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Abstract

This contribution sketches a work flow to design an RNA switch that is
able to adapt two structural conformations in a ligand-dependent way. A well
characterized RNA aptamer, i. e., knowing its Kd and adaptive structural fea-
tures, is an essential ingredient of the described design process. We exemplify
the principles using the well-known theophylline aptamer throughout this work.
The aptamer in its ligand-binding competent structure represents one structural
conformation of the switch while an alternative fold that disrupts the binding-
competent structure forms the other conformation. To keep it simple we do not
incorporate any regulatory mechanism to control transcription or translation.
We elucidate a commonly used design process by explicitly dissecting and ex-
plaining the necessary steps in detail. We developed a novel objective function
which specifies the mechanistics of this simple, ligand-triggered riboswitch and
describe an extensive in silico analysis pipeline to evaluate important kinetic
properties of the designed sequences. This protocol and the developed software
can be easily extended or adapted to fit novel design scenarios and thus can
serve as a template for future needs.
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1. Introduction

Riboswitches are highly structured RNA sequences commonly found in the
5’-untranslated region (UTR) of prokaryotic messenger RNAs (mRNAs). Within
this regulatory domain, they are responsible for altering gene expression on
the transcriptional or translational level in response to environmental changes,5

which is typically the concentration of a small ligand [1]. A riboswitch consists
of two components: i) a sensory domain and ii) a regulatory domain. While
the former specifically senses the environmental change, the latter is responsi-
ble for influencing the expression level of the downstream gene. Beside those
switches that follow this commonly assumed two-component model, examples10

are known where a sensory domain alone, i. e., an aptamer, is able to alter
gene expression [2, 3, 4, 5]. The possibility to encode effective sensors at RNA
level makes riboswitches valuable gadgets that can directly interfere with the
complex process of gene expression without the need of additional co-factors
such as proteins. Here we elucidate the complex process of designing such a15

ligand-sensing riboswitch that, for simplicity, does not implement a specific reg-
ulation mechanism at transcriptional or translational level. The RNA sequence
should “simply” adapt two alternative conformations depending on the presence
or absence of a ligand. Therefore, we aim to extend an aptamer such that an
alternative structural conformation is formed in the absence of the ligand.20

Successful design approaches show that the problem of generating an artifi-
cial RNA sequence exhibiting a prescribed functionality needs to be formulated
as a multi-step approach, including computational and experimental, analytic
and constructive methods [6, 7]. Early design publications already followed such
a multi-step scheme but included manual steps instead of computational meth-25

ods, as there were just no computational tools available that implemented the
features actually needed by the experimentalists. However, this changed over
time and recently the common trend is to perform as many steps as possible
with the support of advanced in silico methods [8].

As a first step, it is important to analyze the underlying biological system,30

the cellular environment and, most importantly, all the properties of the build-
ing blocks to use. With this information, it is then possible to design a model
describing the functionality of the novel RNA molecule in its environment. To
determine a sequence with the requested characteristics, usually an optimiza-
tion problem is formalized, where the objectives are specified as constraints and35

a mathematical function describing various biophysical properties of the sys-
tem. Obtaining a sequence compatible with constraints such as specific target
structures and sequence motifs is a quite tricky task, which was solved with
various methods ranging from manual design [9] to graph-theoretical coloring
algorithms as implemented in RNAblueprint [10]. A variety of well-established40

optimization methods such as the Metropolis–Hastings algorithm [11, 12] or
genetic algorithm based approaches [13] were used to find optimal solutions by
traversing through the constrained solution space [14]. However, until now, only
little effort was made to find proper objective functions. Often only some static
properties of the molecule’s energy landscape are used instead of more directly45
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Figure 1: Graphical summary of the applied design approach. The work flow is depicted from
left to right and consists of three major steps. For the individual parts important keywords
and utilized software is listed and we refer to the individual sections of this contribution for
more detailed information.

characterizing the mechanism of the artificial device. Only recently, some pub-
lished design programs started to allow to compile an objective function from a
catalog of predefined functions [15, 13]. RNAblueprint [10] went one step fur-
ther and allowed to formulate the objective utilizing a scripting interface, which
gives the user complete control over the optimization procedure.50

To narrow down the number of obtained RNA sequences, a subsequent step
to analyze and filter the obtained solutions was almost always performed. Es-
sentially, the differences and advantages of various solutions are explored. The
generation of proper visualizations or the evaluation of additional properties
that could not be incorporated into the objective function help to perform this55

selection process.
Finally, it is crucial to biologically test for the desired functionality of the de-

signed molecule as many biologically relevant aspects cannot be easily included
in the objective of the optimization approach.

In this contribution, we aim to closely follow the described design steps to60

generate a simple, ligand-triggered riboswitch, see Figure 1. Therefore, we com-
bine the previously published RNA design software RNAblueprint with analy-
sis tools like the coarse graining program barriers and the kinetics simulator
treekin, see Table 1. To achieve our goal, we propose a functional model, spec-
ify valid constraints, and develop an objective function, which directly describes65

the functionality of this riboswitch at an abstract level. To compute the quality
measures used by our objective, we resort to the well-established thermodynamic
RNA folding model implemented in the ViennaRNA package. An extensive in
silico analysis pipeline evaluates important properties of the designed sequences
and thus helps to narrow down and filter the list of obtained sequences that70

might be sent to the laboratory for biological testing. Although we describe a
work flow for the purpose of generating a specific riboswitch, the overall result
comprises the developed protocol and software, which can easily be extended or
adapted to fit novel design scenarios and thus could serve as a design strategy

3

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/245464doi: bioRxiv preprint first posted online Jan. 9, 2018; 

http://dx.doi.org/10.1101/245464
http://creativecommons.org/licenses/by-nc-nd/4.0/


scaffold.75

2. Materials and Methods

2.1. Specifying the design constraints

Given a model describing a desired riboswitch or functional RNA, it now
needs to be converted into a machine-readable format in order to computation-
ally generate valid sequences. Thus, the desired properties and the functionality80

can be expressed as a combination of constraints such as structural requirements
and various properties specifying the energy landscape, and the kinetic folding
properties. We specified these constraints of the functional states in the file
design input.txt:

# alternative conformation:85

.........................(((((((((((...... )))))))))))...........
# binding competent conformation:
(((((...((((((((.....)))))...)))...))))).. ......................
# sequence constraint:
AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCA NNNNNNNNNNNNNNNNNNNNNN90

These sequence and structure constraints are represented in IUPACK and dot–
bracket notation, respectively. In the sequence constraint, A, U, G and C cor-
respond to the nucleotides adenine, uracil, guanine and cytosine, respectively.
To positions marked with N, any nucleotide can be assigned as long as they
are compatible to the structural constraints, where “.” represents an uncon-95

strained position and matching brackets “( )” two positions paired with each
other. Please note, constraints resulting from or overlapping with the chosen
aptamer are separated by a space that needs to be removed when constraints are
used as input for RNAblueprint , the utilized sequence sampler. We collected all
applied tools in Table 1 including a short summary, the download link, citation100

and further remarks. RNAblueprint can be invoked by executing the following
command:

$ RNAblueprint -v < design_input.txt > design_output.txt

This returns how many compatible sequences exist (1.342 18× 108 for the given
example) and, by default, ten randomly generated sequences, which are written105

into file design output.txt. In principle, each of these sequences can fold into
both specified structures, the most stable structure typically being a hybrid.
Please note, that the obtained sequences are randomly generated and thus vary
on every call.

