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Abstract

Linkage disequilibrium (LD) and genomic proximity are commonly used to map non-coding variants to genes,
despite increasing examples of causal variants outside the LD block of the gene they regulate. We compared
chromatin contacts in 22 cell types to LD across billions of pairs of loci in the human genome and found
no concordance, even at genomic distances below 25 kilobases where both tend to be high. Gene expression
and ontology data suggest that chromatin contacts identify regulatory variants more reliably than do LD
and genomic proximity. We conclude that the genomic architectures of genetic and physical interactions are
independent, with important implications for gene regulatory evolution and precision medicine.
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Genetic variants ranging from large scale chromosomal rearrangements to single nucleotide polymor-
phisms (SNPs) can impact gene function by altering exonic sequence or by changing gene regulation. Recent
studies estimate that 93% of disease-associated variants are in non-coding DNA [1] and 60% of causal vari-
ants map to regulatory elements [2], accounting for 79% of phenotypic variance [3]. Additionally, disease-
associated variants are enriched in regulatory regions [4], especially those from tissues relevant to the phe-
notype [5]. Functionally annotating non-coding variants and correctly mapping causal variants to the genes
and pathways they affect is critical for understanding disease mechanisms and using genetics in precision
medicine [6–9].

Common practice associates non-coding variants with the closest gene promoter or promoters within the
same LD block. However, regulatory variants can affect phenotypes by changing the expression of target
genes up to several megabases (mb) away [10–13], well beyond their LD block (median length ≈ 1-2kb,
Supplementary Table 1b). This prompted Corradin and colleagues to conclude that a gene’s regulatory
program is not related to local haplotype structure [14]. Even when a GWAS SNP is in LD with a gene
that has a strong biological link to the phenotype, the causal variant may be in a nearby non-coding region
regulating a different gene [15, 16]. Highlighting the long range of regulatory interactions, recent work in T
cells found that only 14% of 684 autoimmune variants targeted their closest gene; 86% skipped one or more
intervening genes to reach their target, and 64% of variants interacted with multiple genes [17]. Thus, many
non-coding variants are far away and in low LD with the promoters they regulate.

Distal non-coding variants can cause changes in gene regulation and phenotypes via three-dimensional
(3D) chromatin interactions. For example, the obesity-associated FTO variant (rs1421085) was found to
disrupt an ARID5B repressor motif in an enhancer for IRX3/5 during adipocyte differentiation, increasing
obesity risk [10]. A second study showed a schizophrenia-associated SNP (rs1191551) regulates the expression
of distal gene FOXG1 in two zones of the developing human cerebral cortex, rather than targeting the nearby
gene PRKD1 [13]. Another example is a papillary thyroid cancer associated SNP (rs965513) in an LD block
containing several enhancer variants that contact the promoter of FOXE1 and alter its expression [18].
In addition, mutagenesis screens identified multiple distal variants that lead to cancer drug resistance by
decreasing CUL3 expression [19]. These validated causal SNPs demonstrate that regulatory variants can
be located far from their target promoters in distinct LD blocks (IRX3/5 1.2mb, FOXG1 760kb, CUL3 ±
100kb, FOXE1 ± 60kb).

New understanding of the 3D genome from high-throughput chromatin capture (Hi-C) and imaging data
suggests it may be common for regulatory variants and their target gene(s) to lack strong LD. For exam-
ple, mammalian genomes are partitioned into regions enriched for chromatin interactions at multiple scales,
including Topologically Associating Domains (TADs, median length 880kb [20]) and contact domains (sub-
TADs, median length 250kb [21]). While these chromatin domains resemble the nested block patterns of
LD, they have a different origin: insulating chromatin boundary elements across which relatively few chro-
matin interactions occur versus frequency of recombination events over generations. Furthermore, different
proteins interact with DNA to mediate these processes, namely PRDM9 in the case of recombination [22]
and structural proteins such as CTCF in the case of chromatin boundaries [23]. Thus, one might not expect
similarity a priori. However, LD is high and chromatin interactions are common at genomic distances less
than 25 kilobases (kb), so LD and chromatin contact maps might be correlated at this scale even though
some causal SNPs regulate promoters over long genomic distances where LD is approximately zero. The
correspondence between chromatin contact frequencies and LD has yet to be comprehensively evaluated on
a genome-wide scale.

To address this question, we quantified the relationship between LD and chromatin contact frequency
genome-wide using Hi-C data from 5 diverse cell lines [21] and promoter capture Hi-C (PCHi-C) data from 17
primary blood cell types [12], combined with SNPs from the 1000 Genomes Project [24]. In several analyses,
we focus on blood cells to enable integration of B cell eQTLs [25] and blood-relevant data from the GWAS
catalog [1] with high resolution chromatin interaction data in a consistent cellular context. Using multiple
large scale analyses over billions of chromatin contacts and SNP pairs, we first demonstrate that LD is not a
proxy for regulatory interaction. In particular, LD decays at much shorter distances than chromatin contacts
and is no higher in regions with statistically significant chromatin interactions than distance matched regions
with non-significant interactions. Even at genomic distances < 25kb where LD and contact frequencies are
both high, their block patterns are rarely aligned. We then show that utilizing higher-order chromatin
organization is essential for accurate functional assignment of non-coding variants, having implications for
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fine mapping of causal variants and applications to precision medicine.
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Results

To comprehensively compare the genomic architectures of LD and chromatin contacts, we generated two
types of data structures from publicly available data (Supplementary Table 1). The first includes LD blocks
and pairwise LD between all high-quality, bi-allelic SNPs across individuals from each of the 1000 Genomes
Project superpopulations [24] (AFR: African, AMR: Ad Mixed American, EAS: East Asian, EUR: European,
SAS: South Asian). The second records contact frequencies between all pairs of fragments in 22 human cell
types with high-resolution Hi-C [21] or promoter capture Hi-C (PCHi-C) [12] data that measures interactions
between baited promoters and promoter interacting regions (PIRs). These chromatin contact data were
used to generate lists of statistically significant interacting regions and distance-matched regions with non-
significant interactions for each cell type using with methods that account for expected contact frequencies
and adjust for multiple testing. Significant chromatin interactions from Hi-C were computed using Juicer [26]
and represent statistical enrichment of contacts over a particular choice of local background, whereas those
from PCHi-C were identified using CHiCAGO [27] and indicate if a region is likely to be in the same contact
domain with a promoter or not. Due to the resolution of chromatin interaction assays, we could not compare
LD and 3D proximity between sites separated by less than 5kb where both values are expected to be high.

