthy controls.  

 

Figure 3 displays the grand average dynamical connectivity index together with the standard 

error of the mean. Results are consistent with previously discussed findings. The DCI is 

smaller in the ADHD population, showing a larger difference in its temporal dynamics 

between EC/EO conditions. Table 2A summarizes the statistical significance when 

comparing the two groups. As can be observed, differences between groups are 

representative in the theta1, beta1 and beta2 bands. 

 
Table 2 Statistical significance when comparing ADHD populations for A) Dynamical Connectivity Index, 
B) Eyes open stationary power, C) eyes closed stationary power, D) eyes closed-open stationary power 
ratio 

A Dynamical Connectivity Index  B  Stationary Eyes Open 

θ1 θ2 α1 α2 β1 β2 γ1 γ2   θ1 θ2 α1 α2 β1 β2 γ1 γ2 

C3 **    *     C3         
Cz **    ** *    Cz  **       
C4 **    * **    C4         
F3 **    **     F3 * **   *    
Fz **    **     Fz * **       
F4 **    ** *    F4  **   *    
                   
C Stationary Eyes Closed  D EC-EO Ratio 

 θ1 θ2 α1 α2 β1 β2 γ1 γ2   θ1 θ2 α1 α2 β1 β2 γ1 γ2 

C3  **        C3         
Cz  *        Cz         
C4  **        C4         
F3  **   *     F3         
Fz  *        Fz         
F4  *   *     F4         
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C D 

  
 
Figure 2: A) Position of the F3, Fz, F4, C3, Cz, C4 electrodes used in this study. 2) Connectivity CDSM 
representation of statistically significant p-values when comparing ADHD and control populations. 3) 
Theta1 CDSM grand averages and SEM. 4) Beta1 CDSM grand averages and SEM.  

 
Figure 3 Dynamical Connectivity Index (DCI) grand averages and standard error of the mean in ADHD and 

control populations 
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4.3. Stationary Band Power Analysis 

 

Figure 4 represents the grand average spectral response together with the standard error of 

the mean in the 4-45Hz frequency interval. We can observe that the energy in theta and 

alpha increases in the EC condition for both the ADHD and control groups.  When we look 

independently at each condition we observe an EEG slowing both in EO and EC. This effect 

is manifested a shift of the alpha peak frequency towards lower frequencies and an energy 

increase of low frequency components.  

 

Figure 5A and B represent the power grand averages and standard error of the mean for the 

ADHD and control populations, for both the EO and EC conditions. We observe a power 

increase in low frequency bands theta and alpha in the ADHD populations for the two 

conditions. Statistically significant power differences between ADHD and Control groups are 

presented in Table 2B and 2C, where we can observe that theta2 delivers the most 

statistically significant differences both for EO and EC conditions.   

 

Figure 6 presents the grand average and standard error of the mean of the EC-EO power 

ratio metric defined in 3.4. In both populations we observe a power increase in EC in low 

frequencies (theta and alpha), while in high frequencies (beta and gamma) the power 

increases in EO. Statistical differences between populations, as seen in table 2D, were not 

found at any band or electrode. 

 

 

 
Fig.  4 Grand average spectral response and standard error of the mean of ADHD EO, ADHD EC, Control 
EO and Control EC populations 
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A B 

  
Fig.  5 Power grand averages for ADHD and control population in A) Eyes open and B) eyes closed 

conditions 

 

 
Fig. 5 EC-EO power ratio grand averages in ADHD and control populations 

 

5. DISCUSSION 

 

The diagnostic of ADHD is currently established based on subjective behavioral measures. 

ADHD diagnosis is therefore biased by cultural, practice and experience factors of clinicians. 

In the last decades, it has been shown that children suffering from ADHD may have different 

neural organization, especially in central and frontal areas compared to their age-matched 

control population. This fact advocates for the use of non-invasive brain monitoring 

techniques, such as EEG, to quantify abnormal brain activity patterns. Despite great 

advances in the field of ADHD biomarker discovery, the current state-of-the-art 

methodologies, such as the well accepted stationary theta increase, beta decrease in 
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ADHDs, have proved insufficiently accurate in many scenarios. Moreover, the non-stationary 

and chaotic nature of brain activity supports the use of non-stationary techniques capable of 

detecting abnormal signal dynamics. 