For the demonstration of our analysis workflow, we selected a sequence that110

exhibits interesting properties, although it was not the best design generated
during the applied optimization procedure. During such an optimization run
thousands of compatible sequences are evaluated with respect to an objective
function.
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2.2. Prediction of minimum free energy structures115

A transcribed RNA molecule immediately forms intra-molecular base pairs,
folding into a structural conformation known as its (secondary) structure. The
structure, in turn, often determines the RNA’s biological function, e. g., in our
case, the binding affinity for a given ligand. Any structure of a given RNA
sequence can be assigned an energy value—the Gibbs free energy—and the120

structure expressed most likely is the one having the lowest possible energy. It
is therefore called the minimum free energy (MFE) structure.

To predict the MFE of a given sequence and its associated secondary struc-
ture, we use the tool RNAfold included in the ViennaRNA package (cf. Table 1).
We first store an example sequence in a text file exa.txt and subsequently apply125

RNAfold to it.

$ echo "AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU" \
> exa.txt

$ cat exa.txt | RNAfold
130

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU
...........(((((.....)))))((((((((((......))))))))))............ (-19.70)

The above invocation of RNAfold returns, beside the input sequence, its most
stable structure in dot–bracket notation and the corresponding MFE. Energies
are given in kcalmol−1.135

2.3. Modeling ligand binding with soft constraints

To incorporate the ability of binding a specific ligand into an in silico RNA
design process, a model aware of the stabilizing contributions of this dimeriza-
tion on the resulting RNA–ligand complex is required. For the work presented
here, the recently implemented soft constraint framework of the ViennaRNA140

package [16] has been applied. Among other things, it allows to add an energy
bonus to structural states that exhibit a certain motif. This enables for a direct
integration of the effects of ligand binging into the RNA structure prediction pro-
cess [16]. When evaluating the structure ensemble of a given molecule containing
the theophylline aptamer sequence, an energy bonus of ∆G = −9.22 kcalmol−1

145

is added to every secondary structure that contains the correctly folded binding
pocket. This value is obtained from the relation ∆G = R × T × lnKd for the
gas constant R = 1.987 17 calmol−1, the temperature T = 310.15K, and the
experimentally measured dissociation constant Kd = 0.32 µM [17]. Using the
example sequence and the --motif option of RNAfold ,150

$ cat exa.txt | RNAfold -p \
--motif="GAUACCAG&CCCUUGGCAGC,(...((((&)...)))...),-9.22"

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU
.((((...((((((((.....)))))...)))...))))((((...)))).............. (-21.92)155

,((((...((((((((,...,)))))...)))...))))|(((...})),.............. [-23.32]
.((((...((((((((.....)))))...)))...)))).(((...)))............... {-12.20 d=4.04}
frequency of mfe structure in ensemble 0.103202; ensemble diversity 6.30
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the MFE structure now contains the binding-competent aptamer fold with a
corrected energy value (cf. first row after the sequence). As a result from using160

the -p option, a condensed representation of the base pair probabilities of each
nucleotide in the ensemble with the Gibbs free energy of the soft-constrained
ensemble G(x | s) (second row) as well as the centroid structure, i. e., the con-
sensus structure of all base pairs with a probability higher than 50% in the
ensemble [18], and its free energy (third row) are printed.165

2.4. Obtain the probability of structural features

In a design process, it is usually desired to enforce the presence or absence of
certain structural motifs, or even requires a certain sub-structure to be present
with a specific probability. This requires a method that can determine the
fraction of structures of a given RNA sequence that contain a given motif. An170

objective function can then use this information to compute probabilities of
motifs and accordingly select sequences suitable for the design goal.

Hard constraints of the ViennaRNA package are well suited for such tasks.
They allow to restrict the conformations of an RNA to states containing a
combination of unconstrained bases “.”, bases that have to be unpaired “x”,175

bases that have to be paired no matter to which binding partner “|” and base
pairs indicated by matching brackets “( )”. It is furthermore possible to specify
if a base has to be paired with a binding partner up- or downstream by “<”
and “>”, respectively. Note, that structures lacking some constraints are also
counted as long as no base pair conflicts with the constraint. To only include180

structures possessing all specified base pairs, use the --enforceConstraint

option. To calculate the probability of the alternative conformation, one can
use the following constraint and command:

constraint.txt
AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU185

.........................(((((((((((......)))))))))))...........

$ cat constraint.txt | RNAfold -C -p --canonicalBPonly\
--motif="GAUACCAG&CCCUUGGCAGC,(...((((&)...)))...),-9.22"190

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU
............((((.....))))(((((((((((......)))))))))))........... (-19.50)
....,.......((((|...,))))(((((((((((......)))))))))))........... [-20.19]
............((((.....))))(((((((((((......)))))))))))........... {-19.50 d=3.89}195

frequency of mfe structure in ensemble 0.32628; ensemble diversity 6.02

This performs a constrained (-C) partition function (-p) fold simulating lig-
and binding (--motif). The --canonicalBPonly option removes non-canonical
base pairs, e. g., U-U, from the structure constrain if they where erroneously
added. Here, all structures of a sequence x containing only base pairs compat-
ible to the hard constraint h and the soft constraint s are considered during
the calculation. The Gibbs free energy G(x |h, s) of those structures can then

6

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/245464doi: bioRxiv preprint first posted online Jan. 9, 2018; 

http://dx.doi.org/10.1101/245464
http://creativecommons.org/licenses/by-nc-nd/4.0/


be used to calculate the frequency of the constrained sub-structure within the
complete ensemble, which is denoted as

P (x |h, s) = exp

(

−
G(x |h, s)−G(x | s)

RT

)

. (1)

For more background information on the relation of these energies and the prob-
abilities, please refer to subsection 2.6. Re-running the last command without
the -C option yields the Gibbs free energy G(x | s) without the hard constraint h.
This will include all suboptimal structures in the calculation, but still uses the
soft constraint option to model ligand binding (cf. subsection 2.3). For the ex-
ample above, G(x | s) andG(x |h, s) are−23.32 kcalmol−1 and−20.19 kcalmol−1,
respectively, and the resulting probability is

P (x |h, s) = exp

(

−
−20.19 + 23.32

310.15× 1.98717

)

≈ 0.01.