The resulting analyses span approximately 1.6 million LD blocks, 27 billion SNP pairs, and 3.1 million
statistically significant chromatin interactions (Supplementary Table 1). By analyzing the genome-wide rela-
tionship between LD and chromatin contacts from multiple perspectives, we show that LD is not correlated
with chromatin interactions and generally should not be used for mapping non-coding SNPs to genes and
pathways.

Chromatin interactions and LD have different genomic architectures

Both LD and chromatin contact frequency measure the strength of a relationship between pairs of genomic
sites. However, these two measures differ fundamentally in their scales: Chromatin contacts span much
longer distances (Figure 1). Genetic architecture forms LD blocks of median length 2kb (combined 1000
Genomes super-populations) in which a percentage of SNP pairs exceed a common threshold of R2 > 0.8 [28].
Strong LD pairs have a median distance of 13kb as they can be located in different blocks. On the other
hand, physical architecture forms regions enriched for interactions at much longer scales, including contact
domains (median 250kb [21]), focal interactions (median 270kb [21] or 350kb [12]), and topological domains
(median 840kb). This difference is evident in most genomic loci when contact frequency from a particular
cell type is plotted alongside LD from 1000 Genomes, both at the scale of TADs (Figure 2a) and within
smaller contact domains (Figure 2b) where chromatin interactions are frequent but LD structure is low or
limited to smaller LD blocks. Due to this difference in scale, non-coding SNPs frequently contact genes
located hundreds of kb away without being in LD with those genes (Figure 2b). These distal chromatin
interactions may differ across cell types, whereas LD does not (Figure 2c). A similar example is shown in
Supplementary Figure 1.

To quantify the decay rates of LD versus chromatin contacts genome-wide, we analyzed all pairs of sites
separated by a given genomic distance with respect to Hi-C contact frequency in ENCODE cell lines [21]
versus LD in 1000 Genomes individuals. This showed that contact frequency decays with genomic distance
much slower than LD both across (Figure 3, Supplementary Figure 2) and within human populations (Sup-
plementary Figure 4). Furthermore, statistically significant chromatin interactions occur between genomic
regions separated by dozens, hundreds, or even thousands of LD blocks (Supplementary Figure 6 panels
a-b), while most SNP pairs with non-zero LD cross 0-2 contact domains (Supplementary Figure 6, panel c).
PCHi-C data shows the same broad trends (Supplementary Figure 3). In summary, genetic and physical
architectures of human chromosomes differ at all scales (Figure 1).

Chromatin contact frequencies have low concordance with LD across genomic
distances

Contact frequency and LD could still be correlated at shorter genomic distances where LD is more often
non-zero. To explore this possibility, we analyzed the concordance of frequent Hi-C contacts and strong
LD values (R2 > 0.8) for pairs of sites within genomic windows from 5kb to 1.2mb (Methods). Chromatin
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Figure 1: Genetic and Physical Architectures LD blocks and strong LD pairs (R2 > 0.8) operate across
tens of kb or less, while chromatin interactions and multi-scale domains of enrichment span hundreds of kb,
with eQTLs roughly in between. Summaries are computed over all super-populations, tissue types, or cell
types in the relevant datasets.

interactions and strong LD co-occur about as often as expected if there was no association between the two
variables (Figure 4). Concordance is highest at short genomic distances and decays as LD approaches zero.
Notably, concordance is nearly zero at scales where statistically significant chromatin interactions still occur.
The maximum concordance and rate of decay differ across 1000 Genomes super-populations, with the lowest
concordance in African populations that have the fastest decay of LD. These patterns are consistent with the
two variables being independent and LD decaying more rapidly with genomic distance (Figure 3). Hence,
there is no evidence that LD and chromatin contacts are correlated at genomic distances of 5kb or more.

LD is not elevated in significant chromatin interactions

Next we compared LD and chromatin structure focusing on statistically significant chromatin interactions, as
these might harbor high LD SNPs even if less frequent chromatin contacts are rarely genetically linked. For
each statistically significant and distance-matched non-significant interaction, we computed the maximum
LD between pairs of SNPs occurring on opposing fragments. The ratio of interacting versus non-interacting
fragment LD is often close to 1 across all super-populations and cell types (Figure 5, Supplemental Table 2),
indicating no elevation of LD at interacting regions. In addition, LD is very low between non-coding regions
and interacting promoters in PCHi-C data, with 2−7% of interacting fragments located within the same LD

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/272245doi: bioRxiv preprint 

https://doi.org/10.1101/272245
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) NHEK, EAS, chr4:100475000-107075000

Contact Domain
LD Block
Significant Loop

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
LD

 (1
kb

 b
in

s,
 M

A
F 

0.
05

)

0

2

4

6

8

lo
g 2

 N
or

m
al

iz
ed

 H
i-C

 C
on

ta
ct

 C
ou

nt
 (5

kb
 b

in
s)

(b) NHEK, EAS, chr4:103475000-104075000

rs
17

03
29

96
 (e

Q
TL

 S
N

P
)

M
A

N
B

A
 (C

lo
se

st
 G

en
e 

to
 S

N
P

)

S
LC

9B
2 

(e
Q

TL
 T

ar
ge

t)

rs17032996 (eQTL SNP)
MANBA (Closest Gene to SNP)

SLC9B2 (eQTL Target)

