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Abstract10

Motivation:11

Identifying transcription factor binding sites is the first step in pinpointing non-coding mutations12

that disrupt the regulatory function of transcription factors and promote disease. ChIP-seq is13

the most common method for identifying binding sites, but performing it on patient samples is14

hampered by the amount of available biological material and the cost of the experiment. Existing15

methods for computational prediction of regulatory elements primarily predict binding in genomic16

regions with sequence similarity to known transcription factor sequence preferences. This has limited17

efficacy since most binding sites do not resemble known transcription factor sequence motifs, and18

many transcription factors are not even sequence-specific.19

Results:20

We developed Virtual ChIP-seq, which predicts binding of individual transcription factors in new21

cell types using an artificial neural network that integrates ChIP-seq results from other cell types22

and chromatin accessibility data in the new cell type. Virtual ChIP-seq also uses learned asso-23

ciations between gene expression and transcription factor binding at specific genomic regions.24

This approach outperforms methods that use transcription factor sequence preferences in the25

form of position weight matrices, predicting binding for 34 transcription factors (accuracy > 0.99;26

Matthews correlation coefficient > 0.3). In at least one validation cell type, performance of Virtual27

ChIP-seq is higher than all participants of the DREAM Challenge for in vivo transcription factor28

binding site prediction in 4 of 9 transcription factors that we could compare to.29

Availability:30

The datasets we used for training and validation are available at https://virchip.hoffmanlab.org.31

We have deposited in Zenodo the current version of our software (http://doi.org/10.5281/32

zenodo.1066928), datasets (http://doi.org/10.5281/zenodo.823297), and the predictions for33

34 transcription factors on Roadmap cell types (http://doi.org/10.5281/zenodo.1066932).34
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1 Introduction35

Transcription factor (TF) binding regulates gene expression. Each TF can harmonize expression of36

many genes by binding to genomic regions that regulate transcription. Cellular machinery utilizes37

these master regulators to regulate key cellular processes and adapt to environmental stimuli.38

Alteration in sequence or quantity of a given TF can impact expression of many genes. In fact,39

these alterations can be the primary cause of hereditary disorders, complex disease, autoimmune40

defects, and cancer1.41

TFs bind to accessible chromatin based on weak non-covalent interactions between amino acid42

residues and nucleic acids. DNA’s primary structure (sequence)2, secondary structure (shape)3, and43

tertiary structure (conformation)4 all play roles in TF binding. Many TFs form a complex with44

others as well as chromatin-binding proteins and therefore bind to DNA indirectly. Some TFs also45

have different isoforms and undergo various post-translational modifications. In vitro assays, such46

as high throughput systematic evolution of ligands by exponential enrichment (HT-SELEX)5 and47

protein binding microarrays6, have provided a compelling understanding of context-independent48

TF sequence and shape preference7. Yet, for the aforementioned reasons, performance of models49

trained on these in vitro data are poor when applied on in vivo experiments8,9. To address this50

challenge, we must explore how to better model DNA shape, TF-TF interactions, and context-51

dependent TF binding.52

Chromatin immunoprecipitation and sequencing (ChIP-seq)10 and similar methods, such as53

ChIP-exo11 and ChIP-nexus12, can map the presence of a given TF in the genome of a biological54

sample. To map TFs, these assays require a minimum of 1,000,000 to 100,000,000 cells, depending55

on properties of the TF itself and available antibodies. Such large numbers of cells are not often56

available from clinical samples. Therefore, it is impossible to systematically assess TF binding in57

most disease systems. Assessing chromatin accessibility through transposase-accessible chromatin58

using sequencing (ATAC-seq)13, however, requires only hundreds or thousands of cells. One can59

obtain this many cells from many more clinical samples. While chromatin accessibility does not de-60

termine TF binding, several methods use this information together with knowledge of TF sequence61

preference, genomic conservation, and other genomic features to predict TF binding14,15,16.62

Predicting TF binding with motif discovery tools within chromatin accessible regions has helped63

us understand the role of several TFs in various disease. For example, He et al.17 used motif64

discovery tools to identify role of OCT1 and NKX3-1 after prolonged androgen stimulation in65

prostate cancer. Similarly, Bailey et al.18 discovered that a known breast cancer risk polymorphism66

is an ESR1 binding site in its wild-type context. This ESR1 binding site is also a hotspot of67

somatic non-coding mutations in its vicinity. We propose that using more accurate tools to predict68

TF binding will allow understanding the role of TF binding in more contexts.69

Previous studies have used various approaches to predict TF binding. Several methods use unsu-70

pervised approaches such as hierarchical mixture models14 or hidden Markov models15 to identify71

transcription factor footprint using chromatin accessibility data. These approaches use sequence72

motif scores to attribute footprints to different transcription factors. Convolutional neural network73

models can boost precision by learning sequence preferences from in vivo, rather than in vitro74

data20,21. Variation in sequence specificity and cooperative binding of some transcription factors75

prevents these methods from accurately predicting binding of all transcription factors. A more re-76

cent approach uses matrix completion to impute TF binding using a 3-mode tensor representing77

genomic positions, cell types, and TF binding22. This method doesn’t rely on sequence specificity,78

but can only predict TF binding in well-studied cell types with many ChIP-seq datasets. This79

means one cannot use it to predict binding in a cell type where ChIP-seq is not possible, such as80

limited clinical samples.81

Identifying the best approach for predicting TF binding remains a challenge, because most82
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Figure 1: Most ChIP-seq peaks lack the TF’s sequence motif. (a) Fraction of ENCODE
ChIP-seq peaks for a TF with any JASPAR sequence motif from the TF’s family. Boxplots show the
distribution among datasets from different cell types and replicates. Horizontal line of boxplot: me-
dian. Box range: interquartile range (IQR). Whisker: most extreme value within quartile ±1.5 IQR.
Individual points: outliers beyond a whisker. (b) Number of TFs with no sequence motif (red),
TFs where less than 50% of peaks have the sequence motif (low motif occupancy, green), and TFs
where 50% or more of peaks have the sequence motif (high motif occupancy, blue). (c) Central
enrichment19 of a TF’s motif is lower for TFs with motif occupancy of less than 50% compared
to TFs with motif occupancy of 50% or more. (d) For TFs with a small number of peaks match-
ing sequence motif of the same TF, such as ATF3, central enrichment of the motif is also low. In
contrast, most MAFK peaks both contain its sequence motif and show central enrichment.
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studies use different benchmarking approaches. For example, one earlier study14 only assesses pre-83

diction on genomic regions that match the TF’s sequence motif. By excluding ChIP-seq peaks not84

matching the TF’s sequence motif from benchmarking, it underestimates false negative peaks and85

overestimates prediction accuracy. Most previous studies benchmark their predictions using the86

area under receiver operating characteristic curve (auROC) statistic22,23,24. When test data is im-87

balanced, meaning it has very different numbers of positive and negative examples, using auROC88

misleads evaluators25,26. Unfortunately, the TF binding status of genomic regions is highly imbal-89

anced, making auROC alone a poor metric for evaluating TF binding prediction. Evaluation is90

further complicated by wildly varying prediction performance across different TFs. Recently, the91

ENCODE-DREAM in vivo TF Binding Site Prediction Challenge (DREAM Challenge) introduced92

guidelines for assessing TF binding prediction27. They recommend reporting both auROC, which93

assesses false negative predictions and the area under precision-recall curve (auPR), which also94

assesses false positives.95

RNA-seq allows us to obtain transcriptome data from samples with small cell counts, including96

patient samples. We hypothesized that we could leverage the transcriptome to better predict TF97

binding. Previous methods have predicted gene expression using information on active regulatory98

elements28,29,30. Others have predicted chromatin accessibility using gene expression data31, but99

they haven’t predicted TF binding using transcriptome data, as we do below.100

Here, we introduce Virtual ChIP-seq, a novel method for more accurate prediction of TF binding.101