The frequency of a structural motif in the absence of any ligand can be obtained
by running both commands without the --motif option. Thus, we can also
calculate P (x |h) as denoted in Equation 1.200

2.5. Enumerating suboptimal structures of an RNA molecule

To analyze the kinetics of an RNA molecule, at least a part of its structural
ensemble needs to be explicitly constructed. This is a challenging task as the
number of structures even for small RNAs is enormous. The tool RNAsubopt
(cf. Table 1) can be applied to generate all structures a given sequence can adopt205

up to a given energy threshold. Consider the following example:

seq1.txt
AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGUUGAGGGGGCUCAAUGAC

$ cat seq1.txt | RNAsubopt -e 1.2 -s210

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGUUGAGGGGGCUCAAUGAC -21.60 1.20
................((((((((.(((((((((((......))))))))))).).)))).))) -21.60
....(((......)))((((((((.(((((((((((......))))))))))).).)))).))) -21.50
(((((...((((((((.....)))))...)))...)))))..(((((((((....))))))))) -21.10215

(((((...(((((((((...))))))...)))...)))))..(((((((((....))))))))) -20.80
.((((...((((((((.....)))))...)))...))))...(((((((((....))))))))) -20.80
..(((.......))).((((((((.(((((((((((......))))))))))).).)))).))) -20.60
.((((...(((((((((...))))))...)))...))))...(((((((((....))))))))) -20.50
..((.......))...((((((((.(((((((((((......))))))))))).).)))).))) -20.50220

...(((..((.(((((.....)))))((((((((((......))))))))))))..)))..... -20.40

where all suboptimal structures with an energy at most 1.2 kcalmol−1 above
the MFE are generated. Note that the number of generated structures grows
exponentially with both the sequence length and the size of the selected energy
band. Thus, larger instances of these calculations do not only consume CPU225

time, but also generate files of several gigabytes in size. To reduce the number
of generated sequences, it is possible to skip all structures containing lonely base
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pairs, i. e., helices of length one, by applying the --noLP option of RNAsubopt ,
cf. subsection 2.6.

As the sorting routine applied by RNAsubopt (-s option) might fail on huge230

instances even on high memory machines with giga- or even terabytes of RAM,
a workaround is to pipe the RNAsubopt output to Unix’s sort tool. The latter
scales much better with the memory consumption of the typically huge ensem-
ble sizes. The following example generates the full RNAsubopt outputs. The
execution of this command may take some time as the RNAsubopt output of235

the example sequence is approximately 16GB in size.

$ cat seq1.txt | RNAsubopt -e 22.60 | sort -k2,2n -k1,1r -S20G > seq1.sub

Here, the main memory buffer allocated by sort is set to 20GB. Above this
threshold, sort will dump data to temporary files on the hard drive. Assuming
enough disk space is available, this still implies performance loss but makes it240

possible to process even huge RNAsubopt output. We estimated the energy
band width to use for the -e option by folding the sequence with RNAfold (cf.
subsection 2.2), setting its value to −1×MFE+1 to convert the minimum free
energy (MFE) into a positive value and also take a few structures with positive
energies into account. The obtained file seq1.sub contains a list of all possible245

structures within 22.60 kcalmol−1, sorted by ascending energy values.

2.6. Assessing the impact of avoiding lonely pairs

The --noLP option of RNAsubopt (and barriers , cf. subsection 2.7) achieves
a considerable speed-up by neglecting structures containing so-called lonely base
pairs, i. e., base pairs which are not directly surrounded by another base pair.250

Put differently, this option enforces a minimal helix length of two base pairs.
The biological motivation of this optimization is that lonely base pairs usu-
ally destabilize a secondary structure and thus would open up again quickly.
Structures not containing lonely pairs are called canonical structures.

Using --noLP significantly reduces the resources required for conducting the255

analysis, but may also bias its results. Therefore, when analyzing a newly
designed sequence, the question arises whether applying this heuristics will, in
this specific case, yield accurate results or not. Here, we derive a measure that
helps to answer this question for individual sequences.

The probabilities of the secondary structures for a given RNA sequence x
follow a Boltzmann distribution, i. e., the probability of a secondary structure

φ is proportional to B(x |φ) := exp(−G(x |φ)
RT

). Here, R is the universal gas
constant, T is the absolute temperature, and G(x |φ) is the Gibbs free energy
of the RNA x folded into the structure φ. The term B(x |φ) is referred to as
the Boltzmann weight of φ. If Φ is the entire structure ensemble of x, then the
partition function of x is given by Z =

∑

φ∈Φ B(x |φ), and the probability of
structure φ in the ensemble is

P (x |φ) =
B(x |φ)

Z
.
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Note that Z = B(x) := exp(−G(x)
RT

), i. e., the partition function is the Boltzmann260

weight of the ensemble energy G(x).
It is reasonable to assume that leaving out extremely unlikely structures will

not significantly change the results of the analysis to be performed, so one way
to assess the impact of the heuristics is to enumerate structures up to a certain
energy threshold and compute the fraction of structures that contain lonely265

pairs and will therefore be excluded from the simplified analysis. Furthermore,
instead of simply taking the fraction of counts of structures with and without
lonely pairs, one can get more profound results by comparing the sums of their
Boltzmann weights corresponding to the probabilities of the respective sets of
structures.270

To achieve this for a given sequence x, first calculate the partition of the full
ensemble Z = B(x) using the ensemble energy G(x) that can be computed by
running RNAfold -p. Now, RNAsubopt -e can be used to enumerate structures
within a given energy band above the MFE. Initialize variables Z(0) ← 0 and

Z
(0)
can ← 0, which will be used to store the approximations of the partition275

functions of the full and the canonical ensemble, respectively. For the t-th
output structure φ of RNAsubopt , compute its Boltzmann weight B(x |φ) and
set Z(t) ← Zt−1 + B(x |φ). Then, verify whether φ is canonical and, if this is

the case, set Z
(t)
can ← Z

(t−1)
can +B(x |φ), otherwise, leave it unchanged by setting

Z
(t)
can ← Z

(t−1)
can . Finally, compute the fractions Z(t∗)/Z and Z

(t∗)
can /Z, where t∗280

is the final value of t. The first fraction measures the structure coverage, i. e.,
which Boltzmann-weighted fraction of structures has been analyzed. It should
be close to 1 for reliable results and can be improved by increasing the width
of the energy band that limits the structure enumeration. The second fraction
approximates the ratio of canonical structures in the ensemble.285

As a side node, it is arguable that instead of the more complex enumeration
process just described, the ensemble energy of the canonical ensemble could be
directly computed using RNAfold -p --noPS. However, due to current technical
limitations, the returned ensemble energy is only an upper bound of the actual
value and may dramatically over-predict the fraction of canonical structures.290

2.7. Analyzing the high-dimensional structure landscape

As the number of structures for a given RNA sequence grows exponentially
with the sequence length, the folding process cannot be simulated with every
single secondary structure even for small RNAs. Therefore, the number of sim-
ulation states needs to be reduced to a feasible number, ideally without biasing295

the outcome. This can be achieved by applying a coarse graining approach,
which reduces the size of the high-dimensional structure landscape the sequence
spans to a much smaller set of macro-states, each of which represents a set of
multiple structures.