(c) HUVEC, EAS, chr4:103475000-104075000
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Figure 2: Discordance between LD and Hi-C An annotated matrix illustrates differences between the
genomic scales of LD [24] (R2, upper triangle, green) versus Hi-C contact frequency [21] (lower triangle,
purple). Rows and columns are binned genomic coordinates (hg19) with lower bins near the upper left;
for example, row 10 column 11 stores the LD between a bin and its neighbor, while row 11 column 10
stores the contact frequency. More frequent contacts (5kb bins) are darker purple; higher LD (averaged over
non-zero LD pairs in 1kb bins) are darker green. Contact domains (nested purple squares) and significant
interactions (orange squares) were computed from Hi-C data. LD blocks (green squares) were computed
from 1000 Genomes genotypes. While some LD blocks fall within contact domains, there are also many
cases where they overlap domain boundaries. (a) A representative 6.6mb locus on chromosome 4 shows Hi-C
contacts (NHEK cells) span much longer distances than LD (EAS superpopulation). (b) A 600kb locus on
the same chromosome illustrates the complexities of mapping a non-coding SNP (rs17032996) to a target
gene. The closest gene MANBA falls within the same LD block as the SNP. However, Hi-C data shows
the SNP contacts the SLC9B2 gene ≈ 460kb away in NHEK cells, skipping over intervening expressed gene
MANBA. rs17032996 is also an eQTL in B cells [25] and significantly interacts with SLC9B2 in several blood
cell types [12]. (c) In HUVEC cells, the SNP no longer interacts with SLC9B2 and several contact domains
are lost.
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Cell Line Closest Gene LD (AFR) LD (AMR) LD (EAS) LD (EUR) LD (SAS)

Mon 9.9% 2.1% 4.3% 5.5% 5.0% 4.8%
Mac0 9.4% 1.7% 3.5% 4.4% 4.2% 4.0%
Mac1 10.1% 2.1% 4.4% 5.4% 5.1% 4.9%
Mac2 10.4% 2.2% 4.6% 5.6% 5.5% 5.2%
Neu 9.8% 2.5% 5.1% 6.3% 6.0% 5.4%
MK 11.9% 3.0% 5.9% 7.4% 6.9% 6.6%
EP 10.9% 2.4% 4.8% 6.0% 5.7% 5.4%
Ery 8.7% 2.8% 5.7% 7.0% 6.7% 6.3%
FoeT 7.0% 2.0% 4.1% 5.1% 4.8% 4.6%
nCD4 8.8% 2.4% 5.0% 6.3% 5.9% 5.6%
tCD4 7.9% 2.0% 4.1% 5.2% 4.9% 4.7%
aCD4 9.3% 2.3% 4.9% 6.2% 5.8% 5.5%
naCD4 8.6% 2.0% 4.3% 5.4% 5.1% 4.8%
nCD8 8.4% 2.4% 4.8% 6.1% 5.7% 5.4%
tCD8 9.2% 2.7% 5.3% 6.7% 6.2% 5.9%
nB 9.0% 2.2% 4.4% 5.8% 5.4% 5.1%
tB 8.7% 2.2% 4.2% 5.6% 5.2% 4.9%

Table 1: Accuracy of methods for mapping non-coding regions to genes Using PIRs from statistically
significant PCHi-C interactions in 17 blood cell types as a gold standard [12], we computed the percent
agreement of various heuristics for mapping non-coding regions to all baited promoters genome-wide. The
closest gene method predicts that a non-coding region interacts with the nearest promoter. The LD heuristic
predicts that a non-coding region interacts with any gene in its LD block (one prediction per 1000 Genomes
superpopulation). The agreement of LD is even lower than that of the closest gene: 2-7% versus 7-12%
across superpopulations.

block (Table 1). Thus, LD is not an adequate proxy for high-confidence chromatin interactions, including
those involving promoters.

LD is low between distal regulatory SNPs and their genes

Genetic variants associated with statistically significant differences in a gene’s expression (eQTLs) provide
evidence of functional relationships between regulatory regions and genes separated by long genomic dis-
tances. Indeed, target genes of GTEx eQTLs [29] and blood eQTLs [25] have median distances of 49 and
113kb, respectively. Combined with our other findings, these distances suggest that a distal eQTL and
its target gene are likely to have zero LD and thus be separated by a large number of LD blocks. We
therefore compared the frequency of eQTLs amongst non-coding regions that interact with gene promoters
versus distance-matched regions that do not. Analyzing B-cells where both PCHi-C [12] and eQTL [25] data
were available, statistically significant chromatin interactions were highly enriched for eQTLs across genomic
distances up to 1.6mb (Figure 6, Figure 1). In contrast, regions in strong LD with a promoter were only
enriched for eQTLs at genomic distances less than 100kb, emphasizing that more distal eQTLs are often
in 3D proximity to their target promoters but are not genetically linked to them. This result holds across
all super-populations. Thus, genomic distance and LD are poor predictors of the genes targeted by distal
eQTLs [11].

Mapping non-coding variants to genes with Hi-C produces more functional en-
richments than genomic distance or LD