Virtual ChIP-seq predicts TF binding by learning from publicly available ChIP-seq experiments.102

Unlike Qin and Feng23, it can do this in new cell types with no existing ChIP-seq data. Virtual103

ChIP-seq also learns from other data such as genomic conservation, and the association of gene104

expression with TF binding.105

Virtual ChIP-seq also accurately predicts the locations of DNA-binding proteins without known106

sequence preference. This would be impossible for most existing methods, which rely on sequence107

preference. Strictly speaking, only some of these proteins are TFs, but we usually refer to all108

DNA-binding proteins as TFs in this paper for ease of communication and comparison with other109

methods.110

Virtual ChIP-seq predicts binding of 34 TFs in new cell types with a minimum Matthew’s111

correlation coefficient (MCC) of 0.3 and accuracy of 0.99 (Table 1). We predicted binding of these112

34 TFs on Roadmap32 cell types and provide these predictions as a track hub for community use113

(https://virchip.hoffmanlab.org).114

2 Results115

2.1 Sequence motifs are absent in most TF binding sites116

2.1.1 Most ChIP-seq peaks lack the TF’s relevant sequence motif117

Many computational tools predict TF binding using sequence preference data14,15. Most tools118

represent TF sequence preference in position weight matrix (PWM) format. PWMs encode the119

likelihood for presence of each nucleotide at different positions of a sequence motif. With tools such120

as FIMO33, we can efficiently search and rank genomic regions that match TF sequence motifs.121

One cannot determine a TF’s binding sites based solely on its sequence preference. We can iden-122

tify some additional properties, such as co-binding partners, from high-throughput experiments. For123

other properties, such as post-translational modifications to the TF, we lack corresponding large-124

scale data. Therefore, we expect existing computational prediction methods to be more accurate for125

TFs where post-translational modifications and co-binding partners contribute less to TF binding.126

For TFs with more complex biology, however, we expect computational prediction methods to fail.127
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Figure 2: Virtual ChIP-seq learns from association of gene expression and TF bind-
ing at each genomic bin. This example shows Virtual ChIP-seq analysis for the MYC TF.
(a) Gene expression levels for 5000 genes in 12 cell types. We ranked RNA-seq RPKM expres-
sion values within each cell type. This matrix shows a subset of 5000 high-variance genes, sorted
by variance of each gene’s expression between cell types. Blue: row minimum; white: median ex-
pression; red: row maximum. (b) ChIP-seq signal for 100 bp bins in 12 cell types, taken from
four larger regions (25 bins each) on chromosome 5. We quantile-normalized ChIP signal from
MACS software among cell types. This matrix shows a subset of the 54,037 bins on chromosome 5
which have TF binding in at least one training cell type. White: column minimum (0.0); black:
column maximum (1.0). Cyan: a region in the NREP locus with MYC binding in GM12878; ma-
genta: a region upstream of SLC22A4 with MYC binding in K562. (c) Association matrix: gene
expression–ChIP signal correlation between 100 genomic bins and 5000 high-variance genes. This
is a subset of the larger 54,037 × 5,000 association matrix for chromosome 5. Each cell shows
the Pearson correlation for 12 cell types between expression for a particular gene and ChIP signal
at a particular genomic bin. Orange: negative correlation; white: p-value of Pearson correlation
greater than 0.1 (NA); Purple: positive correlation. (d) (Top) Expression score plots for a 100 bp
bin in the NREP locus. Each plot has one point for each of 184 genes with non-NA correla-
tion values at that bin in the association matrix. Each point displays (Continued on next page.)
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Figure 2: (Continued from previous page.) the rank of correlation value for that gene among one
row of the association matrix against the rank of expression for that gene among 5000 high-variance
genes in (left) GM12878 and (right) K562 cell types. The expression score at a bin for a cell type is
Spearman’s rank correlation coefficient ρ between those two ranks. Blue line shows the best linear
fit to data and grey region highlights 95% confidence interval of the fit. (Bottom) UCSC Genome
Browser display of 550 bp around that region. Blue rectangle: MYC ChIP-seq peak in GM12878 or
K562. Here, MYC binds only in GM12878. (e) Expression score plot and Genome Browser display
for a 100 bp bin upstream of SLC22A4. Here, MYC binds only in K562.

Using ChIP-seq data on 201 DNA-binding proteins in 54 different cell types, we investigated128

whether the majority of binding sites matched the sequence motif of the same TF. Among these129

201 proteins, 76 lacked a sequence motif in JASPAR (Figure 1a). Some of these motif-free proteins,130

such as EZH2 and HDAC, are chromatin-binding proteins rather than TFs. Others are TFs without131

known sequence preference. For sequence-specific TFs, the fraction of peaks that match a sequence132

motif ranges from 4.55% (for SIX5) to 94.2% (for CTCF) with a mean of 49.4% (Figure 1b).133

2.1.2 Many sequence motifs are not centrally enriched134

Central enrichment measures how close a sequence motif occurs to a set of ChIP-seq peak summits.135

High central enrichment indicates direct TF binding19. We used CentriMo19 to measure central136

enrichment. We compared central enrichment between TFs with low motif occupancy (< 50% of137

ChIP-seq peaks contain the motif) and high motif occupancy (≥ 50% of peaks contain the motif;138

Figure 1c). TFs with low motif occupancy had weaker central enrichment (t-test; p = 0.02).139

2.2 Model, performance, and benchmarking140

2.2.1 Datasets141

Virtual ChIP-seq learns from the association of gene expression and TF binding in publicly available142

datasets. Our method requires ChIP-seq data of each TF in as many cell types as possible, with143

matched RNA-seq data from the same cell types. We used ChIP-seq data (from Cistrome DB34
144

and ENCODE35) and RNA-seq data (from CCLE36 and ENCODE37) to assess Virtual ChIP-seq’s145

binding predictions for 63 DNA-binding proteins in new cell types.146

In addition to benchmarking on our own held-out test cell types, we wanted to compare against147

the DREAM Challenge27. To do this, we also used their datasets, which include ChIP-seq data for148

31 TFs. For most of these TFs, the DREAM Challenge held out test chromosomes instead of test149

cell types. The DREAM Challenge included ChIP-seq data for only 12 TFs in completely held-out150

cell types. Completely holding out cell types better fits the real-world scenarios that require binding151

site prediction. Using the datasets we generated, we had matched data in enough cell types to train152

and validate models for 9 of these 12 TFs (CTCF, E2F1, EGR1, FOXA1, GABPA, JUND, MAX,153

REST, and TAF1).154

2.2.2 Learning from the transcriptome155

Different cell types have distinct transcriptomic and epigenomic states38. Changing gene expression156

levels can affect patterns of TF binding and chromatin structure. We hypothesized that some157

gene expression changes would lead to consistent and observable changes in TF binding. As an158

extreme example, eliminating expression of a TF would eventually eliminate binding of that TF159

genome-wide. Other changes in gene expression could lead to competitive, cooperative, allosteric,160
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Figure 3: Optimizing and training a multi-layer perceptron. We used a number of features to
predict TF binding in each bin. These include (a) expression score, (b) the number of training cell
types with binding of that TF, (c) chromatin accessibility, (d) PhastCons genomic conservation
in placental mammals, and (e) any sequence motif corresponding to that TF in the JASPAR
database. In JASPAR, some TFs have no sequence motifs, while others have up to seven different
sequence motifs. This led to a number of features P ∈ [4, 11] (f) For each TF, we trained a
multi-layer perceptron using these features for selected bins in four chromosomes (5, 10, 15, and
20). Specifically, we selected bins with accessible chromatin or ChIP-seq signal in at least one
training cell type (selected regions with vertical blue bars are for illustration purpose). To optimize
hyperparameters, we repeated the training process with different hyperparameters using four-fold
cross validation (CV), excluding one chromosome at a time. For each TF, we performed a grid
search over (g) activation function (sigmoid, tanh, and rectified linear unit), (h) number of hidden
units per layer (2× (P + 1)), 50, or 100), (i) number of hidden layers (2, 5, 10, or 50), and (j) L2

regularization penalty (0.0001, 0.001, or 0.01). We chose the quadruple of hyperparameters which
resulted in the highest mean Matthews Correlation Coefficient (MCC) over all four chromosomes.

