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ABSTRACT 
Ab initio protein-protein docking algorithms often rely on experimental data to identify the most 
likely complex structure. We integrated protein-protein docking with the experimental data of 
chemical cross-linking followed by mass spectrometry. We tested our approach using 12 cases 
that resulted from an exhaustive search of the Protein Data Bank for protein complexes 
with cross-links identified in our experiments. We implemented cross-links as constraints based 
on Euclidean distance or void-volume distance. For most test cases the rank of the top-scoring 
near-native prediction was improved by at least two fold compared with docking without 
the cross-link information, and the success rates for the top 5 and top 10 predictions doubled. 
Our results demonstrate the delicate balance between retaining correct predictions and 
eliminating false positives. Several test cases had multiple components with distinct interfaces, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275891doi: bioRxiv preprint 

https://doi.org/10.1101/275891


 
 

2 

and we present an approach for assigning cross-links to the interfaces. Employing the symmetry 
information for these cases further improved the performance of complex structure prediction. 
 
Keywords: protein-protein complex; structure; ZDOCK; mass spectrometry; symmetry 
 
Highlights: 

● Incorporating low-resolution cross-linking experimental data in protein-protein docking 
algorithms improves performance more than two fold. 

● Integration of protein-protein docking with chemical cross-linking reveals information on 
the configuration of higher order complexes. 

● Symmetry analysis of protein-protein docking results improves the predictions of 
multimeric complex structures  

 
 
INTRODUCTION 
Protein interactions play critical roles in biological processes, including the immune system, 
signaling pathways, and enzymatic reactions. Proteome-wide studies have shown that most 
proteins interact with one or more other proteins [1]. Three-dimensional structures of protein-
protein complexes are needed to understand these processes, which can be carried out at the 
atomic resolution by X-ray crystallography, nuclear magnetic resonance, or cryoelectron 
microscopy. But these experiments are difficult to perform and sometimes do not succeed in 
determining the structures.  
 
Various other experimental techniques can provide structural information at lower resolution. 
H/D exchange, mutagenesis experiments (in particular alanine scanning), and chemical cross-
linking followed by mass spectrometry can identify interfacial residues or residue pairs, while 
small-angle X-ray scattering (SAXS) and electron microscopy can provide orientational 
information that is not residue specific [2]. A number of computational methods have been 
developed to predict protein-protein complex structures, but typically yielding many incorrect 
predictions—if a computational algorithm is allowed to make ten predictions for a protein-protein 
complex, it has roughly a fifty percent chance to yield at least one near-native structure [3-6]. 
Integrating computational algorithms with lower-resolution experimental data can improve the 
accuracy of protein complex structures prediction [7-15]. The experimental data can either be 
used to guide computational prediction [16,17] or to filter predictions in a post-processing step 
[11]. 
  
In this study, we integrated the ab initio protein-protein docking algorithm ZDOCK [18-21] with 
the experimental data of chemical cross-linking followed by mass spectrometry. Cross-linking 
reagents can form covalent bonds with protein residues that are closer in distance than the 
length of the linker. Trypsin digestion of cross-linked proteins, followed by mass spectrometry, 
identifies protein residues that were cross-linked. The cross-linking reagent has a maximum 
length; therefore, the cross-linking data give an upper bound for the geometric distance between 
paired residues. Cross-linking data has been used extensively to validate or guide protein-
protein docking predictions [11,22-25], and various approaches were developed to integrate the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275891doi: bioRxiv preprint 

https://doi.org/10.1101/275891


 
 

3 

constraints with the docking algorithms [11,26-28]. Systematic investigations of the performance 
using large data sets were, however, carried out only using simulated cross-linking data [27]. 
Here we present a data set that is derived from our proteome-wide experiments [29-34] and all 
use the same linker. The dataset was searched against the known structures in the Protein Data 
Bank [35] and yielded 12 test cases. Although the resulting collection of test cases is limited in 
size, it enabled us to compare the effectiveness of several integration schemes and develop a 
new algorithm for associating the cross-links with specific interfaces in higher-order protein-
protein complexes.  
 