If regulatory interactions are common at large genomic distances where LD is approximately zero, then
GWAS SNPs linked to genes via Hi-C should include more true gene targets than using closest genes or
genes in LD with the SNP. If true, then the set of genes associated with GWAS hits via Hi-C should also
share more functional annotations. To test this idea, we examined the magnitude and statistical significance
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of Gene Ontology (GO) enrichments for genes associated with all GWAS SNPs for a given phenotype via
PCHi-C interactions [12] (all genes with promoter interacting regions overlapping the SNP), genomic distance
(closest promoter to the SNP), or genetic distance (all promoters in the same LD-block as the SNP). Most
blood-relevant phenotypes in the GWAS catalog [30] had the largest number of significantly enriched GO
terms using blood cell PCHi-C assignment (Figure 7), even after controlling for the number of genes mapped
to GWAS SNPs. LD-based assignment occasionally produced a limited number of terms with effect sizes
larger than those from PCHi-C assignment (Figure 7c). Nonetheless, using LD resulted in fewer GO terms
associated with the phenotype and a lower area-under-the-curve than PCHi-C. As a negative control, we
examined GWAS SNPs for phenotypes not relevant to blood and found that closest gene and LD approaches
have more GO enrichments than for blood-relevant phenotypes, confirming that PCHi-C enrichments are
tissue-specific. Thus, PCHi-C data from blood does not correctly associate SNPs with genes for non-blood
phenotypes, highlighting the need for interaction data collected in the cell type of interest to harness the
power of chromatin interactions for functional assignment.
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Figure 3: LD and Hi-C contact decay with genomic distance Both Hi-C contact frequency [21] (panels
a-e) and LD (panel f) are anti-correlated with genomic distance (Spearman ρ between −0.5 and −0.71 for
Hi-C across cell lines; ρ ≈ −0.52 for LD). All plots display non-zero values from their respective datasets.
LD decays towards zero at much shorter genomic distance than contact frequency, with high LD SNP pairs
concentrated below 50kb. In contrast, Hi-C contacts are common up to and exceeding the median length
of contact domains (250kb) or TADs (840kb). Supplementary Figure 2 highlights decay up to 2mb, while
this figure highlights decay up to 100kb. Supplementary Figure 4 shows nearly identical LD scaling per
superpopulation. Contact frequencies vary in approximate proportion to sequencing depth and number of
replicates per cell line (Supplementary Table 1). Panel f) shows 836 million biallelic SNPs on chromosome
14 and is representative of other chromosomes.
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Figure 4: Genome-wide Hi-C and LD concordance Frequent Hi-C contacts and strong LD (R2 > 0.8)
co-occur less than 50% of the time at short genomic distances. Concordance is cut nearly in half at 40kb
where most LD has decayed to 0, and is nearly 0 at many scales where statistically significant chromatin
interations occur. In addition, concordance and rate of decay varies by super-population, with AFR having
only ≈ 12% concordance at short genomic distances
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Figure 5: Significant versus non-significant chromatin interaction LD For SNPs located on the frag-
ments of statistically significant and distance-matched non-significant chromatin interactions, the maximum
pairwise LD between SNPs (interaction LD) was computed for 5 Hi-C and 17 PCHi-C datasets. The ratio of
mean interaction LD for significant versus non-significant interactions quantifies how well LD acts as a proxy
for chromatin interactions; a ratio greater than 1 indicates significant interactions are enriched for SNPs in
strong LD. However, this ratio is near 1 for all cell types and superpopulations, indicating that LD is not a
sufficient proxy for chromatin interactions. Supplemental Table 2 provides raw values for this figure; ratios
smaller or larger than 1 are the result of relatively small differences in weak LD.
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Figure 6: eQTL enrichment B-cell eQTLs [25] are enriched across quantile-binned distances in statistically
significant B-cell PCHi-C interactions [12] (panel a). Promoter-interacting fragments with bait fragments
containing the closest gene are enriched for eQTLs at shorter distance bins (panel b), while interacting
fragments in strong LD (maximum pairwise R2 > 0.8, averaged across superpopulations) are only enriched
at the most proximal bin (panel c).

12

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/272245doi: bioRxiv preprint 

https://doi.org/10.1101/272245
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Diastolic Blood Pressure

0.0

2.5

5.0

7.5

10.0

GO Term (sorted by q−value)

−
lo

g1
0(

q−
va

lu
e)

Closest Gene LD Block PCHi−C

(b) Mean Platelet Volume

0.0

2.5

5.0

7.5

10.0

12.5

GO Term (sorted by q−value)
−

lo
g1

0(
q−

va
lu

e)

Closest Gene LD Block PCHi−C

(c) Monocyte Count

0.0

0.5

1.0

1.5

2.0

GO Term (sorted by q−value)

−
lo

g1
0(

q−
va

lu
e)

Closest Gene LD Block PCHi−C

(d) Body Mass Index

0

1

2

3

4

GO Term (sorted by q−value)

−
lo

g1
0(

q−
va

lu
e)

Closest Gene LD Block PCHi−C

Figure 7: GO enrichment for closest, same-LD-block, and PCHi-C bait genes Enrichment of GO
terms (Benjamini-Hochberg adjusted p-values, -log10 scale) in multiple blood-relevant phenotypes from the
GWAS catalog [30]. Methods for functional assignment of SNPs include using the closest gene, all genes
within the same LD block (EUR super-population), and promoter capture bait genes with a SNP located
in the promoter-interacting region of a statistically significant blood cell chromatin interaction [12]. Gray
horizontal lines indicate FDR cutoffs of 1, 5, and 10 percent. In blood-relevant phenotypes (panels a-c),
PCHi-C bait genes interacting in 3D with GWAS SNPs typically show more enrichment for a larger number
of terms than same-LD-block or closest gene approaches, whose enrichment is affected by large numbers of
false positives and negatives. For non-blood phenotypes, chromatin interactions in the wrong cell type can
have little or no enrichment compared to closest gene and same-LD-block approaches (panel d).
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Discussion

Chromatin interactions and LD are both pairwise measurements between genomic loci that show block
patterns along mammalian chromosomes. Given their similar structure, it might be tempting to speculate
that LD blocks correspond to or are contained within three-dimensional chromatin domains. In this study,
we conducted diverse genome-wide analyses across different length scales and showed that LD maps are
not correlated with chromatin interaction maps. The main factor driving these differences is the frequency
of chromatin interactions over genomic distances where the genetic linkage between SNPs is close to zero.
Significant chromatin interactions often span hundreds or sometimes thousands of LD blocks. However,
even at genomic distances where contact frequencies and LD are both high on average, the correlation
between their block patterns is weak. This discordance is perhaps not surprising given the different origins
of chromatin domains (insulated regulatory regions) and LD blocks (recombination), as well as the increasing
number of examples of distal enhancers and eQTLs documented in the literature. Despite growing awareness
that regulatory interactions need not be in LD or nearby on the genome, this phenomenon appears not to
have been quantified systematically genome-wide until now. To do so, we developed computationally efficient
statistical analyses and leveraged 5 ENCODE cell lines [21], 17 human primary blood cell types [12], and
5 superpopulations from the 1000 Genomes Project [24]. The results document that LD and chromatin
interactions are indeed uncorrelated at genomic distances of 5kb or more.