and other indirect effects that would affect TF binding. To exploit this model, we identified genes161

with significant positive or negative correlation with TF binding at any given genomic bin. We did162

this for genes all over the genome, irrespective of distance from the binding site.163

For each TF, we created an association matrix measuring correlation between gene expression164

and binding of that TF in previously collected datasets (Figure 2a–c). In this matrix, each value165

corresponds to the Pearson correlation between ChIP-seq binding of that TF at one genomic bin and166

the expression level of one gene. We used missing values when there was no significant association167

between gene expression and TF binding (p > 0.1).168

Power analysis (Methods) identified which correlations the p > 0.1 cutoff would exclude de-169

pending on the number of available cell types with matched ChIP-seq and RNA-seq data. For170

CTCF, which had the largest number of cell types available—21 cell types with matched ChIP-seq171
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and RNA-seq—this cutoff provided 80% power to detect an absolute value of Pearson correlation172

|r| ≥ 0.52. Many TFs had only 5 cell types with matched data and the cutoff provided 80% power173

to detect only larger correlations, |r| ≥ 0.92.174

We calculated an expression score for a TF in a new cell type using the association matrix and175

RNA-seq data for the new cell type, but no ChIP-seq data. The expression score is the Spearman176

correlation between the non-NA values for that genomic bin in the association matrix and the177

expression levels of those genes in the new cell type (Figure 2d, Figure 3a). We used the rank-based178

Spearman correlation to make the score robust against slight differences in analytical methodology179

used to estimate gene expression.180

2.2.3 Learning from other predictive features181

We included a number of other predictive features beyond expression score. Virtual ChIP-seq182

includes as input for each genomic bin the frequency of the TF’s presence in existing ChIP-seq183

data (Figure 3b). Since most TF binding occurs within accessible chromatin39, we also used evidence184

of chromatin accessibility from DNase-seq or ATAC-seq (Figure 3c).185

While many intra-species genomic differences lie in the non-coding genome40, we expect some186

regulatory elements to be conserved among closely related species. Previous studies highlight the187

association of genomic conservation and TF binding in organisms as simple as yeast41 or as com-188

plex as human42. To learn from patterns of genomic conservation, we used PhastCons43,44 scores189

from a 7-way primate and placental mammal comparison (http://hgdownload.cse.ucsc.edu/190

goldenPath/hg38/phastCons7way) in our model (Figure 3d).191

We used sequence motif score where available (Figure 3e). Relying only on TF sequence pref-192

erence, however, would prevent accurate prediction of most true TF binding sites9 (Figure 1). For193

each TF, we represented sequence preference using the FIMO score of JASPAR sequence motifs of194

that TF or a similar TF. JASPAR has no motif for some TFs, such as EP300. Where JASPAR has195

more than one motif for a TF, additional motifs often represent different versions of the motif such196

as SREBF2 (MA0596.1) and SREBF2-var2 (MA0828.1). In some cases, the additional motif rep-197

resents a preference of a cooperative TF heterodimer, such as MAX-MYC (MA0059.1). Regardless198

of reason, we included all of each TF’s motifs as features in its model (Supplementary Table 2).199

We also investigated potential improvements by adding a couple of additional integrative fea-200

tures available for a limited number of TFs and cell types (Supplementary Table 2). First, we used201

the output of Hidden Markov model-based Identification of TF footprints (HINT)15 which identifies202

TF footprints within accessible chromatin. Second, we used a boolean feature indicating overlap of203

each genomic bin with clusters of chromatin accessibility peaks identified by CREAM45.204

2.2.4 Selecting hyperparameters and training205

We created an input matrix with rows corresponding to 200 bp genomic windows and columns rep-206

resenting the features described above. Specifically, these features included expression score (Fig-207

ure 3a), previous evidence of binding of TF of interest in publicly available ChIP-seq data (Fig-208

ure 3b), chromatin accessibility (Figure 3c), genomic conservation (Figure 3d), sequence motif209

scores (Figure 3e), HINT footprints, and CREAM peaks. We used sliding genomic bins with 50 bp210

shifts, where most 200 bp bins overlap six other bins. This provided a maximum resolution of 50 bp211

in binding prediction. This resulted in a sparse matrix with 60,620,768 rows representing each bin212

in the GRCh38 genome assembly46. The sparse matrix had between 4 and 11 columns, depending213

on the number of available sequence motifs. We trained on an imbalanced subset of genomic regions214

which had TF binding or chromatin accessibility (FDR < 10−4) in any of the training cell types.215

To speed the process of training and evaluation, we further limited training input data to four216
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chromosomes (chr5, chr10, chr15, and chr20). For validation, however, we used data from these217

same four chromosomes in completely different cell types held out from training. We evaluated the218

performance on all of the 9,635,407 bins in these four chromosomes (Figure 3f), not just those with219

prior evidence of TF binding or chromatin accessibility.220

To build a generalizable classifier that performs well on new cell types with only transcrip-221

tome and chromatin accessibility data, we concatenated input matrices from 12 training cell types:222

A549, GM12878, HepG2, HeLa-S3, HCT-116, BJ, Jurkat, NHEK, Raji, Ishikawa, LNCaP, and223

T47D (Supplementary Table 3).224
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Figure 4: Virtual ChIP-seq predicts TF binding with high accuracy. Using ChIP-seq and
RNA-seq data, we learned from the association of gene expression and TF binding for 63 TFs.
(a) Box plots show distribution of auPR among 4 chromosomes (5, 10, 15, and 20) for 63 TFs
assessed in four cell types (blue: H1-hESC; grey: IMR-90; green: K562; brown: MCF-7). Sequence
logos indicate one of a TF’s JASPAR motifs, when available. When multiple motifs existed, we
displayed the shortest motif here. Dashed line: medians. Axis label colors categorize median auPR
(purple: greater than 0.5, red: between 0.25 and 0.5, black: below 0.25). (b) We compared Virtual
ChIP-seq’s performance to that of the top 4 performing methods in the DREAM Challenge across-
cell type final round. For CTCF, MAX, GABPA, and JUND, we had enough cell types to train
and validate the performance of Virtual ChIP-seq on DREAM data. For other TFs, we trained the
model and validated our performance using publicly available Cistrome and ENCODE data. Axis
label color: reference genome assembly (grey: GRCh37, black: GRCh38). Facet color: number of
the 4 top-performing DREAM methods that had a lower auPR than Virtual ChIP-seq in at least
one validation cell type (indigo: 1; magenta: 3; red: 4).
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2.2.5 The multi-layer perceptron225

The multi-layer perceptron (MLP) is a fully connected feed-forward artificial neural network47.226

Our MLP assumes binding at each genomic window is independent of upstream and downstream227

windows (Figure 3). For each TF, we trained the MLP with stochastic gradient descent48 and228

a minibatch size of 200 samples. We used 4-fold cross validation to optimize hyperparameters229

including activation function (Figure 3g), number of hidden units per layer (Figure 3h), number of230

hidden layers (Figure 3i), and L2 regularization penalty (Figure 3j). In each cross validation fold, we231

iteratively trained on 3 of the 4 chromosomes (5, 10, 15, and 20) at a time, and assessed performance232

in the remaining chromosome. We selected the model with the highest average Matthew’s correlation233

coefficient (MCC)49 after 4-fold cross validation. For 23 TFs the optimal model had 10 hidden layers,234

and for another 23 TFs the optimal model had 5 hidden layers, and for the final 17 TFs, the optimal235

model had only 2 hidden layers. For 57 TFs, the best-performing model had 100 hidden units in236

each layers. The optimal model of 6 TFs had 10–24 hidden units in their hidden layers. Different237

activation functions—sigmoid, hyperbolic tangent (tanh), or rectified linear unit (ReLu)—proved238

optimal for different TFs (Supplementary Table 4).239

2.2.6 Virtual ChIP-seq predicts TF binding with high accuracy240

We evaluated the performance of Virtual ChIP-seq in validation cell types (K562, PANC-1, MCF-7,241