RESULTS AND DISCUSSION 
 
Overall approach 
We used ZDOCK [18-21] with input component proteins obtained from X-ray crystallography or 
through homology modeling using X-ray crystallography template structures. The ZDOCK 
algorithm was integrated with experimental cross-linking data to generate only predictions that 
satisfy the cross-links. The following three approaches were tested: (1) Filtering the predictions 
from a standard ZDOCK calculation using the Euclidean distance between cross-linked sites. 
Although Euclidean distances are fast to compute and therefore applicable to large sets of 
predictions, the cross-linking distances could be underestimated because the Euclidean path is 
allowed to pass through protein-occupied space. (2) Filtering the ZDOCK predictions using the 
Xwalk algorithm [27,36] to determine the shortest path that is allowed to only pass through 
protein-unoccupied space (void-volume). Although physically more accurate than Euclidean 
distances, computationally the grid-based algorithm is orders of magnitude more expensive to 
evaluate. (3) Restrict ZDOCK to search only the space that satisfies the Euclidean cross-linking 
constraints. This approach yields more retained predictions than the filtering methods and 
therefore may improve performance.  
 
We performed cross-linking and mass spectrometry experiments with the lysine-reactive BDP-
NHP chemical [30] and then used the ReACT [30] algorithm to identify the cross-linked sites. 
We used our previously published cross-linking data [29-34] and unpublished data. We only 
analyzed heteromeric interactions in this study because most ab initio protein-docking 
algorithms are designed to predict such complexes, and we plan to investigate homomeric 
complexes in future studies. Using the cross-linking data, we searched the Protein Data Bank 
(PDB) [35] and retained 12 complexes that had matching unbound component proteins and are 
thus suitable for testing rigid-body docking algorithms such as ZDOCK. In this search we used a 
sequence identity cutoff of 30%, and used homology modeling to generate the structures if 
needed.  We used the resulting collection of complexes to assess the three approaches for 
integrating cross-linking experiments and protein-protein docking algorithms. 
 
Test set 
Our test set contains 12 protein-protein complexes. Ideally, a protein-protein docking test set 
has the unbound structures available for all component proteins, or unbound templates that can 
be used for homology modeling the components. However, in order to maximize the number of 
entries in our set, we allowed seven tests that had one of the components in the bound form. 
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One of these cases had the unbound structure for the other component available 
(unbound/bound docking), and for the remaining six the other component needed to be 
homology modeled (homology/bound docking). For one case in our set we had unbound 
structures for both components (unbound/unbound docking), for three cases only unbound 
templates (homology/homology docking), and for the final case one template and one unbound 
structure (homology/unbound docking). The 12 complexes could be divided into eight groups 
based on fold-similarity and are summarized in Table 1 and shown in Figure 1. 
 
The I-RMSD values in Table 1 indicate the conformational differences between the bound and 
unbound interfaces [6]. Except for 2C, 2D, 3A, and 3B that had I-RMSDs ranging from 3 to 5 Å, 
the other complexes had I-RMSDs under 2.5 Å and would be classified as having low to 
medium difficulty for ab initio docking algorithms such as ZDOCK [6]. Table 2 lists the 
experimentally detected cross-links. The cross-linked proteins had 1-7 pairs of cross-linked 
sites, averaging just under 3 per protein pair. Based on the bound structures, the Euclidean 
distances between the cross-linked sites were under 35 Å and the void-volume distances under 
40 Å, except for cases 2C, 2D, and 6, whose cross-linked sites were at slightly greater 
distances. The distance distribution is consistent with previously reported data [29]. 
 