This study has important implications for associating non-coding variants with genes, downstream phe-
notypes, and molecular mechanisms. Our results show that variants have great potential to regulate genes
beyond their LD block. Hence, the common practice of mapping candidate regulatory variants to the closest
gene or other genes in the same LD block will typically miss most chromatin interactions between the variant
and gene promoters. In addition, LD is the same in all cell types whereas within-TAD regulatory interactions
vary across cell types [21] (Figure 2, Supplementary Figure 1). Despite the emergence of chromatin inter-
action data as a new paradigm for mapping non-coding variants to genes, LD blocks and genomic distance
are still widely used, resulting in many GWAS hits being annotated with incorrect genes. There are good
reasons why genomic distance and LD have been used to annotate regulatory variants: these quantities are
relatively easy to compute, and only a few cell types currently have high enough resolution chromatin inter-
action data (≈ 1-5kb) for linking specific regulatory variants to promoters. The lack of correlation between
these common heuristics and high resolution chromatin contacts underscores the importance of generating
or computationally predicting chromatin structure across many more cell types.

In addition to highlighting the need for incorporating chromatin interactions into functional assign-
ment, the discordance between chromatin contact frequency and LD has evolutionary implications. One
consequence is that entire TADs or sub-TADs do not typically segregate as single haplotypes in human pop-
ulations, enabling independent selection on regulatory variants versus the promoter and coding variants of
their target genes. Furthermore, recombination blocks that span chromatin domain boundaries indicate that
regulatory and coding variants from one domain can segregate with variants from the adjacent domain. The
fact that haplotype breakpoints do not align with chromatin boundaries may indicate that recombination
is deleterious at these functional elements, perhaps due to the mutagenic effects of recombination. These
findings are different from observations regarding fixed structural differences between genomes of different
mammals, which tend to preserve TADs with breakpoints enriched at TAD boundaries [31, 32]. We therefore
conclude that while chromatin domains are functional genomic entities maintained as syntenic units over
evolutionary time, recombination is independent of chromatin structure. This creates novel haplotypes of
the genomic elements within and between TADs on which selection can operate.
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Methods

In order to perform large scale analyses, some caveats were necessary in order to place reasonable bounds
on compute time and memory, even in a high-performance computing environment. For example, LD was
computed between SNP pairs at most 2mb apart and stored if LD was 0.01 or greater. Also, the resolution of
Hi-C and PCHi-C data prevented examining correlations between chromatin interactions and LD at genomic
distances below 5kb. To make our choices transparent and our analyses reproducible, our code is available
at https://github.com/shwhalen/loopdis.git.

Hi-C data [21] was obtained from the NCBI Gene Expression Omnibus using accession GSE63525 (in-
cluding contact domains, statistically significant loops, and sparse contact matrices along with coefficients for
normalization and expectation). Promoter capture Hi-C data [12] was obtained from Open Science Frame-
work (https://osf.io/u8tzp/). All data sources use human reference genome hg19. Analyses utilized bcftools
1.6, bedtools 2.27.1 [33], plink 1.90b5 [34], pandas 0.22.0 [35], matplotlib 2.1.1 [36], seaborn 0.8.1, ggplot
2.2.1 [37], and GNU Parallel 20171222 [38]. Python 3.6.4 was provided by the Miniconda distribution; R
3.4.3 was compiled from source using gcc 7.2.1.

Linkage Disequilibrium

Bi-allelic SNPs from phase 3 of the 1000 Genome Project were first converted to plink’s binary BED format
(--make-bed --allow-extra-chr --biallelic-only), and the pairwise LD computed (--r2) for all SNPs
with a minimum MAF of 5% (--maf 0.05) located within 2mb of each other (--ld-window-kb 2000). The
number of pairwise comparisons allowed within a window was increased (--ld-window 10000), and the
default R2 filter lowered from 20% down to 1% (--ld-window-r2 0.01). Pairs below this threshold were
assigned R2 = 0. LD computations were performed separately for each superpopulation by using the 1000
Genomes panel file (integrated call samples v3.20130502.ALL.panel) and the --filter flag.

LD blocks were computed using plink (utilizing the algorithm from Gabriel et al. [28]) with the --blocks
no-pheno-req no-small-max-span --blocks-max-kb 2000 flags. Blocks were computed separately for
each superpopulation using the same --filter flag and panel file.

Interacting versus Non-Interacting LD

For each 1000 Genomes superpopulation, bi-allelic SNPs with a minimum MAF of 5% were intersected with
either Hi-C [21] or promoter capture Hi-C [12] fragments using the bedtools pairtobed command with
the -type both flag. For each pair of interacting fragments, the maximum LD between SNPs on different
fragments was computed. The mean of this maximum pairwise LD was computed separately for statistically
significant and non-significant interactions in order to compute a ratio.

For Hi-C data, negatives (non-significantly interacting fragments) were obtained by shuffling a list of
positives (significant interactions) called by the Juicer pipeline at 10% FDR [26] along the same chromosome.
For promoter capture Hi-C data, positives and negatives were obtained from a list of interactions scored by
the CHiCAGO pipeline [27]. As in the original paper, negatives were interactions with a score less than
5. For both datasets, negatives were distance-matched to positives using quantile binning of interaction
distance.

Hi-C versus LD Concordance

Observed over expected Hi-C values were computed using formulas from Rao et al. [21] applied to VC-
normalized contact counts at 5kb resolution for each ENCODE cell line. For comparable resolution, LD per
5kb genomic bin was computed for each 1000 Genomes superpopulation using the 75th percentile of pairwise
LD values in the bin. This was more robust outliers and heavily zero-skewed LD distributions than the
average or median.