IMR-90, H1-hESC, and primary liver cells) which we did not use in calculating the expression score,242

training the MLP, or optimizing hyperparameters. Before predicting in new cell types, we chose a243

posterior probability cutoff for use in point metrics such as accuracy and F1 score. When a TF had244

ChIP-seq data in more than one of the validation cell types, we chose the cutoff that maximizes245

MCC of that TF in H1-hESC cells. Then, we excluded H1-hESC when reporting threshold-requiring246

metrics. Two TFs—CHD2 and ZNF143—only had ChIP-seq data in H1-hESC out of the validation247

cell types. For these TFs, we pre-set a posterior probability cutoff of 0.4, the mode of the cutoffs248

for other TFs (Supplementary Table 5).249

We used area under precision-recall (auPR) curves to compare performance of Virtual ChIP-seq250

in validation cell types with other available methods. Virtual ChIP-seq predicts binding of 34 TFs251

in validation cell types with MCC > 0.3, auROC > 0.9, and 0.3 < auPR < 0.8 (Figure 4a, Table 1,252

Supplementary Table 6).253

2.2.7 Virtual ChIP-seq correctly predicts binding sites in genomic locations not found254

in training data255

We evaluated the performance of Virtual ChIP-seq for 63 TFs with binding in validation cell types.256

For 59 of these TFs, Virtual ChIP-seq predicted true TF binding in regions without conservation257

among placental mammals. For 44 out of 63 TFs, Virtual ChIP-seq predicted true TF binding258

in regions without TF binding in any of the training ChIP-seq data. From these 63 TFs, 43 are259

sequence-specific, and for all of these TFs, Virtual ChIP-seq predicted true binding for regions that260

did not match the TF’s sequence motif. For 47 TFs, Virtual ChIP-seq even correctly predicted261

TF binding in regions that didn’t overlap chromatin accessibility peaks (Supplementary Table 7).262

Most of these regions were frequently bound to the TF in publicly available ChIP-seq data. These263

predictions showed that the MLP learned to leverage multiple kinds of information and predict TF264

binding accurately, even in the absence of features required by previous generations of binding site265

classifiers.266
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TF F1 Accuracy MCC auROC auPR N

BACH1 0.361±0.026 1.000±0.000 0.402±0.024 0.968±0.006 0.389±0.023 1

BHLHE40 0.334±0.021 0.997±0.000 0.356±0.010 0.974±0.002 0.382±0.010 1

CEBPB 0.480±0.025 0.994±0.002 0.492±0.018 0.965±0.008 0.542±0.014 1

CHD2 0.398±0.032 0.998±0.000 0.417±0.027 0.990±0.002 0.441±0.028 1

CREB1 0.362±0.131 0.997±0.002 0.371±0.121 0.868±0.135 0.335±0.174 2

CTCF 0.681±0.128 0.995±0.004 0.685±0.094 0.984±0.044 0.831±0.099 6

ELF1 0.431±0.047 0.997±0.001 0.456±0.038 0.949±0.042 0.493±0.066 2

ELK1 0.394±0.048 1.000±0.000 0.445±0.043 0.981±0.005 0.410±0.058 1

ESR1 0.372±0.103 0.993±0.006 0.430±0.049 0.883±0.033 0.461±0.019 2

FOS 0.333±0.027 0.997±0.001 0.393±0.020 0.861±0.004 0.394±0.008 1

FOSL1 0.308±0.004 0.995±0.001 0.308±0.006 0.929±0.006 0.285±0.011 1

FOXA1 0.441±0.080 0.996±0.004 0.498±0.065 0.978±0.023 0.574±0.105 3

GABPA 0.298±0.049 0.994±0.002 0.393±0.036 0.986±0.012 0.496±0.036 3

HCFC1 0.449±0.021 0.999±0.000 0.471±0.018 0.996±0.005 0.532±0.061 1

JUN 0.218±0.127 0.998±0.001 0.311±0.153 0.983±0.009 0.456±0.257 2

JUND 0.341±0.163 0.993±0.002 0.386±0.135 0.979±0.019 0.326±0.161 4

MAFK 0.495±0.023 0.997±0.000 0.501±0.023 0.985±0.002 0.522±0.034 1

MAX 0.400±0.045 0.996±0.002 0.444±0.059 0.961±0.012 0.491±0.111 3

MAZ 0.370±0.025 0.997±0.001 0.422±0.019 0.987±0.005 0.493±0.070 2

MXI1 0.394±0.018 0.999±0.000 0.402±0.017 0.993±0.004 0.381±0.025 1

NRF1 0.658±0.042 1.000±0.000 0.664±0.038 0.994±0.014 0.720±0.051 3

RAD21 0.593±0.062 0.996±0.002 0.626±0.056 0.983±0.033 0.740±0.095 3

REST 0.482±0.120 0.999±0.001 0.493±0.091 0.985±0.008 0.567±0.095 3

SIN3A 0.389±0.048 0.998±0.002 0.394±0.029 0.966±0.004 0.411±0.037 3

SMC3 0.733±0.016 0.999±0.000 0.734±0.016 0.998±0.001 0.792±0.018 1

SRF 0.353±0.060 0.998±0.001 0.364±0.070 0.982±0.008 0.365±0.115 2

TAF1 0.378±0.073 0.999±0.001 0.437±0.097 0.987±0.009 0.490±0.168 3

TBP 0.303±0.016 0.998±0.000 0.330±0.011 0.972±0.007 0.297±0.022 1

TEAD4 0.344±0.061 0.990±0.002 0.385±0.020 0.967±0.023 0.343±0.019 2

TP53 0.275±0.103 1.000±0.000 0.382±0.086 1.000±0.008 0.660±0.222 1

USF1 0.353±0.047 0.993±0.001 0.382±0.040 0.891±0.012 0.372±0.046 1

USF2 0.410±0.040 0.999±0.000 0.427±0.028 0.982±0.007 0.437±0.032 1

YY1 0.397±0.049 0.996±0.001 0.408±0.058 0.945±0.043 0.417±0.104 2

ZNF143 0.470±0.027 0.995±0.001 0.491±0.024 0.913±0.013 0.442±0.033 1

Table 1: Performance of Virtual ChIP-seq for 34 TFs on validation cell types. Each
row displays median values ± standard deviation of several performance metrics for prediction of
a TF across 4 chromosomes for each available validation cell type. MCC: Matthews correlation
coefficient, auROC: area under receiver-operating characteristic curve, auPR: area under precision-
recall, N : number of validation cell types for 34 TFs with MCC > 0.3. We reported auROC and
auPR across all the validation cell types across all posterior probability cutoffs. Black TFs: we
found the posterior probability cutoff which maximized MCC in H1-hESC, and then reported F1,
accuracy, and MCC of the other validation cell types. Grey TFs: H1-hESC was the only validation
cell type, so we reported F1, accuracy, and MCC for a posterior probability cutoff of 0.4 (Results).
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2.2.8 Comparison with DREAM Challenge267

DREAM Challenge rules forbid using ChIP-seq data or the expression score, and required training268

and validation on its own provided datasets. These datasets have ChIP-seq data in only a few cell269

types. This restricts Virtual ChIP-seq’s approach which leverages all publicly available datasets. The270