<Table 1> 
<Figure 1> 
<Table 2> 
 
Three of the groups (1-3) display multiple interfaces in the bound structures. When they 
involved different binding sites they were considered both separately and combined in the 
assessment of the prediction algorithms. The first example, group 1, consists of the complex of 
tubulin α and β chains (1). The bound structure contains a stathmin chain as well, although it 
was not incorporated in the docking experiments [37]. The structure shows three interfaces 
between the components, two of which are distinct and involve two different binding sites for 
each component.  
 
Group 2 consists of four members, human (2A) and non-human (2B, 2C, 2D) Succinyl-CoA 
ligases, each being a complex of a α-subunit and a β-subunit. The β-subunit consists of two 
domains that both bind the α-subunit.  The sequence identities amongst the four members of 
the group range from 44% to 89% (the latter being between the α-subunits of 2B and 2D), and 
we considered these complexes as distinct test cases for two reasons. First, there is little 
redundancy among the cross-links (only the single cross-link of 2C was equivalent to one of the 
cross-links of 2B, see Table 2). Second, the stoichiometry of 2A differs from that of 2B while the 
information is not available for 2C and 2D. One α-subunit and one β-subunit form a complex for 
2A [38], whereas 2B is a tetramer with a homodimer of two β-subunits at the center [39]. 
Indeed, one pair of the cross-linked sites for 2B (P0AGE9 residue 43 with P0A836 residue 172) 
requires the tetramer structure, whereas both pairs of cross-linked sites of 2A are consistent 
with a dimeric complex structure. Consequently, we used the monomeric β-subunit as the 
docking input for 2A and the dimeric β-subunit for 2B. Based on the high sequence identities 
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among 2B, 2C, and 2D as well as the need of the dimeric β-subunit to rationalize some of the 
cross-links, we used the dimeric β-subunit structure as the input for docking 2C and 2D.  
 
Group 3 consists of human (3A) and E. coli (3B) F1-ATP synthases. The bound structures show 
three α-subunits and three β-subunits that are close to the C3 symmetry but broken by the γ-
subunit that binds to the center of the complex. The α and β-subunits have the same fold, but 
within each complex, the sequence identity is only 26% for both 3A and 3B. Between the 
complexes, the α-subunits have a sequence identity of 57% and the β-subunits 72%. Thus, we 
considered them distinct cases. We assumed that the synthases were stable without the γ-
subunit and ignored the γ-subunit in docking and subsequent analysis. This is supported by the 
thermophilic Bacillus 1-ATP synthase, which has been crystallized both with and without a 
symmetry breaking subunit [40,41].  
 
The remaining groups (4-8) involve complexes of two components with a single interface. Group 
4 has a single member, the complex of human profilin-1 with β-actin (4), and is the only case for 
which all bound and unbound structures were available with high sequence identity (over 94%). 
This case is also an entry of the protein-protein docking benchmark that we maintain [6,42-45].  
 
Group 5 contains a single complex, the heterodimer of human Alu binding proteins SRP9 and 
SRP14 bound to Alu RNA (5). We ignored the RNA component during docking assuming that 
the two proteins could form a complex without the RNA. 
 
The single member of group 6 contains two interacting components (BamC and BamD) of the 
five-protein barrel assembly machinery (BAM) complex (6), responsible for the proper assembly 
of β-barrel proteins into the outer membrane of E. coli. BamC contains a 73-residue-long 
unstructured region essential for binding BamD (Figure 1) [46]. The unbound structure of the 
full-length BamC was not available, but even if it had been available, it might not have been 
suitable for rigid-body docking due to the unstructured region; consequently, we use the bound 
structure in our docking.  
 
Group 7 is the complex of the GTPase Rab14 with a Rab GDP dissociation inhibitor (7). For the 
bound structure, we used the complex of the inhibitor with the prenylated YPT1 GTPase, having 
sequence identities of about 50% with the target. 
 
Finally, group 8 consists of the human ElonginB-ElonginC complex (8) [47]. The bound structure 
includes the VHL tumor suppressor, but it was not included in the docking since VHL only 
contacts ElonginC and not ElonginB. 
 