The tool barriers (cf. Table 1) implements a flooding algorithm that effec-300

tively coarse grains an energy landscape to macro-states or basins, each repre-
sented by a local minimum of the folding landscape. Each basin contains all the
structures connected to its representative local minimum by the folding path

9

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/245464doi: bioRxiv preprint first posted online Jan. 9, 2018; 

http://dx.doi.org/10.1101/245464
http://creativecommons.org/licenses/by-nc-nd/4.0/


of steepest descend. For each two macro-states, the tool also computes barrier
height, i. e., the highest intermediate structure (with respect to its energy) that305

has to be overcome in order to refold from one state to the other. It can be
used to visualize the RNA landscape by drawing a barrier tree.

As input barriers requires a list of all suboptimal structures within a cer-
tain energy range, sorted by ascending energy value. How to obtain such a
list is explained in subsection 2.5. To obtain correct simulation results, the en-310

ergy range has to be large enough to connect all generated macro-states. If
this is not the case, the width of the energy band has to be increased. Al-
ternatively, heuristic approaches such as findPath [19] may be used to connect
formerly disconnected states. In order to handle the huge amount of structural
states generated by our design example, it is mandatory to configure barriers315

using the option --with-hash-bits=29 and to run make with the argument
AM CFLAGS=-mcmodel=large.

Once the input file has been generated, barriers can be applied to it by
executing

$ barriers --max=500 -G RNA -M noShift --bsize --rates < seq1.sub > seq1.bar320

The --max=500 option specifies the number of macro-states to be generated,
-G, specifying the graph type, is set to RNA, -M noShift disallows so-called
shift moves (i. e., a move changing exactly one of the two indices of an existing
base pair), and --bsize and --rates enable the output of the size of each
basin, and to compute transition rates between these macro-states. The results325

of barriers are then piped into the file seq1.bar. A graphical representation
of the barrier tree in the PostScript format is by default saved to a file named
tree.ps, whereas the rates are stored in file rates.out.

Note that barriers needs to be run with the -G RNA-noLP option when pre-
dicting an ensemble without lonely pairs.330

2.8. Simulating kinetic folding using macro-states

When relying solely on thermodynamic criteria—e. g., probabilities of given
conformations—during an RNA design process, one may miss important traits
of the candidate sequences. Transcriptional riboswitches, for example, interact
with the RNA polymerase in a time-critical manner, and information about the335

presence or absence of specific sub-structures within certain time frames are
necessary to ensure correct switching behavior Such knowledge can be obtained
by running a kinetics simulation for the given RNA sequence. As this type of
analysis is too time-consuming to be included into the design process directly,
it should be performed on a small set of promising candidates to verify their340

functionality.
The program treekin can be used to simulate single-molecule kinetics, which

solves a continuous-time Markov process by numerical integration with the in-
finitesimal generator being a rate matrix. The latter is obtained by running
barriers , which estimates the transition rates from each macro-state to all the345

other ones and stores them as a matrix in the file rates.out (subsection 2.7).
The computation is performed using treekin as follows:

10

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/245464doi: bioRxiv preprint first posted online Jan. 9, 2018; 

http://dx.doi.org/10.1101/245464
http://creativecommons.org/licenses/by-nc-nd/4.0/


$ treekin --p0 1=1 -m I -f rates.out --t8=1E12 < seq1.bar > seq1.tkin

Here -m I tells treekin to parse the file specified by -f as barriers output, --t8
sets the maximum simulation time to 1× 1012 arbitrary time units (AU) and350

--p0 sets the initial population size of the selected minimum of the barrier tree.
Here, we set the global minimum of the barrier tree (i. e., macro-state 1) to be
100%. The output can then be visualized by using the program xmgrace with
the following command:

$ xmgrace -log x -nxy seq1.tkin355

2.9. Coarse grain visualization to emphasize structural features

Kinetic folding plots (cf. subsection 2.8) usually produce a big amount of in-
dependent curves (500 in our example), one for each macro-state of the barrier
tree. However, we optimized the RNA to exhibit specific structural features and
thus want to visualize how often we observe this sub-structure in the ensemble360

of structures and the kinetic plots. Thus, we are collecting states that exhibit
our structural features, i. e., ligand-binding stem or alternative stem, and sum-
marize them into combined density curves. We implemented a Perl script called
coarsify bmap.pl1 that performs this task. It can be applied to seq1.bar and
seq1.tkin output as follows:365

coarsify_regex.txt

# ?25(((((((((((......))))))))))) | ?26((((((((((......))))))))))

^.{25}\({11}\.{6}\){11}[\.\(\)]{11}|^.{26}\({10}\.{6}\){10}[\.\(\)]{11}

# ?2(((...((((((((.....)))))...)))...))) | ?2(((...((((((((.....))))...))))...)))"370

^.{2}\({3}\.{3}\({8}\.{5}\){5}\.{3}\){3}\.{3}\){3}|^.{2}\({3}\.{3}\({8}\.{5}\){4}\.{3}\){4}\.{3}\){3}

$ perl coarsify_bmap.pl -regs coarsify_regex.txt -minh 30 \
-outdir coarse_30 seq1.bar seq1.tkin

This script merges macro-states of a given barrier tree in two ways: i) if the
barrier height of a state is below the selected --minh value, it is merged to375

its neighbor and the population density of this neighbor is increased accord-
ingly, and ii) if states contain similar structural elements, specified as regular
expressions (coarsify regex.txt), they are merged. Note that macro-states
containing a different set of these structural elements are never merged although
i) would be applicable. In the above example, all states are merged as --minh380

is larger than the energy band generated by RNAsubopt . However, the two
specified regular expressions combine states that are compatible with the initial
structural constraints of the design and keep the remaining landscape sepa-
rate. The coarse-grained barriers and treekin output is written to the specified
coarse 30/ subdirectory.385