DREAM Challenge ChIP-seq datasets use only two replicates for each experiment and requires that271

peaks have a irreproducibility discovery rate (IDR)50 of less than 5%. IDR only handles experiments272

with exactly two replicates, but most of the public ChIP-seq experiments we used had more than273

two replicates (Supplementary Table 8). In these cases, we included peaks that pass a false discovery274

rate (FDR) threshold of 10−4 in at least two replicates. We compared Virtual ChIP-seq results with275

the DREAM Challenge when we trained and validated on either Cistrome DB data or DREAM276

Challenge data.277

2.2.9 Prediction accuracy varies by transcription factor278

The DREAM Challenge evaluates predictions on binding of 31 TFs. They only evaluate predictions279

for 12 in held-out cell types. The datasets we used, however, allow us to predict binding of 63 TFs280

in new cell types. Of these TFs, 41 are unique to our dataset and do not overlap any of the DREAM281

Challenge TFs (Supplementary Table 9).282

For CTCF, FOXA1, TAF1, and REST, Virtual ChIP-seq had a higher auPR in at least one283

validation cell type than any DREAM Challenge participant51,52. The power of Virtual ChIP-seq to284

learn from the transcriptome data diminishes when fewer cell types are available, as in the DREAM285

Challenge data. Nonetheless, for CTCF and REST, Virtual ChIP-seq outperformed any other286

challenge participant in the same cell type evaluated in the final round of the challenge (Figure 4b).287

For MAX, GABPA, JUND, and E2F1, Virtual ChIP-seq performed better than at least one of the288

four top-performing methods in the challenge (Figure 4b).289

Virtual ChIP-seq predicted binding of 34 TFs with a median MCC > 0.3. These 34 TFs had a290

auPR between 0.24 and 0.83 (Table 1). Some of these TFs show high levels of consistent binding291

among different cell types, which makes predictions easier. The fraction of bins bound to a TF in292

at least half of training cell types, however, varies between 0 to 15.75% across all TFs. Even for293

TFs with a median auPR > 0.5 (purple in Figure 4a) the fraction of bins bound in half of training294

cell types varied from 0.5% in FOXA1 to 10.5% in NRF1. For some DNA-binding proteins, Virtual295

ChIP-seq fails to predict binding accurately (auPR < 0.3). DNA-binding proteins with low auPR296

and low MCC include chromatin modifiers such as KAT2B, KDM1A, EZH2 and chromatin binding297

proteins such as CHD1 and BRD4. TFs with low prediction accuracy include ATF2, CUX1, E2F1,298

EP300, FOSL1, FOXM1, JUN, RCOR1, RELA, RXRA, SREBF1, TCF12, TCF7L2, and ZBTB33.299

For some proteins, such as ATF2, EP300, EZH2, FOXM1, KAT2B, KDM1A, TCF12, and TCF7L2,300

in at least one validation cell type, most ChIP-seq peaks didn’t overlap with chromatin accessible301

regions.302

2.3 The choice of input features determines prediction performance303

2.3.1 The most important features304

To evaluate the importance of each feature in our predictive model, we performed an ablation study305

on training data. First, we systematically removed features. Second, we fitted the model without306

these features on some of the training cell types (HeLa-S3, GM12878, HCT-116, LNCaP). Third,307

we evaluated performance on one held-out training cell type (HepG2; Supplementary Table 10).308

This ablation study did not use any of the validation cell types which we used for final evaluation309

of the model.310
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We called the effect of excluding an input feature substantive only when the average increase311

or decrease in auPR was at least 0.05. Excluding sequence motif, HINT, or CREAM did not sub-312

stantively change performance of the model for most TFs (Figure 5). Excluding publicly available313

ChIP-seq data, the expression score, or both decreased performance in most TFs. Excluding expres-314

sion score substantively decreased median auPR in 13/21 TFs, while excluding publicly available315

ChIP-seq data substantively decreased auPR in 18/21 TFs.316

2.3.2 Inclusion of some features have opposite effects on prediction of different TFs317

Beyond the most important features—ChIP-seq and expression score—excluding other features318

rarely substantively decreased prediction performance (Figure 5b–c). When we excluded sequence319

motifs, auPR decreased substantively for ZBTB33, JUN, JUND, FOXA1, and ELF1. Excluding320

HINT footprints decreased auPR substantively only for CEBPB, JUN, and JUND. Excluding321

CREAM clusters of chromatin accessibility peaks decreased auPR substantively only for ZBTB33,322

ELF1, and FOXA1.323

Removing certain input features actually improved prediction for some TFs (Figure 5b–c).324

Associations that differed between training cell types and validation cell types suggested that these325

input features generalize poorly. For example, CREAM clusters’ overlap with NRF1 ChIP-seq326

peaks was not consistent among GM12878 (7.52%), HeLa-S3 (31.8%), and HepG2 (25.78%). This327

represented a significant variation among these cell types (ANOVA; p = 1.9× 10−4).328

While most TF footprints (95.96%) overlapped NRF1 peaks, TF footprints constituted only a329

small fraction of NRF1 peaks (0.73%). NRF1 peaks overlapped a small proportion of TF footprints330

in training cell types GM12878 (1.14%) and HeLa-S3 (0.59%), but significantly greater than the331

0.45% overlap in HepG2 (Welch t-test; p = 0.007). In HepG2, 7.28% of YY1 peaks overlap TF332

footprints while in the training cell type GM12878, the overlap is only 1.22% (Welch t-test; p =333

5× 10−5) and in the other training cell type HCT-116 the overlap is much higher (17.92%; Welch334

t-test; p = 5 × 10−6). Overlap of ZBTB33 peaks with TF footprints is much smaller in HepG2335

(0.49%) compared to training cell types GM12878 (2.32%) and HCT-116 (5.27%; Welch t-test;336

p = 6 × 10−4). Features with varying and cell-specific association with TF binding complicate337

convergence of the MLP and may result in overfitting. As a result, the MLP achieved a higher338

performance on some TFs when we ablated those features.339

Association of clusters of regulatory elements and TF footprints with TF binding varies among340

cell types. Using a CREAM feature substantively improved performance in 3/21 TFs and using a341

HINT feature substantively improved performance in 3/21 TFs (Figure 5b–c). In contrast, including342

CREAM substantively decreased performance for 1 case and including HINT for 4 cases. When we343

repeat this experiment by using different training and validation cell types, clusters of regulatory344

elements and TF footprints result in increase or decrease in performance of different TFs, while345

they barely result in an increase in auPR above 0.05. Because of the limited upside and apparent346

downside, we didn’t use these two features for our final model.347

2.4 Transcription factors and their targets regulate similar biological pathways348

2.4.1 Gene set enrichment analysis of TF targets349

To understand biological implications of transcriptome perturbation in response to TF binding, we350

measured how frequently each gene’s expression associated with binding of each TF. We hypoth-351

esized that if expression of a gene consistently correlates with binding of a TF, it is a potential352

target of that TF. Similarly, if the expression of a gene negatively correlates with binding of a TF,353

