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Figure 4: Extracting population-level density data from the stochastic model and comparing those results with the solution of the continuum
limit PDE model. Results in (a)–(c) show a single stochastic simulation of a scratch assay using the same initial distribution of agents as in the
experimental image in Figure 3(a). Snapshots are shown at t = 0, 24 and 48 h in (a)–(c), respectively. Results in (d)–(f) show density profiles
obtained by taking the simulation results in (a)–(c) and counting the numbers of each agent type per column across the lattice, and dividing those
numbers by the total number of sites per column. Results in (g)–(i) show averaged density profiles obtained by repeating the stochastic simulations
20 times and averaging the resulting density profiles. Results in (j)–(l) show the solution of Equations (10)–(12) at t = 0, 24 and 48 h, respectively.
In all subfigures the red curves correspond to the density of the red subpopulation, the yellow curves correspond to the density of the yellow
subpopulation, the green curves correspond to the density of the green subpopulation, and the black curves correspond to the total density. All PDE
solutions are obtained on 0 < x < 1310 µm, with zero net flux boundary conditions at both boundaries. All results correspond to My = Mg = Mr = 4
/h, Rr = 0.04 /h, Ry = 0.17 /h, Rg = 0.08 /h and ∆ = 20 µm. Zero net flux boundary conditions are imposed along all boundaries of the lattice.16
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All results showing the quality of the continuum-discrete match in Figures 4 and 5 correspond to one particular

choice of parameters. This choice of parameters is useful because it directly reflects parameter estimates that are

obtained from experimental observations [10, 38]. However, in addition to showing the quality of the continuum-

discrete match for this choice of parameters, we repeat the stochastic simulations and PDE solutions presented in

Figure 5 for a range of parameter values and present those results in the Supplementary Material document. These

additional results show that we still obtain a good quality continuum-discrete match, suggesting that the solution of

Equations (10)–(12) provides an good approximate description of the stochastic process over a relatively broad range

of biologically relevant parameter values.

3. Conclusion

In this work we present a new stochastic model of cell migration and cell proliferation that can be used to model

two-dimensional cell migration assays incorporating fluorescent cell cycle indicators. This model involves treating

the total population of cells as three interacting subpopulations: red agents model cells in the G1 phase of the cell

cycle, yellow agents model cells in the early S phase, and green agents model cells in the S/G2/M phase. We explain

how the stochastic model can be used to mimic cell biology assays using recently published data from a scratch assay

with a melanoma cell line and we outline how to parameterise the model using data from the literature. Applying

a mean field approximation, we derive a continuum limit PDE description of the stochastic model. Using repeated

stochastic simulations, we show that the solution of the continuum limit PDE provides a good match to averaged data

from the stochastic model.

There are many ways that our present study could be extended. Here we assume that both the red-to-yellow

transition and the yellow-to-green transition are unaffected by crowding whereas we assume that the green-to-red

transition is affected by crowding since this transition requires the availability of space to accommodate a new daughter

agent on the lattice. However, a more biologically realistic model might allow for each of the red-to-yellow, yellow-

to-green and the green-to-red transitions to depend on the local density. This kind of generalisation, which could

improve how the discrete model matches experimental observations at high density, could be incorporated into the

discrete model by using more sophisticated measures of local density on the lattice [40]. Another feature of our work
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that could be explored further involves the observation that the numerical solution of the continuum limit PDE models

in Figure 5 appears to approach constant speed, constant shape travelling wave solutions. In this work we have not

formally analysed travelling wave solutions of Equations (10)–(12) since we focus on developing mathematical and

computational tools that can be used to interpret images from cell biology experiments. Such experiments do not

typically lead to travelling waves because of the choice of the initial condition, boundary conditions and experimental

timescales considered. For example, typical experimental images in Figures 1(a)–(b) lead to two opposingly directed

fronts and will never form a unidirectional travelling wave. Furthermore, the simulation results in Figure 5 suggest

that even after a time period of 240 h the constant shape travelling wave profile is still developing. Nonetheless,

it would still be possible to examine travelling wave solutions of Equations (10)–(12) by introducing a change of

coordinates, z = x−ct, where c > 0 is the speed of the travelling wave solution moving in the positive x direction. This

transformation leads to a system of six nonlinear first order ordinary differential equations that could be analysed in

phase space using dynamical systems theory. The analysis of this system would be complicated by its high dimension

and the nonlinear diffusion terms. We leave this work for future consideration.

4. Appendix A: Taylor series expansions

The key step in deriving the continuum limit description is to use truncated Taylor series to express the occupancy

of certain nearest neighbour lattice sites, depicted in Figure 1(d), to the central lattice site. For the lattice geometry

19
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and nomenclature in Figure 1(d), the following truncated Taylor series are useful

site 1 : f (x − ∆, y) = f (x, y) − ∆
∂ f (x, y)
∂x

+
∆2

2
∂2 f (x, y)
∂x2 + O(∆3), (13)

site 2 : f (x + ∆, y) = f (x, y) + ∆
∂ f (x, y)
∂x

+
∆2

2
∂2 f (x, y)
∂x2 + O(∆3), (14)

site 3 : f
x − ∆

2
, y +

√
3∆

2

 = f (x, y) −
∆

2
∂ f (x, y)
∂x

+

√
3∆

2
∂ f (x, y)
∂y

+
∆2

8
∂2 f (x, y)
∂x2 −

√
3∆2

4
∂2 f (x, y)
∂x∂y

+
3∆2

8
∂2 f (x, y)
∂y2 + O(∆3), (15)

site 4 : f
x − ∆

2
, y −

√
3∆

2

 = f (x, y) −
∆

2
∂ f (x, y)
∂x

−

√
3∆

2
∂ f (x, y)
∂y

+
∆2

8
∂2 f (x, y)
∂x2 +

√
3∆2

4
∂2 f (x, y)
∂x∂y

+
3∆2

8
∂2 f (x, y)
∂y2 + O(∆3), (16)

site 5 : f
x +

∆

2
, y +

√
3∆

2

 = f (x, y) +
∆

2
∂ f (x, y)
∂x

+

√
3∆

2
∂ f (x, y)
∂y

+
∆2

8
∂2 f (x, y)
∂x2 +

√
3∆2

4
∂2 f (x, y)
∂x∂y

+
3∆2

8
∂2 f (x, y)
∂y2 + O(∆3), (17)

site 6 : f
x +

∆

2
, y −

√
3∆

2

 = f (x, y) +
∆

2
∂ f (x, y)
∂x

−

√
3∆

2
∂ f (x, y)
∂y

+
∆2

8
∂2 f (x, y)
∂x2 −

√
3∆2

4
∂2 f (x, y)
∂x∂y

+
3∆2

8
∂2 f (x, y)
∂y2 + O(∆3). (18)

To derive the continuum limit PDEs we substitute the truncated Taylor series into Equations (4)–(6). Before doing

so it is useful to identify certain key terms in these discrete conservation statements, such as
6∑

s=1

fs, where fs denotes

the function, f (x, y), evaluated at the sth nearest neighbour lattice site as shown in Figure 1(d). Summing Equations

(13)–(18) allows us to write

6∑
s=1

fs = 6 f (x, y) +
3∆2

2

[
∂2 f (x, y)
∂x2 +

∂2 f (x, y)
∂y2

]
+ O(∆3), (19)

which is a useful result that we can use to simplify the algebraic expressions that we encounter when passing from

Equations (4)–(6) to (7)–(9).
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