Docking without cross-linking data 
ZDOCK was used to predict complex structures for the twelve cases in the test set, using the 
component proteins as described above. We used interface RMSD between the predicted and 
bound structures (iRMSD) to assess the predictions. We applied an iRMSD cutoff of 5.0 Å to 
denote a prediction as a near-native structure or a ‘hit’ [48-50], except for test 2C, 3A, and 3B, 
which had the interface RMSDs between the superposed and bound structures (I-RMSDs) 
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ranging from 3 to 5 Å (Table 1). Since the I-RMSD forms a lower bound for the iRMSD, these 
cases required a cutoff of 7.5 Å to include at least one hit in the set of predictions. In case of 
distinct interfaces between the components (1, 3A, and 3B), we assessed the docking 
predictions for each interface separately and also combined (claiming a prediction correct if 
either one of the interfaces observed in the bound structure matched the prediction). For 3A and 
3B, whose bound complexes showed similar interfaces between the components with the 
differences caused by the symmetry breaking central chain, we based the assessment on the 
bound interface that yielded the lowest iRMSD. 
 
Tables 3 and 4 show the results of unconstrained docking as well as docking combined with the 
various approaches of applying cross-linking constraints. Without constraints, most docking runs 
had a hit within the top 100 predictions (11 out of 15 interfaces), often within the top 10 (6 
interfaces), but a top ranked hit was only found once. These results are in line with the ZDOCK 
performance on the protein-protein docking benchmark [6]. Interestingly, three of the four 
interfaces that had no hits within the top 100 predictions corresponded to the cases with multiple 
distinct interfaces (1, 3A, and 3B). We can speculate that the formation of the complex occurs in 
stages, in which the B:C (1) and A:D (3A, 3B) interfaces are only stable after the B:A and A:E 
interfaces have formed. Alternatively, the chains that we ignored during docking (indicated in 
green in Figure 1) may be required for the complete complex formation.   
 
<Table 3> 
<Table 4> 
 
Separating cross-links by interface 
In all of our calculations, we assumed that the experimental cross-link data did not include false 
positives. Consequently, we applied hard cutoffs to the cross-link distances calculated for the 
predictions and required a prediction to satisfy all cross-links. It was straightforward to apply 
these requirements for binary complexes 2A and 4-8. Furthermore, 3B has two distinct 
interfaces but only one cross-link, so we simply focused on the interface associated with the 
cross-link. For cases 1 and 3A however, we had two distinct interfaces and multiple cross-links, 
and the cross-links for one interface may not be satisfied by the other interface of the same 
complex. Thus, it was essential that we assigned each cross-link to the appropriate interface. A 
similar issue arose for case 2B, whereby cross-links could occur between the α-subunit and 
either chain of the β-subunit homodimer. In these situations, we need to group the cross-links by 
interface (1 and 3A) or chain (2B) so that we simultaneously apply only the cross-links that 
belong to the same interface or chain. Such grouping information, however, is not directly 
provided by the experimental cross-link data. 
 
To group the cross-links by interface or chain, we assumed that two cross-links that are both 
satisfied by a docking prediction are more likely to be associated with the same interface (or 
chain) than with different interfaces. Thus, we defined a binary matrix with rows corresponding 
to the top 200 ZDOCK predictions, columns corresponding to the cross-links, and the elements 
set to 1 for the predictions that satisfy the cross-link (using Euclidean distance with a 30 Å 
cutoff) and 0 otherwise. We then calculated the correlation coefficients r between all pairs of 
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columns to obtain a correlation matrix for each test case with each dimension corresponding to 
the total number of cross-links. Figure 2 depicts the six test cases with multiple cross-links, with 
the r>0.1 elements shaded.  For cases 1, 2B, and 3A, a block-diagonal pattern arose, with each 
block corresponding to the cross-links that belong to the same interface or chain. As expected, 
the cross-links formed a single group for binary complexes 2A, 4, and 5. Therefore, we applied 
each group of constraints separately during the docking runs. In addition to improving docking 
performance, the occurrence of multiple groups of cross-links provides information on the 
stoichiometry and topology of the complex, which we explored further to determine the 
symmetry of the complexes (see below). 
 