cellular machinery upregulated by that TF might cause net suppression of that gene’s expression.354
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Figure 5: Virtual ChIP-seq’s most important features consist in ChIP-seq data and
expression score. (a) Area under precision-recall curve (auPR) for predicting a TF’s binding sites
after training on only a subset of input features. We trained on five cell types (HeLa-S3, GM12878,
HCT-116, and LNCaP) and predicted on either HepG2. We used thicker gridlines and highlighted
the background when ablating HINT, CREAM, or sequence motifs substantively decreased (orange)
or increased (turquoise) auPR. An UpSet53-like matrix shows the subset of features used for each
column. (b) Double-ended bar plot of the number of TFs with average auPR increase or decrease
of at least 0.05 when ablating each feature. Bars show the number of TFs where ablation caused
the average auPR to decrease (orange, left) or increase (turquoise, right). (c) Change in auPR for
those TFs with an average auPR increase or decrease of at least 0.05 when we excluded clusters of
regulatory elements (CREAM), footprints (HINT), or sequence motifs. Backgrounds indicate auPR
decrease (orange) or increase (turquoise).
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Figure 6: Top biological pathways regulated by potential targets of TF clusters. Each
gene may have both positive and negative correlation with TF binding at some genomic bins. For
each TF, we ranked 5,000 genes by an association delta that summarizes how many genomic bins
associated with binding. Specifically, the association delta takes the number of bins that positively
associated with a gene’s expression and subtracts the number of bins that negatively associated.
(a) Example of the association ranking process for JUND binding. Double-ended bar plot for each
of the 5,000 genes, with bars for positive association (red) and negative association (green). Super-
imposed blue curve: association delta for each gene. (b) Gene set enrichment analysis identified
pathways with significant enrichment in potential targets of each TF. Vertical black bars: rank of
association delta for genes annotated with each GO term. Green line: enrichment score calculated
in gene set enrichment analysis. (c) Histogram showing how many of 1,681 GO terms are enriched
in potential targets of each TF. (d) Histogram showing how many of 63 TFs have potential targets
with enrichment in each GO term. (e) Boxplot of cluster stability, as measured by Jaccard index,
between clusters found in both the subsampled correlation matrix of TFs by GSEA (turquoise) and
a subsampled random Gaussian matrix of the same dimensions (red). (d) Dendrogram of 6 clusters
identified in correlation matrix of TFs. We defined 6 clusters based on correlation of enrichment
in 1,681 GO terms. (d–i) Boxplots of GSEA statistic for the top 5 pathways enriched in genes
positively correlated with TF binding (red) and the top 5 pathways enriched in genes negatively
correlated with TF binding (blue) for each cluster.
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To identify such genes, for each TF, we ranked genes by subtracting the number of genomic bins355

they are positively correlated with from the number of genomic bins they are negatively correlated.356

We call this difference the association delta. For each TF, we identified the 5,000 genes with the357

highest variance in expression among cells with matched RNA-seq and ChIP-seq data (Figure 2a).358

We measured correlation of expression of each of the 5,000 genes with TF binding at every 100 bp359

genomic window in 4 chromosomes (chr5, chr10, chr15, and chr20). This approach identified genes360

that have consistent positive or negative association with TF binding (Figure 6a). We considered361

these genes as potential targets of each TF, and used the Gene Set Enrichment Analysis (GSEA)362

tool54 to identify pathways with significant enrichment in either direction (Figure 6a.) Only the363

rank of association delta affects these results, and we presumed that there would be little difference364

in using all chromosomes instead of just 4. We tested the 4-chromosome analysis for JUND to an365

analysis of only chromosome 10 and found no significant rank difference (Wilcoxon rank sum test366

p = 0.3). We only investigated Gene Ontology (GO) terms annotated to a minimum of 10 and a367

maximum of 500 out of a total of 17,106 GO-annotated genes.368

We identified 1,681 GO terms with significant enrichment (GSEA p < 0.001) among potential369

targets of at least one of the 113 TFs we investigated (Figure 6b). Only 63 of these 113 TFs had370

matched ChIP-seq and RNA-seq in at least 5 of the training cell types and one of the validation cell371

types we used for learning from the transcriptome. Each TF had potential targets with significant372

enrichment in a mean of 92 terms (median 76; Figure 6c). Each of the 1,681 terms had significant373

enrichment in potential targets of a mean of 6 TFs (median 2; Figure 6d). Furthermore, 300 of374

these GO terms had significant enrichment in potential targets of at least 10 TFs.375

To identify TFs involved in similar biological processes, we searched for enrichment of any of the376

1,681 GO terms in 113 TFs. This analysis relied on the GSEA enrichment score as a normalized test377

statistic. We examined the pairwise correlation between the vector of enrichment scores for each pair378

of TFs. These pairwise correlations constitute a symmetric correlation matrix. We hypothesized379

that TFs with high correlation are involved in similar biological processes.380

To identify groups of TFs involved in similar biological processes, we performed hierarchical381

clustering on the correlation matrix. We sought to identify clusters of TFs, and the best number382

of clusters between 2 and 10, inclusive. As a control, we generated a correlation matrix of same383

dimensions from a matrix of random Gaussian values (Methods). For each matrix we repeatedly384

generated random subsamples and clustered them. For each subsample, we found the set of pairs of385

TFs with the same cluster membership. For couples of these subsamples, we identified the Jaccard386

index between these sets as a measure of cluster stability103 (Methods).387

For 6 clusters, there is an increase in Jaccard index only for the correlation matrix of TFs388

based on GSEA, and not the Gaussian random matrix (Figure 6e). The Neural cluster (Figure 6g)389

includes ASCL155, HSF160, GATA259, and PPARγ 61. These TFs play important roles in the de-390

velopment of the nervous system and are implicated in neurological disorders55,59,60,61. The top 5391

GO terms enriched in the potential targets of these TFs are all related to nervous system develop-392

ment and function (Figure 6g). The Motility cluster’s (Figure 6h) downregulated pathways relate393

to cytoskeletal organization. The included TFs, CTBP165, KDM5B66, MEF2A67, and STAT168,394

all play a role in the epithelial-to-mesenchymal transition, which involves re-organization of the395

cytoskeleton. Similarly, we found that for other clusters, specific upregulated or downregulated396

pathways of cluster’s targets are also regulated by many of the cluster’s TFs (Figure 6i–l, Table 2).397
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TF cluster Upregulated
pathways

Downregulated
pathways

TFs in cluster with relevant
biology

Neural
Neural activity
and
development

Protein
biosynthesis

ASCL155, CTCF56, ESR157,
FOXA158, GATA259, HSF160,
PPARγ 61, STAT362, TAL163,
TEAD164

Motility Inflammation
Cytoskeletal
organization

CTBP165, KDM5B66, MEF2A67,
STAT168

Inflammation Inflammation RNA biosynthesis
BHLHE4069, CEBPG70, CUX171,
ELK172, FOXM173, JUN74,
JUND75, RELA76

Olfactory
Olfactory
perception

Vasculature,
blood, and
structural
development

NFIC77, ATF278, ATF379,
SIN3A80, CEBPB81, RFX182

Defense
Cell defense
and chemokine
signaling

Protein
biogenesis and
localization

ARID3A83, CREB184, EGR185,
KAT2B86, KMT2B87, MAFF88,
RFX589, RXRA90, SRF91

Angiogenesis RNA biosynthesis
Angiogenesis
and
vasculature

AR92, ARNT93, BACH194,
BRCA195, BRD496, E2F197,
GATA398, KDM1A99, MYC100,
RUNX1101, TP53102

Table 2: Many of TFs within each biological function cluster are involved in the same
pathways as their potential target genes. We summarized each cluster of TFs according to
top over-represented GO terms in the first 3 columns. TFs in the 4th column are involved in the
same biological mechanism as the bold pathways mentioned in 2nd or 3rd column.