Concordance was computed based on whether a bin’s LD value was strong (R2 > 0.8) and its chromatin
contact frequency was strong (above the 75th percentile of contact frequencies), for all bins located in non-
overlapping genomic windows of fixed size. This was repeated for window sizes of 5, 10, 20, 40, 80, 160,
320, 640, and 1280kb to examine concordance across multiple scales, and without variation introduced by
different TAD-calling algorithms.
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eQTL Statistics

B-cell eQTLs [25] were intersected with naive B-cell promoter capture Hi-C interactions [12]; the eQTL
was required to overlap the promoter-interacting region and the eQTL target was required to overlap the
bait fragment. The presence or absence of an interacting eQTL was stored in a binary vector. Next, the
closest gene to each promoter-interacting fragment was computed using bedtools closest and Ensembl
gene annotations. The presence or absence of the closest gene in the corresponding bait fragment was
stored in a binary vector. Next, the statistical significance of chromatin interactions (thresholded using a
CHiCAGO score of 5) was stored in a binary vector. Finally, for each superpopulation, a binary vector
stored the maximum pairwise LD between fragments.

eQTLs were tested for enrichment in statistically significant chromatin interactions, interactions where
the bait was the closest gene, and interactions where the maximum pairwise LD between fragments was
> 0.8 (averaged over superpopulations). Interactions were quantile binned by distance up to 1.6mb so that
all entries in the contingency table would be non-zero. For each distance bin, the odds ratio was computed as
the ratio of the diagonal to the off-diagonal entries of the contingency table, and the p-value was computed
using R’s fisher.test function.

Gene Ontology Enrichment

The promoter-interacting region of statistically significant PCHi-C interactions [12] was intersected with
SNPs for the 30 most abundant phenotypes in the GWAS catalog [30] (release 2018-01-31). For each GO
term, a Fisher’s exact test was computed on a 2 by 2 contingency table counting if the interaction contained a
GWAS SNP for the phenotype in its PIR, and whether or not the interaction’s bait gene was annotated with
that GO term. Benjamini-Hochberg correction for multiple hypothesis testing was applied to the resulting
p-values. For comparison, this was repeated for the closest gene to each GWAS SNP, as well as all genes in
the same LD block as the GWAS SNP.
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Supplemental Tables

(a) Cell Type Statistics

Assay Cell Type Acronym Reps. Unique Read Pairs Sig. Interactions

Hi-C Lymphoblastoid cells GM12878 9 4,907,147,001 9,448
Hi-C Fetal lung fibroblasts IMR90 2 1,136,673,290 8,040
Hi-C Epidermal skin keratinocytes NHEK 1 664,899,299 4,929
Hi-C Erythroleukemia cells K562 2 932,208,867 6,057
Hi-C Umbilical vein endothelial cells HUVEC 1 460,393,495 3,865
PCHi-C Megakaryocytes MK 4 653,848,788 150,779
PCHi-C Erythroblasts Ery 3 588,786,672 151,215
PCHi-C Neutrophils Neu 3 736,055,569 142,435
PCHi-C Monocytes Mon 3 572,357,387 165,947
PCHi-C Macrophages M0 Mac0 3 668,675,248 180,190
PCHi-C Macrophages M1 Mac1 3 497,683,496 171,031
PCHi-C Macrophages M2 Mac2 3 523,561,551 186,172
PCHi-C Endothelial precursors EP 3 420,536,621 145,888
PCHi-C Naive B cells nB 3 629,928,642 189,720
PCHi-C Total B cells tB 3 702,533,922 213,539
PCHi-C Fetal thymus FoeT 3 776,491,344 166,743
PCHi-C Naive CD4+ T cells nCD4 4 844,697,853 210,074
PCHi-C Total CD4+ T cells tCD4 3 836,974,777 199,525
PCHi-C Non-activated total CD4+ T cells naCD4 3 721,030,702 211,720
PCHi-C Activated total CD4+ T cells aCD4 3 749,720,649 213,235
PCHi-C Naive CD8+ T cells nCD8 3 747,834,572 216,232
PCHi-C Total CD8+ T cells tCD8 3 628,771,947 204,382

(b) LD Statistics

Superpop. # SNP Pairs # LD Blocks BL .05 BL .5 BL .95 BP .05 BP .5 BP .95

AFR 5,447,813,153 565,469 10 1,106 16,540 2 5 53
AMR 10,353,472,856 296,861 9 2,076 33,784 2 7 81
EAS 3,166,821,307 216,961 8 2,833 47,733 2 8 105
EUR 4,156,780,073 242,446 8 2,502 43,067 2 7 100
SAS 4,079,746,085 266,508 9 2,277 38,378 2 7 93

Supplementary Table 1: Dataset statistics a) Summary of Hi-C [21] and promoter capture Hi-C (PCHi-C)
[12] datasets. Statistically significant (sig.) Hi-C interactions were called on combined replicates (reps.) by
the Juicer pipeline with a 10% false discovery rate (FDR) [26], while PCHi-C interactions were scored by the
CHiCAGO pipeline [27] with a significance threshold of 5. PCHi-C has 15-17 fold enrichment for promoter
interactions, resulting in an effective coverage of 165 billion read pairs compared to 15 billion for Hi-C [12].
b) Number of unique SNP pairs and LD blocks per superpopulation. LD block quantiles (.05, .5, and .95)
for length (BL) and unique SNP pairs (BP) are also given. SNPs were filtered as described in Methods.
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mean(max(R2))
Cell Type Superpopulation Significant