< Figure 2> 
 
Filtering using Euclidean distances 
We filtered out predictions with cross-linked sites further than 40 Å apart in Euclidean distance, 
which was based on the maximum observed distance of 39.0 Å in the bound structures (Table 
2). Even with this loose cutoff, the highest ranking hit was eliminated for three docking runs— 
the second hit was retained for 6 and only the fourth hit was retained for 2C and 2D. As a result, 
incorporating cross-link data worsened the rank of the top hit for 2C and 2D. Nevertheless, the 
Euclidean filter resulted in four cases with a hit ranked as number one, a substantial 
improvement from just one case without the filter (Table 4).   
 
When we tightened the cutoff to 35 Å, there were more cases for which the top-ranked hit did 
not pass the filter and several cases for which all hits were filtered out. However, the overall 
results improved compared with the 40 Å Euclidean filter or without filtering, judged by the 
number of cases with at least one hit in the top 1, top 5, or top 10 predictions (Table 4). 
Tightening the filter further to 30 Å, however, worsened the overall results. Thus, a 35 Å cutoff 
provided the Euclidean filter with the best balance for the present data set. 
 
Filtering using void-volume distances  
Since void-volume distances for the bound structures were somewhat larger than Euclidean 
distances (Table 2), we increased the cutoff by 5 Å. Again, we observed a tradeoff between 
losing hits and improving the ranks of the retained hits, and we found the optimal cutoff to be 40 
Å. The void-volume filter only performed slightly better than the Euclidean filter, increasing by 
one the total number of cases with a hit in the top 5 predictions, but leaving the other metrics 
unchanged. The results were similar to the 35 Å Euclidean filter at the level of individual test 
cases, with the ranks of the top hit no more than four positions apart.  
 
Euclidean constraints within FFT 
The third type of constraint also uses Euclidean distances, but it restricts the translational 
search space of the docking algorithm and is therefore implemented within the fast Fourier 
transform (FFT) step of the ZDOCK algorithm. We tested the same cutoffs as for the Euclidean 
filter, and the performance was comparable with the above two post-processing approaches. 
The FFT-based constraint with a cutoff of 35 Å showed the best performance for the top 1 
prediction, and with 30 Å for the top 5 predictions. For the top 10 predictions, it tied with the 
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post-processing methods. Overall, the FFT-implemented constraint approach with a 30 Å cutoff 
yielded the best performance among all method and cutoff combinations. It is reasonable to 
consider the top 5 predictions in follow-up computational or experimental work, for which this 
approach had a success rate of 79% (11 out of 14 interfaces for which we had cross-links). 
None of the three tests cases for which this approach failed to generate a hit among the top 5 
predictions (2C, 2D, and 6), was correctly predicted in the top 5 by the other method and cutoff 
combinations.  
 
Symmetry analysis 
The occurrence of multiple groups of cross-links indicates that at least one component of the 
complex is a homo-multimer (as in the case of 2B) or the components form multiple distinct 
interfaces. The latter can then lead to symmetric complexes (as in the case of 3A) or a linear 
configuration (as in the case of 1). To differentiate these three possibilities, we integrated the 
experimental cross-link data with docking to predict whether a complex had symmetry and 
whether this symmetry could be used to improve the docking performance. 
 