1https://github.com/ViennaRNA/BarMap/
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2.10. Kinetic simulation of an RNA with ligand interaction

Analyzing the influence of a ligand on the folding kinetics of a potentially
binding-competent RNA molecule can, in its most general form, be a difficult
problem. However, under certain conditions discussed below it is possible to use
treekin (cf. Table 1) for this task. The effect of ligand addition can be simulated390

by declaring the binding-competent state absorbing, i. e., prevent any transitions
out of it. This can be achieved by starting treekin with the population density
of the last time point in seq1.tkin—i. e., the equilibrium distribution—and
setting the -a option to the most stable binding-competent state:

$ grep -v "#" seq1.tkin | tail -n 1 | \395

perl -ae '{for($i=1; $i<scalar(@F); $i++){print "--p0 $i=$F[$i] "}}' > t
$ treekin -m I `cat t` -f rates.out --t8=1E12 -a 3 < seq1.bar > seq1_absorb.tkin
$ coarsify_bmap.pl -regs coarsify_regex.txt -minh 30 \

-outdir coarse_30absorb seq1.bar seq1_absorb.tkin
$ rm t400

First, the last time point in seq1.tkin is extracted and converted such that the
output saved in t can be used as repeated --p0 parameter of treekin. Then,
treekin is called and its output is stored in seq1 absorb.tkin, which is subse-
quently coarse grained. Finally, the temporary file t is removed. Visualization
of the coarse-grained absorbing landscape is possible with the graph plotting405

tool xmgrace (cf. Table 1) by running:

$ xmgrace -log x -nxy coarse_30absorb/seq1_absorb.tkin

Using an absorbing state to model the ligand interaction is an approximation
that is only reasonable under certain conditions. Irrespective of the properties of
a specific ligand, a high ligand concentration as compared to the RNA concen-410

tration is assumed. In fact, absorbing states may be interpreted as an infinite
ligand concentration leading to an immediate dimerization with the binding-
competent RNA. Since ligands are usually much smaller molecules than their
respective target RNA, this assumption is reasonable and ligand concentrations
in the order of 1mM are realistic in practice, though care has to be taken when415

dealing with toxic ligands like antibiotics.
The absorbing state assumption implies that the RNA–ligand complex has

a rather low dissociation constant Kd, or put differently, the dissociation rate
coefficient koff is low compared to its association rate coefficient kon. As pointed
out by Wolfinger et al. in this special issue [20], in a working (co-)transcriptional420

RNA switch, the coefficients of the dimerization and the dissociation rate obey
the criteria kon > 1/tapt and koff ≪ 1/telong, where tapt is the duration during
which the aptamer senses the ligand during transcription, and telong is the time
required for the transcription of a single nucleotide. Under such conditions, the
usage of an absorbing state to model the dimerization seems to be adequate.425

For thermodynamic switching behavior, Kd translates into a (negative) energy
bonus θ = −RT lnKd [21] awarded to all binding-competent structures. Let
EMFE be the MFE of the given sequence, and Ebc the free energy of the binding-
competent state. Then, for the switch to work properly, Ebc+ θ ≤ EMFE ≤ Ebc
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must hold [22]. If the left-hand side of the inequality is significantly smaller,430

then the absorbing state model is a well-suited approach.
For many ligands of several different classes, aptamers with low Kd values

in the order of 1µM have been characterized, see [23] for a comprehensive sum-
mary. Though a precise Kd threshold cannot be given due to the concentration
dependence, we hypothesize that such ligands behave in a way suited for this435

approximative approach.

Table 1: Summary of the utilized software. RNA related software tools are either standalone
or part of the ViennaRNA package. The installation procedure is documented on the web
pages listed. Standard Unix tools are tagged as “Other” and are typically included in or easy
to install with the package manager of any distribution.

Software Description and URL Ref

R
N
A

re
la
te
d

RNAblueprint v1.2 Fair sampling approach that generates sequences compat-
ible to sequence and to one or more structural constraints.
You need to install the boost library first. Note that we
compiled it with --disable-perl

[10]

https://github.com/ViennaRNA/RNAblueprint

RNAsketch v1.2 Python library to design nucleic acid sequences using
RNAblueprint. It offers convenient functions to in-
teract with the software packages of ViennaRNA and
NUPACK . Furthermore, predefined methods, e. g., for
sequence optimization, help to standardize the design pro-
cess.

[10]

https://github.com/ViennaRNA/RNAsketch

barriers v1.6.0 Generates a coarse-grained energy landscape given an
energy-sorted list of suboptimal RNA secondary struc-
tures. Note that we configured with --with-hash-bits=29

and ran make with argument AM CFLAGS=-mcmodel=large in
order to handle upto 229 structures.

[24]

http://www.tbi.univie.ac.at/RNA/Barriers/

treekin v0.3.1 Calculates folding kinetics on a coarse-grained energy
landscape. One problem that often occurs during treekin

installation is its dependency on the blas and lapack pack-
ages. Try to install them first. Note that we compiled an
older version of treekin as v0.4.1 does not support the -a

option.

[25]

http://www.tbi.univie.ac.at/RNA/Treekin/

ViennaRNA v2.4.0 Library containing the ViennaRNA tools. [16, 26]
http://www.tbi.univie.ac.at/RNA/

RNAfold Calculates minimum free energy secondary structures and
partition function of nucleic acid sequences.

RNAsubopt Calculates suboptimal secondary structures a nucleic acid
sequence can fold into.

O
th

e
r

sort As part of the gnu core utils this program takes a text file
and sorts it in the specified order.
http://www.gnu.org/software/coreutils/sort

xmgrace xmgrace is a full-featured graphical user interface of grace
to make two-dimensional plots.
http://plasma-gate.weizmann.ac.il/Grace/
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3. Results

At the very beginning of a design process, necessary building blocks should
be analyzed and evaluated to elucidate their properties. One of these blocks are
RNA aptamers, as they cannot be generated by simply applying computational440

design methods. Here, we use an experimentally characterized RNA aptamer
with known dissociation constant Kd and adaptive structural features, namely
the well-known theophylline aptamer [17, 27, 28]. Alternatively, a novel aptamer
could—at least in principle—be selected by performing an experimental protocol
such as Systematic Evolution of Ligands by EXponential enrichment (SELEX)445

for the ligand of interest.
Next, a precise idea of how the desired RNA regulation mechanism should

work is required. If it resembles a naturally occurring regulation mechanism, it
is advisable to investigate its biological counterpart in detail before transferring
the concept to a novel design. Figure 2 sketches the idea used to carry out the450

design step of this contribution. A given aptamer is extended in a way that an
alternative structural conformation (ac) is formed in absence of the ligand. As
the ligand is added, it reacts with the binding-competent conformation (bc) to
form the ligand-bound conformation (lc), thereby stabilizing it and sequestering
the alternative conformation (ac).455