K562 AFR 0 0.193
1 0.163

AMR 0 0.242
1 0.216

EAS 0 0.163
1 0.137

EUR 0 0.191
1 0.162

SAS 0 0.172
1 0.144

GM12878 AFR 0 0.161
1 0.141

AMR 0 0.202
1 0.183

EAS 0 0.145
1 0.123

EUR 0 0.167
1 0.145

SAS 0 0.152
1 0.129

IMR90 AFR 0 0.198
1 0.165

AMR 0 0.242
1 0.209

EAS 0 0.177
1 0.145

EUR 0 0.203
1 0.169

SAS 0 0.186
1 0.153

NHEK AFR 0 0.216
1 0.175

AMR 0 0.267
1 0.233

EAS 0 0.167
1 0.133

EUR 0 0.200
1 0.166

SAS 0 0.177
1 0.142

HUVEC AFR 0 0.209
1 0.176

AMR 0 0.260
1 0.230

EAS 0 0.166
1 0.139

EUR 0 0.199
1 0.169

SAS 0 0.178

Continued on next page
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mean(max(R2))
Cell Type Superpopulation Significant

1 0.149
Mon AFR 0 0.151

1 0.145
AMR 0 0.192

1 0.183
EAS 0 0.149

1 0.145
EUR 0 0.164

1 0.158
SAS 0 0.152

1 0.146
Mac0 AFR 0 0.142

1 0.124
AMR 0 0.183

1 0.160
EAS 0 0.139

1 0.122
EUR 0 0.155

1 0.136
SAS 0 0.143

1 0.124
Mac1 AFR 0 0.147

1 0.134
AMR 0 0.188

1 0.171
EAS 0 0.144

1 0.133
EUR 0 0.160

1 0.146
SAS 0 0.148

1 0.136
Mac2 AFR 0 0.146

1 0.141
AMR 0 0.187

1 0.178
EAS 0 0.144

1 0.139
EUR 0 0.159

1 0.154
SAS 0 0.147

1 0.142
Neu AFR 0 0.157

1 0.174
AMR 0 0.198

1 0.212
EAS 0 0.155

1 0.170
EUR 0 0.171

1 0.184

Continued on next page
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mean(max(R2))
Cell Type Superpopulation Significant

SAS 0 0.159
1 0.171

MK AFR 0 0.160
1 0.162

AMR 0 0.202
1 0.200

EAS 0 0.159
1 0.163

EUR 0 0.175
1 0.177

SAS 0 0.162
1 0.165

EP AFR 0 0.148
1 0.141

AMR 0 0.190
1 0.177

EAS 0 0.145
1 0.140

EUR 0 0.161
1 0.154

SAS 0 0.148
1 0.144

Ery AFR 0 0.148
1 0.162

AMR 0 0.189
1 0.199

EAS 0 0.146
1 0.161

EUR 0 0.162
1 0.177

SAS 0 0.149
1 0.163

FoeT AFR 0 0.128
1 0.131

AMR 0 0.168
1 0.169

EAS 0 0.125
1 0.132

EUR 0 0.139
1 0.144

SAS 0 0.128
1 0.133

nCD4 AFR 0 0.149
1 0.151

AMR 0 0.191
1 0.190

EAS 0 0.148
1 0.153

EUR 0 0.163

Continued on next page
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mean(max(R2))
Cell Type Superpopulation Significant

1 0.166
SAS 0 0.151

1 0.155
tCD4 AFR 0 0.139

1 0.141
AMR 0 0.179

1 0.180
EAS 0 0.137

1 0.143
EUR 0 0.151

1 0.156
SAS 0 0.140

1 0.144
aCD4 AFR 0 0.151

1 0.151
AMR 0 0.192

1 0.191
EAS 0 0.149

1 0.154
EUR 0 0.165

1 0.168
SAS 0 0.152

1 0.155
naCD4 AFR 0 0.145

1 0.145
AMR 0 0.187

1 0.184
EAS 0 0.144

1 0.147
EUR 0 0.159

1 0.161
SAS 0 0.147

1 0.148
nCD8 AFR 0 0.146

1 0.151
AMR 0 0.187

1 0.190
EAS 0 0.144

1 0.153
EUR 0 0.159

1 0.165
SAS 0 0.147

1 0.154
tCD8 AFR 0 0.153

1 0.155
AMR 0 0.195

1 0.194
EAS 0 0.153

1 0.160

Continued on next page
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mean(max(R2))
Cell Type Superpopulation Significant

EUR 0 0.168
1 0.172

SAS 0 0.156
1 0.160

nB AFR 0 0.145
1 0.142

AMR 0 0.187
1 0.180

EAS 0 0.144
1 0.144

EUR 0 0.159
1 0.157

SAS 0 0.146
1 0.145

tB AFR 0 0.143
1 0.141

AMR 0 0.184
1 0.178

EAS 0 0.141
1 0.143

EUR 0 0.156
1 0.155

SAS 0 0.144
1 0.144

Supplementary Table 2: Significant versus non-significant interaction LD For SNPs located on the
fragments of statistically significant and distance-matched non-significant chromatin interactions, the maxi-
mum pairwise LD between SNPs (interaction LD) was computed for 5 Hi-C and 17 PCHi-C datasets. The
mean interaction LD per cell type is given for statistically significant (1) and non-significant (0) interactions.
These means were used to compute the ratios shown in Figure 5.
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Supplemental Figures
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(a) GM12878, EAS, chr14:85440381-93881268

Contact Domain
LD Block
Significant Loop

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
LD

 (1
kb

 b
in

s,
 M

A
F 

0.
05

)

2

0

2

4

6

8

10

12

lo
g 2

 N
or

m
al

iz
ed

 H
i-C

 C
on

ta
ct

 C
ou

nt
 (5

kb
 b

in
s)