2.5 A compendium of TF binding predictions for 34 tissues and cell types398

2.5.1 Predicting TF binding in Roadmap datasets399

The Roadmap Epigenomics Project32 performed DNase-seq on 55 and RNA-seq on 39 human400

tissues and cell types, but not ChIP-seq of any TF. For 34 of these tissues, they produced matched401

DNase-seq and RNA-seq data. This makes the Roadmap data an ideal application for Virtual402

ChIP-seq.403
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Figure 7: TF binding predictions in validation cell types and Roadmap datasets. (a) Num-
ber of genomic bins that TF is predicted to bind (left) and MCC (right) as a function of poste-
rior probability cutoff for SRF (top) and CTCF (bottom). This relationship is shown for H1-
hESC (turquoise), 2 validation cell types for SRF (blue), and 6 validation cell types for CTCF (blue).
Each line represents the data of one of the 4 chromosomes (chr5, chr10, chr15, and chr20). The left
panels also show how many genomic bins are predicted to bind the TF in 18 Roadmap datasets (red).
Vertical red dashed line: posterior probability cutoff. Horizontal red dashed lines: number of genomic
bins with TF binding in validation cell types. (b) Boxplot of various performance measures when
using the best cutoff for each dataset (red) and optimal cutoff in H1-hESC (turquoise). (c) Bar
plot of the fraction of correctly predicted binding sites of each TF in chromosome 5 of K562
which lacked particular predictive features. These features include genomic conservation (red),
chromatin accessibility (green), sequence motif (turquoise), and evidence of TF binding in another
cell type (purple). For TFs with no sequence motif, we deemed every binding site to lack a se-
quence motif. (d) UCSC Genome Browser display of a 4000 bp region on (Continued on next page.)
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Figure 7: (Continued from previous page.) chromosome 20 using the Virtual ChIP-seq track
hub (https://virchip.hoffmanlab.org). The track hub has a supertrack for each TF. Each
supertrack contains 35 tracks: one track specifying genomic bins bound by that TF in Cistrome
and ENCODE, and one track for each of the 34 Roadmap cell types with predictions for that
TF. This example shows parts of the track hub related to CTCF, including a track with exper-
imental results in Cistrome DB and ENCODE with 7 out of 144 cell types enabled, and Virtual
ChIP-seq predictions in left lung, adrenal gland, B-cell, and T-cell. The height of predictions in-
dicates the number of overlapping genomic bins predicted to bind the TF, ranging between 0–4.
Between are MACS2 narrow peak calls for CTCF in normal human lung fibroblasts (NHLF) from
ENCODE (ENCFF510CUI). Blue: peaks; orange: peak summits.

We generated an annotation similar to peak calls by converting the MLP’s posterior probabilities404

to a presence or absence call. We made this call based on a different cutoff for each TF. We defined405

this cutoff as the posterior probability which maximized MCC in H1-hESC. For TFs without ChIP-406

seq data in H1-hESC, we used the mode of cutoffs from the other different TFs (0.4). We excluded407

H1-hESC when reporting all performance metrics that depend on this threshold, except for those408

TFs which did not have ChIP-seq data in any validation cell type except H1-hESC (CHD2 and409

ZNF143). The number of binding sites we predicted in other validation cell types and Roadmap410

data is similar to ChIP-seq peaks in other validation cell types (Figure 7a).411

Using the cutoff which maximized MCC in H1-hESC only slightly decreased performance mea-412

surements from what one could achieve with the optimal cutoff for each cell type (Figure 7b). For413

example, the MCC score showed a median decrease of 0.06 and F1 score showed a median decrease414

of 0.1.415

Narrowing predictions to only those that pass the cutoff, we found that many correctly pre-416

dicted binding sites in K562 lack important predictive features of TF binding (Figure 7c). For417

example, many of the correctly predicted binding sites of EZH2 and KAT2B are not conserved418

among placental mammals. Many correctly predicted binding sites for MAFK, REST, FOSL1, and419

CTCF don’t overlap chromatin accessibility peaks. We correctly predicted many binding sites for420

TCF12, RCOR1, TEAD4, CHD1, FOXM1, GABPA, and CUX1 in regions that have no binding in421

other cell types. In these cases, MLP learned from other available predictive features. For example,422

in RCOR1, all novel correctly predicted binding sites of chromosome 5 overlapped chromatin ac-423

cessibility peaks. These correct predictions also had an average genomic conservation of 0.19 which424

was significantly higher than other genomic bins (Welch t-test p = 0.006).425

As a community resource, we created a public track hub (https://virchip.hoffmanlab.org)426

with predictions for 34 Roadmap cell types (Figure 7d). This track hub contains predictions for 34427

TFs which had a median MCC > 0.3 in validation cell types (Table 1).428

3 Methods429

3.1 Data used for prediction430

3.1.1 Overlapping genomic bins431

To generate the input matrix for training and validation, we used 200 bp genomic bins with slid-432

ing 50 bp windows. We excluded any genomic bin which overlaps with ENCODE blacklist regions433

(https://www.encodeproject.org/files/ENCFF419RSJ/@@download/ENCFF419RSJ.bed.gz). Ex-434

cept where otherwise specified, we used the Genome Reference Consortium GRCh38/hg38 assem-435

bly46.436
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3.1.2 Chromatin accessibility437

We used Cistrome DB ATAC-seq and DNase-seq narrowPeak files for assessing chromatin acces-438

sibility (Supplementary Table 8). We mapped the signal value of peak summits to all the bins439

overlapping that summit. In rare cases where a genomic bin overlaps more than one summit, we440

used the signal value of the summit closest to the p terminus of the chromosome When data were441

available from multiple experiments, we averaged signal values. Because Cistrome DB does not442

include raw data that one can use for DNase footprinting, we limited the analysis of HINT TF443

footprinting and CREAM regulatory element clustering to ENCODE DNase-seq experiments on444

GM12878, HCT-116, HeLa-S3, LNCaP, and HepG2.445

3.1.3 Genomic conservation446

We used GRCh38 primate and placental mammal 7-way PhastCons genomic conservation43,44
447

scores from the UCSC Genome Browser104 (http://hgdownload.cse.ucsc.edu/goldenPath/hg38/448

phastCons7way). We assigned each bin the mean PhastCons score of the nucleotides within.449

3.1.4 Sequence motif score450

We used FIMO33 (version 4.11.2) to search for motifs from JASPAR 2016105 to identify binding451

sites of each TF that have the sequence motif of that TF. To get a liberal set of motif matches, we452

used a liberal p-value threshold of 0.001 and didn’t adjust for multiple testing. If the motif for the453

TF didn’t exist in JASPAR, we used other motifs with same initial 3 letters and counted any TF454

binding site which had overlap with any of those motifs (Supplementary Table 1).455

We also used FIMO and JASPAR 2016 to identify the sequence specificity of chromatin ac-456

cessible regions. For this analysis, we used a false discovery rate threshold of 0.01%. We used any457

sequence motif matching the initial 3 letters of a TF as a predictive feature of binding for that TF.458

For many TFs, more than one motif matched this criteria, and we used all as independent features459

in the model (Supplementary Table 2).460

3.1.5 ChIP-seq data461

We used Cistrome DB and ENCODE ChIP-seq narrowPeak files. We only used peaks with FDR <462

10−4. When multiple replicates of the same experiment existed, we only considered peaks that463

passed the FDR threshold in at least two replicates. We considered bound only those genomic bins464

overlapping peak summits.465

3.1.6 RNA-seq data466

We downloaded gene-level RPKM (reads per kilobase per million mapped reads) values from EN-467

CODE (http://www.encodeproject.org) and Cancer Cell Line Encyclopedia (CCLE) RNA-seq468

experiments. We retrieved the CCLE data using PharmacoGx106. Since these data are processed469

differently, we limited the analysis to Ensembl gene IDs shared between the two datasets, and470

ranked gene expression values by cell type. The two datasets have 4 shared cell types: A549,471

HepG2, K562, and MCF-7. Within each of these cell types, we examined the concordance of RNA-472

seq data between ENCODE and CCLE after possible transformations. The concordance correlation473

coefficient107 of rank of RPKM (0.827) was higher compared to untransformed RPKM (0.007) or474

quantile-normalized RPKM (0.006; Welch t-test p = 10−6). The ENCODE-DREAM Challenge,475

however, had processed RNA-seq of all cell types uniformly, allowing us to directly use transcripts476

per million reads (TPM) in analysis of ENCODE-DREAM Challenge datasets.477
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3.1.7 Expression score478