The mentioned downstream extension of the aptamer is necessary to intro-
duce some degrees of freedom for the sequence sampler since the sequence of
the aptamer itself is fixed. The insert needs to be long enough to sequester
significant parts of the aptamer’s binding-competent structure. On the other
hand, short inserts are preferable to avoid unforeseen interactions with the sur-460

rounding sequence context. Experiments by Ceres et al. [29] suggest that the
ability of many aptamers to bind their respective ligand may be disrupted by
solely opening their P1 (i. e., outermost) stem. However, we decided to intro-
duce 22 nucleotides, corresponding to about half the length of the aptamer, to
allow for an adequate thermodynamic stability and the complete sequestering465

of the aptamer structure by the alternative conformation.
We converted this model into a sequence and two structural constraints that

represent ac and bc. If its structure had been resolved, the ligand-bound confor-
mation could be taken into account as a third structural constraint. This would
allow RNAblueprint to only generate sequences compatible to the structure of470

the dimer conformation. However, upon ligand binding, aptamers typically
adapt complex tertiary interactions going beyond the scope of the classical sec-
ondary structure model. In case of theophylline, extensive stacking as well as the
formation of base triples during ligand recognition have been observed [27, 28].
Such interactions cannot be handled by currently available secondary structure475

prediction and RNA design tools. A structural constraint modeling conforma-
tion lc is therefore omitted.

The functional model can be expressed as a combination of constraints such
as structural requirements and various properties specifying the energy land-
scape, and the kinetic folding properties. An RNA sequence meeting these480

requirements as close as possible can be obtained by performing a local opti-
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Figure 2: Graphical representation of the design idea. The system consists of two parts. In ab-
sence of the ligand, two conformations should dominate the structural ensemble. Depending
on the design parameter, the alternative conformation (ac) should be higher populated
than the binding competent (bc) one. Refolding rates between the two structural conforma-
tions depend on the energy barrier that separates them. Upon ligand addition, the bc gets
trapped and the system should be shifted towards the ligand bound conformation (lc).

mization approach. Such an approach includes i) the sampling of sequences
with respect to a set of prescribed constraints, ii) the definition of a quality
criterion through a proper objective function, and iii) an optimization method
that decides whether to keep or reject a proposed solution.485

We applied RNAblueprint to uniformly sample sequences that are compat-
ible to the given sequence and structure constraints of the proposed design
model, cf. subsection 2.1. The returned sequences need to be scored according
to the design goal. Clearly, this design goal should include the evaluation of
kinetic processes driving the implemented switching dynamics. However, these490

predictions are usually too demanding to be evaluated many times during opti-
mization. Thus, we only use reasonable fast thermodynamic measures to ensure
mandatory properties of the resulting kinetic processes [30].

On the thermodynamic level, we need to guarantee that the conformations of
our model are exclusively present at least in the equilibrium. Given a sequence x
and a compatible structure φ, one can calculate the corresponding Gibbs free en-
ergy G(x |φ) using the nearest neighbor model [31, 32]. The sequence–structure
mapping is a one-to-many relation. Hence, one sequence can adapt a huge
set of possible structures Φ called this sequence’s structure ensemble. In the

equilibrium, the Boltzmann weight B(x |φ) := exp(−G(x|φ)
RT

) of a structure φ
is proportional to its probability. Summing over all structures of the ensemble
gives rise to the partition function Z =

∑

φ∈Φ B(x |φ) of x. From that we can
calculate the probability of φ with respect to the ensemble as

P (x |φ) =
B(x |φ)

Z
.

We utilize these properties to develop a novel objective function for the
proposed model, cf. Figure 2. When adding the ligand to the system, we want495

to maximize the number of bound molecules, i. e., the probability of lc should
ideally be one. As we do not have an explicit structural constraint of this state,
we maximize the number of binding-competent structures in presence of the
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ligand, assuming the ligand is available in excess and immediately bound. In
case of the theophylline aptamer, this precondition is fulfilled as its association500

rate constant kon has been determined to be much higher than the dissociation
rate constant koff [28]. This is in accordance to its independently measured Kd

of about 0.32 µM [17]. We therefore add an energy bonus of −9.22 kcalmol−1 to
every secondary structure in the ensemble that contains the correctly folded—
i. e., binding-competent—theophylline aptamer.505

By maximizing the probability of bc in the presence of the ligand, we favor
the conversion to the ligand-bound conformation lc. In contrast, ac should
be highly populated in absence of the ligand. However, no ligand binding is
possible if the RNA molecule exclusively adapts ac as only bc induces a high
binding affinity of the ligand for the RNA molecule. It is therefore necessary to
establish a balance between ac and bc where bc must always be present. We
combined all these assumptions into the novel objective function

f(x) = P (x | bc, ligand) · (1− |a− P (x | ac)|) · (1− |b− P (x | bc)|) (2)

where a, b ∈ (0, 1), a + b ≤ 1 are the target probabilities of the alternative
conformation and binding-competent conformation, respectively. This function
is maximized as all terms tend to one. We set a = 0.7 and b = 0.3 for the
discussed example. We describe the details on how to calculate the individual
terms of the objective function given above utilizing the constraint framework510

of the ViennaRNA package in subsection 2.3 and subsection 2.4.
To perform a local optimization procedure searching for sequences optimal

with respect to the derived objective function (2), we chose to harness a script-
ing library called RNAsketch, which is available as interface to the sequence
sampler RNAblueprint (cf. Table 1). RNAsketch offers ready-to-use implemen-515

tations of several well-known optimization strategies. To tackle the presented
design problem, we implemented a Python script that performs adaptive walks
with randomly chosen steps of varying size—ranging from point mutations to
full resampling of the sequence—until the score evaluated with the designed ob-
jective function (2) stays minimal. This approach has been found to converge520

relatively fast towards reasonable results for other objectives [10]. Our imple-
mentation2 and the corresponding commands including the inputs are available
online to serve as an example of use for RNAsketch.

The described local optimization procedure is capable of producing many
potential solutions in a relatively short amount of time. As the returned scores525

contain no additional information but the three probabilities, we developed an
in silico analysis pipeline to visualize additional properties of the obtained se-
quences, facilitating a consecutive ranking and filtering step. First and foremost,
we need to verify the kinetic properties of our obtained solutions, a usually very
expensive and time-consuming task. In the following, we discuss this process530

for an example sequence3.