Cases 1 and 3A showed two distinct interfaces each (Figure 2), and we asked whether 
predictions for these interfaces could lead to symmetric complexes. We started with the top 5 
predictions for each interface, obtained from the 30 Å FFT-implemented distance constraints. 
Combining these top 5 predictions yielded 25 predicted interface pairs. Starting from a 
monomer, we used each of these 25 interface pairs to sequentially add components, creating 
tetrameric (C2), hexameric (C3), and octameric (C4) complex structures for each interface pair. 
The resulting structures were not symmetric because the docking was performed without any 
symmetry information. We moved the component proteins as rigid bodies to reach a symmetric 
structure while keeping the deformation of the predicted interfaces to a minimum (Methods), and 
retained the symmetrized structure only if all the cross-link constraints were still satisfied and 
the iRMSD between the predicted interfaces and symmetrized interfaces did not exceed 2.5 Å. 
Figure 3 outlines the procedure for a single interface pair. 
 
<Figure 3> 
 
As shown in Tables S1 and S4, neither case 1 nor 3A had a predicted interface pair that was 
consistent with the C2 symmetry. Case 1 only showed a single symmetry-consistent interface 
pair, which had the C4 symmetry (Tables S2 and S3). For 3A, four predicted interface pairs were 
consistent with the C3 symmetry (Table S5), and five with C4 (Table S6). From the clash count 
(Tables S3 and S6) we see that a few octameric complexes symmetrize to unrealistic 
structures, but these examples also have starting interfaces that are far from the bound form. 
Table 5 integrates the results and they agree with the symmetries observed in the bound 
structures: we found seven symmetry-consistent pairs for 3A (C3 in bound) and only one pair for 
1 (non-symmetric in bound). Although the bound structure of 3A is a hexamer, three of the 
seven interface pairs symmetrized to an octamer. Hexameric and octameric structures are 
difficult to distinguish by our algorithm because the difference between the C3 (hexamer) and C4 
(octamer) symmetries is only 15 degrees per interface. In agreement with the bound structures, 
no predicted interface pairs yielded the C2 symmetry. Our results based on these two cases 
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suggest that combining docking with cross-linking data can reveal whether a protein-protein 
complex is symmetric, although the predicted fold of the symmetry is not precise. 
 
<Table 5> 
 
Finally, we tested whether such a symmetry analysis could be used to improve the accuracy of 
complex structure prediction. For case 1 and 3A combined, we considered 50 pairs of interface 
predictions, of which six showed both interfaces below the iRMSD cutoff for denoting a correct 
prediction (5.0 Å and 7.5 Å for cases 1 and 3A, respectively), representing a success rate of 
12%. Eight of the predicted interface pairs were symmetry-consistent, and five of the 
corresponding symmetrized structures had interfaces below the iRMSD cutoff (Table 5). 
Although the absolute number of correctly predicted interface pairs dropped from six to five, the 
success rate increased from 12% to 62.5% if we only retained the symmetry-consistent 
interface predictions.  
 
CONCLUSIONS 
 
We demonstrated that incorporating cross-link data in ab initio protein-protein docking 
algorithms typically improve the rank of the first near-native prediction with a factor between two 
and ten. The success rates for the top 5 and top 10 predictions roughly doubled. Such 
improvements considerably increase the usefulness of protein-protein structure prediction 
algorithms. We tested several approaches to incorporate the cross-linking data in the docking 
calculations and found that using constraints in the translational search led to the best 
performance. Also, we showed that structures of symmetric complexes could be refined further, 
improving the predictions for the associated interfaces.  
 
Our findings indicate that a distance cutoff of 30 Å as implemented in the FFT component of the 
docking algorithm yields the best overall performance, which is considerably shorter than the 
largest cross-link distances observed in the bound structures, close to 40 Å. Although the 
observed distances may be high due to differences in the complex structures between crystal 
and solution forms, it is possible that the performance for the few cases with large cross-link 
distances was sacrificed to improve the performance of the remaining test cases which 
represent the majority, leading to the best overall performance. For example, case 6 showed a 
large cross-link distance in the bound structure, and resulted in a hit with a similarly large 
constraint cutoff in the docking. Case 6, however, was predicted incorrectly using the cutoff 
distances that showed the best performances overall.  
 