(b) GM12878, EAS, chr14:88440381-88881268
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(c) NHEK, EAS, chr14:88440381-88881268
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Supplementary Figure 1: Discordance between LD and Hi-C An annotated matrix illustrates differences
between the genomic scales of LD [24] (R2, upper triangle, green) versus Hi-C contact frequency [21] (lower
triangle, purple). Rows and columns are binned genomic coordinates (hg19) with lower bins near the
upper left; for example, row 10 column 11 stores the LD between a bin and its neighbor, while row 11
column 10 stores the contact frequency. More frequent contacts (5kb bins) are darker purple; higher LD
(averaged over non-zero LD pairs in 1kb bins) are darker green. Contact domains (nested purple squares)
and significant interactions (orange squares) were computed from Hi-C data. (a) A representative 8.5mb
locus on chromosome 14 shows Hi-C contacts (GM12878 cells) span much longer distances than LD (EAS
superpopulation). (b) A 400kb locus on the same chromosome illustrates the complexities of mapping a
non-coding SNP (rs73312867) to a target gene. The closest gene GPR65 falls within the same LD block
as the SNP. However, Hi-C data shows the SNP contacts the SPATA7 gene ≈ 380kb away, skipping over
intervening gene KCNK10. (c) In NHEK cells, the SNP interacts with KCNK10 instead.
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(a) Hi-C (K562)
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(b) Hi-C (GM12878)
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(c) Hi-C (IMR90)

−1

0

1

2

3

0 50
0

10
00

15
00

20
00

Genomic Distance (kilobases)

lo
g 1

0(
H

i−
C

 C
on

ta
ct

 C
ou

nt
)

(d) Hi-C (NHEK)
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(e) Hi-C (HUVEC)
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(f) LD (All)
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Supplementary Figure 2: LD and Hi-C contacts decay with genomic distance Both Hi-C contact
frequency [21] (panels a-e) and LD (panel f) are anti-correlated with genomic distance (Spearman ρ between
−0.5 and −0.71 for Hi-C across cell lines; ρ ≈ −0.52 for LD). All plots display non-zero values from their
respective datasets. LD decays towards zero at much shorter genomic distance than contact frequency, with
most high LD SNP pairs concentrated below 50kb. Hi-C contacts are common at longer genomic distances
up to and exceeding the median length of contact domains (250kb) or TADs (840kb). Figure 3 highlights
decay up to 100kb, while this figure highlights decay up to 2mb. Supplementary Figure 4 shows nearly
identical LD scaling per superpopulation. Panel f) shows 836 million biallelic SNPs on chromosome 14 and
is representative of other chromosomes.

29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/272245doi: bioRxiv preprint 

https://doi.org/10.1101/272245
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) PCHi-C (aCD4)
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(b) PCHi-C (EP)

0.1

1.0

10.0

0 50
0

10
00

15
00

20
00

Genomic Distance (kilobases)

lo
g 1

0(
C

H
iC

A
G

O
 S

co
re

)

(c) PCHi-C (Ery)
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(d) PCHi-C (FoeT)
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(e) PCHi-C (Mac0)

0.1

1.0

10.0

0 50
0

10
00

15
00

20
00

Genomic Distance (kilobases)

lo
g 1

0(
C

H
iC

A
G

O
 S

co
re

)

(f) PCHi-C (Mac1)
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(g) PCHi-C (Mac2)
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(h) PCHi-C (MK)
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(i) PCHi-C (Mon)
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(j) PCHi-C (naCD4)
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(k) PCHi-C (nB)
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(l) PCHi-C (nCD4)
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Supplementary Figure 3: PCHi-C contact decay with genomic distance Promoter Capture Hi-C
contacts are anti-correlated with distance in 17 blood cell types. Decay is similar to Supplementary Figure 2,
though here an interaction score (quantified by CHiCAGO [27]) is used rather than normalized contact
frequency. A score above 5 denotes statistically significant interactions, and this threshold is indicated
with a dashed line. Interaction distances are concentrated below 1mb, though a large number of significant
interactions exist at 500kb, well beyond the 40kb dropoff in LD seen in Figure 3.
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(m) PCHi-C (nCD8)
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(n) PCHi-C (Neu)
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(o) PCHi-C (tB)
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(q) PCHi-C (tCD8)
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Supplementary Figure 3: PCHi-C contact decay with genomic distance (cont.) Promoter Capture
Hi-C contacts are anti-correlated with distance in 17 blood cell types. Decay is similar to Supplementary
Figure 2, though here an interaction score (quantified by CHiCAGO [27]) is used rather than normalized
contact frequency. A score above 5 denotes statistically significant interactions, and this threshold is indicated
with a dashed line. Interaction distances are concentrated below 1mb, though a large number of significant
interactions exist at 500kb, well beyond the 40kb dropoff in LD seen in Figure 3.
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Supplementary Figure 4: LD decay by superpopulation Scaling of LD with genomic distance shows
moderate anti-correlation for all superpopulations. Figure 2 shows combined LD scaling and observed Hi-C
contact frequency scaling by cell line.
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Supplementary Figure 5: Interaction LD decay by superpopulation Scaling of LD with genomic dis-
tance for SNPs located on statistically significant chromatin interactions shows moderate anti-correlation
for all superpopulations. Figure 2 shows combined LD scaling (not restricted to interacting chromatin) and
observed Hi-C contact frequency scaling by cell line.
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(a) Chromatin interactions from blood cell types
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(b) Chromatin interactions from ENCODE cell lines

EUR SAS

AFR AMR EAS

0−
10

10
−

50
50

−
10

0
10

0−
50

0
>

 5
00

0−
10

10
−

50
50

−
10

0
10

0−
50

0
>

 5
00

0−
10

10
−

50
50

−
10

0
10

0−
50

0
>

 5
00

0−
10

10
−

50
50

−
10

0
10

0−
50

0
>

 5
00

0−
10

10
−

50
50

−
10

0
10

0−
50

0
>

 5
00

10

1000

10

1000

# Crossed LD Blocks

lo
g(

C
ou

nt
)

(c) SNP pairs with non-zero LD
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Supplementary Figure 6: Interaction crossings Number of LD blocks crossed by statistically significant
chromatin interactions across all chromosomes in 17 primary blood cell types [12] (panel a) and 5 ENCODE
cell lines [21] (panel b), grouped by superpopulation. Many statistically significant interactions cross hun-
dreds or thousands of LD blocks. Panel c) shows the number of contact domains crossed by SNP pairs with
non-zero LD, summed over 5 ENCODE cell lines, grouped by superpopulation.
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