2design-ligandswitch.py
3AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGUUGAGGGGGCUCAAUGAC
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For a more complete picture of the energy landscape, we need to investigate
the structural states our example sequence will likely fold into. RNAsubopt is
applied to generate all suboptimal structures up to 22.6 kcalmol−1 above the se-
quence’s minimum free energy, cf. subsection 2.5. The number of possible struc-535

tures grows exponentially with sequence length and is approximately 225 million
for the chosen energy range of 22.6 kcalmol−1, resulting in a 16GB large file.
To reduce the number of generated suboptimal structures, and thereby speed
up all subsequent steps, it is possible to skip all structures containing lonely
pairs, i. e., helices of length one, generating only so-called canonical structures.540

This reduces the number of states to approximately 6.7 million, and the file size
to 459MB. However, for the shown example, this also excludes the predicted
MFE structure, cf. most populated structures in the equilibrium in Figure 3.
The previous ground state containing the alternative structural element is only
the fourth-stable state while the MFE structure contains the binding-competent545

aptamer. Of course, this has a dramatic impact on the simulated kinetics, cf.
Figure 3.

To assess the impact of the “no lonely pairs” (--noLP) heuristics more pro-
foundly, the procedure described in subsection 2.6 has been applied to the ex-
ample sequence. By enumerating all structures up to 10 kcalmol−1 above the550

MFE, one obtains a structure coverage of 99.9%. Here, the identified fraction of
canonical structures is only 43%, so the vast majority of structures that would
likely be encountered in the simulation are removed when applying the --noLP
heuristics. It is clear that in this case, the reduction to the canonical structure
ensemble leads to a strong bias.555

In contrast, other sequences have much higher fractions of canonical struc-
tures. The example sequence4 has the same length (64 nt) and GC content
(51%) as the previous one, but exhibits a predominantly canonical ensemble
(96% of the structures).

In any case, further coarse graining of the structure landscape is mandatory.560

We apply the program barriers which implements a flooding algorithm and
abstracts the structure landscape to a selected number of macro-states, each
represented by a local minimum of the landscape (subsection 2.7). Transition
rates from each of these macro-states to all other ones are then estimated and
subsequently used to predict the folding kinetics.565

It is possible that multiple macro-states exhibit structural features such as
the structure of bc or the stem of ac. Thus, for better visualization we merged
states that exhibit certain structural features by implementing coarsify bmap.pl ,
cf. subsection 2.9. Based on the resulting landscape and the processed transition
rates, treekin has been invoked to simulate the single-molecule folding kinetics,570

cf. subsection 2.8. A visualization of the output shows the expected population
density of the two designed structural states ac and bc after the equilibrium
has been reached, cf. Figure 3A. This way, we verified that the estimate based
on partition function folds—as used during the optimization process—matches

4GUAAGAGAGGCCGCGCACAACUUUCCUACUGUUCGAAAGGUAGGAGCGCUGUCAACUUACAUGG
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Figure 3: Simulated kinetics using (A) the complete and (B) a reduced structure ensemble by
avoiding lonely pairs. In both cases, the simulation is started with the complete population in a
structural state that contains the binding competent aptamer structure (orange). The left part
of each plot shows the dynamics until the system is equilibrated, whereas the right part depicts
the simulated systems kinetics after ligand addition. Dashed gray lines indicate the system’s
kinetics without coarse graining. By design, the population density in the equilibrium of all
structures containing the alternative (blue) and the binding-competent (orange) structural
element should be 0.7 and 0.3, respectively. Colored lines display the coarse-grained kinetics
where states containing specific structural elements are merged. For the most prominent
states, the secondary structure corresponding to their respective stable representative are
shown using the same color. Despite the similarities of the representatives of the blue and
the thick black curves, they were not merged because the alternative structural element was
required to have a perfectly stacked stem of length at least 11 nt.
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the results of the kinetic simulation even in absence of the ligand and when the575

full RNAsubopt output, including non-canonical structures, is used.
When sketching the design (cf. Figure 2), we assumed that the RNA–ligand

complex has a rather low dissociation rate coefficient koff compared to its asso-
ciation rate coefficient kon. For the theophylline aptamer, this is in accordance
with published rates of (0.07± 0.02) sec−1 and (1.7± 0.2)× 105 M−1 sec−1 at580

25 ◦C for koff and kon, respectively [28]. We therefore modeled the effect of
ligand addition by starting treekin with the population density of the equilib-
rium and making the binding-competent state absorbing, cf. subsection 2.10.
Visualization of the coarse-grained absorbing landscape shows that after about
9× 106 AU, which can be mapped to approximately 45 sec [33], 50% of the RNA585

molecules are in the ligand-bound state, cf. Figure 3.

4. Discussion

During the development of our software pipeline we realized that, until re-
cently, there mainly existed two kinds of publications. One created by wet
lab researchers, focused on an experimental testing setup as well as functional590

and analytical tests. They frequently missed the possible advances of in silico
tools and their valuable predictive power. In contrast, publications written by
researchers mainly working on computational biology often comprised sophisti-
cated biophysical methods, great computational details, and a huge variety of
mathematical and algorithmic tricks, but were frequently neglecting the aspect595

of biological applicability.
A main reason for this situation is that most of the RNA design programs

available use predefined terms in the objective function as well as a fixed op-
timization procedure [22], and thus are inflexible and not customizable enough
to be applied and adopted to the huge amount of considerably varying design600

scenarios. The RNAblueprint approach[10] decouples sampling of sequences
compatible to one or more structural constraints from the subsequent optimiza-
tion procedure, which gives the user the full flexibility to implement novel and
innovative objectives.

Computational design studies are often missing the bigger context, such as605

the initial analysis of the system, suggestions for experimental testing or the
design of proper controls. However, experimental validation is not a straightfor-
ward task and needs to be carefully planned already during the design process.
This includes extensive in vitro or in vivo studies, or preferable both. To really
gain knowledge about the device’s mechanism and about potential mistakes or610

pitfalls in case of dysfunctionality, a purely qualitative answer will not be suffi-
cient. Therefore, a complete testing pipeline should include the determination of
structures, binding affinities, or elucidate kinetic properties. Smartly designed
positive and negative controls are also helpful to reveal important properties of
the newly generated RNA device. Ideally, these controls will unveil quantitative615

answers about the mechanistic details, the actual structures of the RNA or even
about kinetic aspects like co-transcriptional dependency or ligand affinity.
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In this contribution, we described in detail the de novo design of a ligand-
sensing riboswitch that adapts two alternative conformations. Depending on
the presence of the ligand, either a binding competent state, or a specified al-620

ternative structural conformation is dominating the ensemble. This riboswitch
design can easily be extended, e. g., to perform regulatory tasks in a host cell
such as translational or transcriptional regulation of a downstream target gene.
A translational riboswitch for instance will probably contain a Ribosome Bind-
ing Site (RBS) which is sequestered in the inactive state. This can be included625

easily by specifying the appropriate sequence constraints and further objectives
such as the accessibility of the RBS in both conformations.