Finally, our work suggests several directions for further algorithmic improvement. For example, 
we found that some correct predictions did not pass the cross-linking distance filters, even when 
the cutoffs were larger than the distances observed in the bound form. This may be due to the 
interface acting as a hinge, with small changes at the interface having large effects on the distal 
cross-linked sites. Thus, adjusting the cutoff distance according to the flexibility of the predicted 
interface may improve predictions. Similarly, we could assess the flexibilities of the regions of 
the proteins that are cross-linked, and adjust the cutoff distance accordingly. Alternatively, 
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common structural refinement algorithms, which are often used as a post-processing step 
following the rigid-body docking, could be adapted to include cross-linking constraints  
 
MATERIALS AND METHODS 
 
Data sets 
We compiled the cross-linking data sets from previous work and new experiments [29-34]. In all 
cases, cross-linking was performed using the BDP-NHP cross-linker described extensively in 
previous work [30]. Briefly, cross-linker was added to live cells resuspended in phosphate buffer 
(170 mM KH2PO4, pH 8.0), the cells were lysed, and protein lysates were digested with trypsin. 
Cross-linked peptide pairs were fractionated by strong cation exchange, enriched with 
monomeric avidin beads (Thermo) and loaded onto an in-house pulled 45cm C8 reverse phase 
column for injection into an LTQ-Velos FT-ICR instrument. ReACT [30] was run as previously 
described to identify cross-linked peptides in real time, and peptides were searched using 
SEQUEST. 
 
Protein-protein docking 
We used our ZDOCK3.0 algorithm for the prediction of protein-protein complex structures 
[3,4,18-21]. ZDOCK inputs the structures of two constituent proteins and performs an 
exhaustive grid-based rigid-body search to predict their binary complex. The search returns an 
ensemble of predictions ranked using a scoring function, which includes shape 
complementarity, electrostatics, and the IFACE statistical potential [51,52]. Optimal results are 
typically obtained using X-ray crystallography structures as input, but also NMR, homology 
modeled, or ab initio modeled input structures can be utilized [53]. 
 
ZDOCK separates the full six-dimensional rigid-body space into a three-dimensional 
translational space and a three-dimensional rotational space. For each point in the rotational 
space, the best scoring translational pose is used as a prediction. In this study, we used 15° 
rotational sampling. Each docking run resulted in 3,600 predictions, which were ranked 
according to the docking scores.  
 
Cross-linking constraints 
We considered three methods for incorporating cross-linking constraints in ZDOCK. The first 
two approaches involved post-processing, or filtering the set of predictions after the ZDOCK 
calculation. Cross-link distances were computed based on the predicted structures, and only 
when the distance was below a cutoff the constraint was considered satisfied, and the prediction 
retained. The two filtering approaches differed in the calculation of the cross-link distances. In 
the first, we used Euclidean (straight-line) distances between the Cβ atoms. In the second, we 
used void-volume distances, computed with the command line version of the Xwalk program by 
Kahraman, Malmström and Aebersold (v0.6, using the Cβ atom as anchor and the -bb flag in 
addition to the default options) [36]. Xwalk is grid-based and uses a breadth-first algorithm to 
obtain the shortest residue-residue distance that passes only through solvent accessible space. 
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The third approach, FFT-based constraints, integrates the cross-linking constraints within the 
translational search of ZDOCK, following the algorithm presented by Xia [28]. In ZDOCK, Fast 
Fourier Transform (FFT) is used to generate a three-dimensional matrix that, for a point in the 
rotational space, contains the scores for all the (grid-based) translational coordinates. In a 
standard ZDOCK calculation, this matrix is then searched for the best score, and the 
corresponding complex structure is retained as a prediction. This structure may or may not 
satisfy the cross-links, hence the need for the filtering steps outlined above. In the FFT-
constraint approach, on the other hand, we exploited the one-to-one correspondence between 
the score matrix elements and complex structures. For each score matrix element we could 
trivially compute its corresponding Euclidean cross-link distance, and when larger than the 
cutoff, marked the element as excluded. We repeated this procedure for all the cross-links 
observed for the complex. The subset of non-excluded elements was then scanned as usual, 
which yielded the best scoring complex structure that satisfied all the cross-links. 
 