 

ADHD, among other behavioral symptoms, is characterized by a child’s inability to sustain 

attention as well as inappropriate arousal levels. In this study, we propose to study brain 

activity disparity between low arousal/attention levels (resting eyes closed) and normal 

attention/arousal levels (resting eyes open) as introduced in section 1. Our hypothesis relies 

in the fact that the disparity between these two conditions may be altered in the ADHD 

population. To measure it we propose a machine-learning based methodology capable of 

learning dynamical differences between EC-EO conditions. An echo state network input is 

fed using the filtered temporal series of pairs of electrodes and trained to discriminate 

between these two. As the amplitude information of these series is removed through 

standardization, the neural network is believed only to capture the signal dynamics. In 

previous works we have proved that ESNs are capable of detecting generalized 

synchronization between two temporal time-series [55].  As we are in a similar scenario we 

expect ESN to, among other dynamics, detect synchronization variations among channels 

between EC and EO regimes. The difference between EO and EC has also been studied 

through a stationary approach that computes the power ratio between EC and EO.  

 

We have analyzed EEG recordings of 21 ADHD children and 30 age-matched controls and 

studied statistical differences between these two groups. To this effect we have evaluated 

the performance of stationary power during resting EO and EC, stationary EC-EO power 

differences and the outcome of the CDSM and DCI features proposed here.  

 

Stationary spectral analysis showed an EEG slowing both for EC and EO in the ADHD 

population, where grand average alpha peak frequency was shifted towards slower 

frequencies in the ADHD population (Figure 4).  A generalized slowing in brain activity can 

be linked to neurodegenerative and neurodevelopmental disorders and has been largely 

reported in the ADHD population [58, 59]. Stationary power delivers a statistically significant 

increase of theta in the ADHD population both in EC and EO conditions (Table 2). ADHD 

children have been largely reported to a show fairly consistent fronto-central theta increase 

in resting state conditions that has traditionally been associated to a hypo-arousal state [60, 

61]. The outcome of this spectral stationary analysis confirm the reliability of the data-set, as 

two of most reported findings in the literature could be replicated. 

 

The EO/EC band-power stationary analysis did not deliver statistical differences between the 

ADHD and control population. On the other hand, when analyzing the dynamical variations 

measured through the hereby proposed Dynamical Connectivity Index, statistically 

significant differences were found in the theta and beta bands. Abnormalities in these bands 

have been largely reported in the ADHD population as previously stated in section 1. This 

study confirms that not only the stationary activity of the brain, but also its temporal 

dynamics, may be affected at these bands. We have demonstrated that our trained network 

discriminates better between EC and EO regimes in the ADHD population. This finding 

indicates an abnormal disparity between low and normal attention/arousal conditions in 

ADHDs. Changes between conditions were only statistically significant for the DCI feature, 

fact that advocates for the employment of nonlinear analysis such as ESN, capable of 

discriminating between complex patterns in EEG time-series.  
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Compared to stationary power analysis, the DCI metric proposed here provides larger 

statistical significance between groups, as seen in Table 2. While DCI provides 11 electrode-

band combinations with null hypothesis probability values below 1%, the EO and EC 

stationary power together provides 8. Whereas these differences were found in theta2 in the 

stationary power analysis both for EC and EO, DCI provided statistically significant 

differences below 1% in theta1 and beta1.  

 

Reservoir-computing methodologies, and in particular ESNs, have proved to be an effective 

technique for EEG feature extraction [39]. Although ESNs have been applied to other EEG 

analysis scenarios including author’s work in Parkinson’s disease prognosis [37], this is the 

first time, to our best knowledge, that it has been used in the ADHD field. The proposed 

methodology is however not only tied to ADHD characterization. The approach of measuring 

the training error of a recurrent neural network trained to classify sequences of physiological 

states concatenated within a continuous time-series can be applied to other biomarker 

discovery modalities. Authors plan in the future to apply this procedure in the field of autism 

disorder characterization.  
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