For such a purpose, it is important to distinguish between two types of
switching behaviors One type of riboswitches which are capable to switch on and
off during the entire lifetime of the molecule. The other switches are fixed after a630

certain time of sensing disregarding future changes in the ligand concentration.
For the latter, switching is only possible through RNA decay and repeated
transcription.

If switching is possible at any time, fast response times to ligand changes
are obtained. However, the individual states of the molecules remain fuzzy as635

not all of them will adapt the desired structure, leading to the observation of
background activity. In our example, we provoked such a behavior by target-
ing a 70:30 ratio of alternative to binding-competent conformation, and indeed
observed a quick refolding process upon addition or removal of the ligand.

Alternatively, we could generate a “one way switch” where the state decision640

is only possible during a specific window. Thereafter, the chosen state is sta-
bilized, either by a kinetic folding trap or by ongoing molecular processes such
as translation. Once decided, individual molecules cannot revert their choice
within reasonable time, even if the ligand dissociates or is removed from the
system [34]. Therefore, it must be ensured that the competing states are popu-645

lated during the decision window. This method has the advantage of obtaining
distinct states with very little noise. However, the response times to ligand
changes are quite long as they depend on RNA decay and the transcription
speed.

At a first glance, the design model we proposed in Figure 2 seems to be650

rather easy. However, it is not straight forward to develop an experimental
setup that is able to determine if the target ratio of 70:30 of the two confor-
mations is reached in the equilibrium or not. Sophisticated approaches such as
single-molecule FRET and NMR have been applied to determine the structure
and energy landscape of natural riboswitches[35, 36]. Both referenced studies655

revealed that more than the presumably two dominating states are adapted
depending on environmental conditions, i. e., Mg2+ concentration and tempera-
ture. This might be the case for our designs as well although we optimized them
towards two alternative states only. Furthermore, it is important to note that
the presented in silico results are estimates. For instance, the target ratio of660

70:30 might be achieved perfectly by the optimization procedure and predicted
by kinetics simulations. However, the results are extremely sensitive to the un-
derlying energy parameters. Those are measured under specific experimental
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conditions for rather short structural elements. For more complex structures,
i. e., those containing large or even multi loops, estimates are utilized to deter-665

mine a structure’s energy [31]. If the experimental conditions used to determine
the energy parameters and those used in the in vitro or in vivo testing envi-
ronment vary significantly, discrepancies of prediction and measurement are an
inevitable effect.

Depending on the research question, neglecting structures with lonely pairs670

can give valuable insights into the studied system while dramatically speeding up
the prediction process. The reason the analysis fails for the exemplary sequence
presented in this work is that many of its low-energy structures contain lonely
pairs and are therefore excluded when enabling the heuristics. The effect is
dramatic here as even the MFE structure is not canonical.675

A method to assess the importance of lonely pairs for the simulations has
been developed and shown to correctly predict the consequences of noLP heuris-
tics. In general, it is advisable to always consider the fraction of canonical base
pairs before resorting to the heuristic. Another advantage of conducting this
additional analysis is the proper estimation of the energy band width required680

to achieve a high coverage of the structure ensemble during the enumeration.
This information is useful to improve both, the performance of the simulation
as well as the quality of the results, even when not utilizing the noLP heuristics.
Nevertheless, re-running the analysis of promising candidates with a full struc-
ture ensemble is advisable to assure correct results if the required resources are685

available.
Many of the techniques used in this work implicitly make simplifying as-

sumptions about the processes involved in RNA switching. For example, the
soft constraint framework is a considerable abstraction of the binding process
in at least two ways. Firstly, it models a binary binding behavior in that the690

ligand either perfectly fits an RNA structure and gets the full binding energy
bonus, or it does not bind to the structure at all. In reality, small variations in
the binding domain may lead to an altered binding energy instead. Secondly,
any structure exhibiting the binding site receives the full stabilizing energy con-
tribution, neglecting the effect of the ligand concentration and assuming infinite695

reaction rates. During the kinetics simulation, a similar behavior is achieved by
declaring the binding-competent macro-state absorbing, i. e., the dissociation of
the ligand is not possible at all.

While these may be adequate assumptions for ligands with a high binding
affinity present in an excessive concentration, it may lead to over-estimation of700

the fraction of RNA–ligand complexes in situations where the association rate
becomes the bottleneck of the dimerization reaction. In such cases, one should
resort to more sophisticated models considering these rates as well as the ligand’s
concentration [37]. An efficient implementation of this approach that can readily
be applied to ligand-aware co-transcriptional folding is published in this special705

issue [20].
When analyzing our designed switch in silico, we started the kinetic simula-

tion of the ligand-free environment with all molecules in the binding-competent
state. Thereby, we ensured that even in this worst scenario possible, the system
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quickly recovers to the defined ratio of alternative state and binding-competent710

state. To obtain better estimates of the switching times, starting with various
other distributions depending on the application might be preferable.

In case of an in vitro experiment, the protocol would probably envisage to
first heat up the solution to completely untangle the RNA structures and then
quickly put the solution on ice until the ligand is added. A similar cooling exper-715

iment could be performed in silico by performing Boltzmann-weighted structure
sampling from an ensemble at high temperature and using the resulting distribu-
tion of states as starting point for a subsequent kinetic simulation. In contrast,
when using the generated riboswitch in vivo, it is likely co-transcriptionally
folded within the cell. Therefore, it is advisable to obtain the initial distri-720

bution by applying a co-transcriptional folding approach which simulates the
RNA’s elongation process until the binding-competent part of the structure is
fully transcribed. A software capable of this type of analysis is, for example,
BarMap [38].

In this contribution, we aimed to generate a general ligand-triggered ribo-725

switch which can be extended to control regulation mechanisms, such as tran-
scriptional or translational control of a downstream target gene. We devised
a functional model of such a riboswitch and successfully implemented a design
approach to de novo generate RNA sequences that fulfill the prescribed prop-
erties. The proposed pipeline consists of several modular pieces which can be730

easily adopted or exchanged in case of varying needs. This includes the flexible
sequence sampling engine RNAblueprint , a novel objective function to thermo-
dynamically describe important features of the mechanism, the optimization
approach and, finally, the in silico analysis pipeline to verify kinetic properties
of the system.735
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Abbreviations

UTR untranslated region

mRNA messenger RNA

SELEX Systematic Evolution of Ligands by EXponential enrichment750

MFE minimum free energy

RBS Ribosome Binding Site
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