We created an expression matrix for each TF with matched ChIP-seq and RNA-seq data in N ≥ 5479

training cell types with the following procedure:480

1. We divided the genome into M 100 bp non-overlapping genomic bins.481

2. We created a non-negative ChIP-seq matrix C ∈ RM×N
≥0 (Figure 2a). We used signal mean482

among replicate narrowPeak files generated by MACS2108 for each of M bins and N cell types483

and quantile-normalized this matrix.484

3. We row-normalized C to C′, scaling the values of each row between 0 and 1.485

4. We identified the G = 5000 genes with the highest variance among the N cell types.486

5. We created an expression matrix E ∈ RN×G
∈[0,1] containing the row-normalized rank of expression487

each of the G = 5000 genes in N cell types (Figure 2b).488

6. For each bin i ∈ [1,M ] and each gene g ∈ [1, G], we calculated the Pearson correlation489

coefficient Ai,g between the ChIP-seq data for that bin C′
i,: and the expression ranks for that490

gene E:,j over all cell types. If the Pearson correlation was not significant (p > 0.1), we set491

Ai,g to NA. These coefficients constitute an association matrix A ∈ (R∈[−1,1] ∪ {NA})M×G492

(Figure 2c).493

We performed power analysis of the Pearson correlation test using the R pwr package109.494

To predict ChIP-seq binding for a new cell type (Figure 2d), we calculated an expression score495

for each genomic bin in that cell type. The expression score is Spearman’s ρ for expression of the496

same G = 5000 genes in the new cell type with every row of the association matrix A. Each of497

these rows represents a single genomic bin. An expression score close to 1 indicates that genes with498

high expression have high values in the association matrix, and genes with low expression genes499

have low values. An expression score close to −1 indicates that genes with high or low expression500

have opposite values in the association matrix (Figure 2d).501

3.2 Training, optimization, and benchmarking502

3.2.1 Training and optimization503

For the purpose of training and validation, we only used chromosomes 5, 10, 15, and 20. These504

4 chromosomes constitute 481.78 Mbp (15.6% of the genome). For training only, we excluded any505

genomic region without chromatin accessibility signal and previous evidence of TF binding. For506

validation and reporting performance, we included these regions, using the totality of the 4 chromo-507

somes. We concatenated data from training cell types (A549, GM12878, HepG2, HeLa-S3, HCT-116,508

BJ, Jurkat, NHEK, Raji, Ishikawa, LNCaP, and T47D; Supplementary Table 3) into the training509

matrix.510

We used Python 2.7.13, Scikit-learn 0.18.1110, NumPy 1.11.0, and Pandas 0.19.2 for processing511

data and training classifiers.512

We optimized hyperparameters of the multi-layer perceptron (MLP)47 using grid search and513

4-fold cross validation. We used minibatch training with 200 genomic bins in each minibatch. We514

searched for several options to optimize the activation function (Figure 3g), number of hidden515

units per hidden layer (Figure 3h), number of hidden layers (Figure 3i), and L2 regularization516

penalty (Figure 3j). In each round of 4-fold cross-validation, we trained on data of 3 chromosomes,517

and assessed best MCC on the remaining chromosome. We selected the set of hyperparameters518

yielding highest average MCC after 4-fold cross validation.519
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3.2.2 Benchmark against DREAM in vivo Challenge520

For comparison to DREAM results, we also trained and validated the Virtual ChIP-seq model on521

GRCh37 DREAM Challenge data. For CTCF, we trained on all cell types except MCF-7, PC-3,522

and iPSC which we used for validation. For MAX, we used all cell types except liver and K562 for523

training. For GABPA, REST, and JUND, we used all cells except liver for training.524

We used the R precrec package111 to calculate auPR and auROC. Precision-recall curves better525

assess a binary classifier’s performance than ROC, especially for imbalanced data25. We compared526

these metrics to those of DREAM Challenge participants in the final round of cross–cell-type527

competition.528

3.3 Clustering TFs based on enrichment of their potential targets in GO terms529

To identify groups of TFs involved in similar biological processes, we performed hierarchical clus-530

tering on the correlation matrix. We sought to identify clusters of TFs, and the best number of531

clusters between 2 and 10, inclusive. For use in this process, we created a Gaussian random matrix532

of 1,681 rows and 113 columns as a control, and calculated its correlation matrix. Then, we com-533

pared cluster stability between the original correlation matrix and the control for each potential534

number of clusters. To do this, we subsampled 75% of each correlation matrix rows twice without535

replacement. Then, we clustered TFs in each matrix into the specified number clusters. For both of536

these clusterings, we constructed the set of every pair of TFs present in the same cluster. We then537

calculated the Jaccard index between the first clustering’s constructed set and that of the second103
538

We repeated this subsampling and clustering process 50 times for each number of clusters.539

3.4 TF prediction on Roadmap data540

We downloaded Roadmap DNase-seq and RNA-seq data aligned to GRCh38 from the ENCODE541

DCC32. For each DNase-seq narrowPeak file with matched RNA-seq, we predicted binding of 34542

TFs with MCC > 0.3 in validation cell types (Table 1, Supplementary Table 6, http://virchip.543

hoffmanlab.org).544

4 Discussion545

Performing functional genomics assays to assess binding of all TFs may never be possible in patient546

tissues. Nevertheless, computational prediction of TF binding based on sequence specificity of TFs547

has identified the role of many TFs in various diseases1. Scanning the genome for occurrences of548

each sequence motif, results in a range of 200–2000 predictions/Mbp. In some cases, this is 1,000549

times more frequent than experimental data from ChIP-seq peaks. Similar observations led to a550

futility conjecture that almost all TF binding sites predicted in this way will have no functional551

role112.552

Nevertheless, there is more to TF binding than sequence preference. Most TFs don’t have any553

sequence preference9 (Figure 1), and indirect TF binding through complexes of chromatin-binding554

proteins complicates predictions based solely on sequence specificity. In addition to the high number555

of false positive motif occurrences, many ChIP-seq peaks lack the TF’s sequence motif. Therefore,556

relying on sequence specificity alone not only generates too many false positives, but also many557

false negatives. We call this latter observation the dual futility conjecture, although it differs in558

degree from the original. Adding additional data about cellular state allows us to move beyond559

both conjectures.560

We can assess TF binding through ChIP-seq or its more precise variations ChIP-nexus12 or561

ChIP-exo11. These experiments may still not properly reflect in vivo TF binding due to technical562
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difficulties such as non-specific or low affinity antibodies. Using publicly available ChIP-seq data563

produced with different protocols and reagents, complicates prediction of TFs more sensitive to564

experimental conditions51. Variations among training and validation cell types in our datasets,565

overfitted the MLP to certain input features of some TFs. More robust approaches in assessment566

of TF binding—such as CRISPR epitope tagging ChIP-seq (CETCh-seq)113, which doesn’t rely567

on specific antibodies—may provide less noisy reference data for learning and prediction of TF568

binding.569

Virtual ChIP-seq predicted binding of 34 TFs in new cell types, using from the new cell types570

only chromatin accessibility and transcriptome data. By learning from direct evidence of TF binding571

and the association of the transcriptome with TF binding at each genomic region, most use of572

sequence motif scores becomes redundant. As more ChIP-seq data in diverse cell types and tissues573

becomes available, our approach allows predicting binding of more TFs with high accuracy. This574

is true even in the case of factors that are not sequence-specific. Although Virtual ChIP-seq uses575

direct evidence of TF binding at each genomic region as one of the input features, it is able to576

correctly predict new peaks which don’t exist in training cell types. For 39 of 41 sequence specific577

TFs, Virtual ChIP-seq correctly predicted TF binding in regions without any match to sequence578

motifs.579

The DREAM Challenge datasets provide data for training and validating machine learning580

models for predicting binding of 31 TFs. Our datasets, using a combination of Cistrome DB and581

ENCODE, allow training and validating models for predicting binding in a more extensive 63 TFs.582

Our provided predictions of binding of 34 high-confidence TFs in 34 different Roadmap tissue types583

will allow the research community to better investigate epigenomics of disease affecting those tis-584

sues (https://virchip.hoffmanlab.org/). In addition to providing our predictions as a resource585

for use by biologists, we also provide the processed datasets we use as a resource for machine586

learning researchers. This should accelerate the development of future methods by many groups.587
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