Test set construction 
We used BLAST [54], with a threshold of 30% sequence identity, to identify heteromeric 
complex structures in the PDB [35] for which we had cross-linking data available. We applied 
the following restrictions: First, the cross-linked sites needed to be part of the aligned regions. 
Second, the cross-linked sites needed to be resolved in the X-ray crystallography structure. The 
complexes were then investigated for suitability for protein-protein docking, using similar 
requirements as used for our protein-protein docking benchmarks [6]. For example, co-folded 
chains were excluded, as well as three-body (or higher order) interactions and protein-peptide 
like complexes. For the resulting complex list, we then searched the PDB for unbound 
structures. When finding bound or unbound structures that were less than 100% sequence 
identity with the cross-linked proteins, we used Modeller v.9.12 [54] to generate homology 
models, except for case 5 that had minimal sequence identity with the template, and yielded a 
more reasonable structure using I-TASSER [55-57]. We required at least one of the 
components to be available in its unbound form or as homology model based on an unbound 
template. 
 
Prediction assessment 
To measure the quality of a prediction we used the Cα interface root-mean-square-deviation 
(iRMSD), which results from superposing the predicted interface onto the bound interface [6]. 
The interface includes all residues that have at least one atom within 10 Å of the binding partner 
in the bound structure. When the bound structure had multiple interfaces, we calculated the 
iRMSD for each interface separately and used the lowest value. 
 
Symmetry analysis 
Starting with a single component and predictions for the two interfaces, we built multimeric 
structures by repeatedly adding components according to the predicted interfaces. We used  
PyMOL [58] for the superposition, and components were allowed to overlap if this followed from 
the interfaces. The resulting tetrameric, hexameric, and octameric structures were not 
symmetric because the predicted interfaces resulted from docking runs without any symmetry 
considerations. Therefore, we optimized each starting structure to the symmetric structure with 
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the smallest deviation from the predicted interfaces, while keeping the components rigid. To 
achieve this, we used an optimization function that consisted of two components. The first 
component was the root mean square of the iRMSDs (defined above) between the predicted 
interfaces and the interfaces at the current optimization step. For the second component we 
followed the approach by Nilges [59]. We defined six centers for each of the two unique 
components (maximum and minimum along the three Cartesian axes) and calculated the 
distances between the paired centers located on different components. In a symmetric 
structure, the distances between centers across similar interfaces are identical. The optimization 
function thus contained the root mean square of the distance differences, which goes to zero at 
convergence. Although in principle the iRMSD component of the composite function is sufficient, 
we found that adding the specific symmetrizing component according to Nilges significantly 
improved the convergence behavior. For the optimization, we used steepest descent, with 
numerically calculated gradients. To speed up the optimizations we performed several thousand 
steps with only the interface similarity component, followed by additional steps using the full 
composite optimization function until a symmetric structure was obtained. The resulting function 
value, which is the root mean square of the iRMSDs  (as the symmetrizing component was zero 
for the optimized structure) was denoted the symmetrizing iRMSD and used to measure how 
much the predicted interfaces deviated from symmetry. 
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Table 1: The test set.  

Case1 UniProt 1 UniProt 2 Bound PDB2 Unbound 

PDB 13 

Unbound 

PDB 24 

I-RMSD5 

1 

Tubulin 
β-subunit 

P04350 

α-subunit 

P68363 

4X20 

(97%/100%) 

1Z5V 

(34%) 

1Z5V 

(32%) 

1.95 (1.88/2.02) [B:A] 

2.24 (2.25/2.24) [B:C] 

2A 

Succinyl-CoA ligase 
α-subunit 

P53597 

β-subunit 

Q96I99 

1EUC 

(96%/96%) 

1OI7 

(54%) 

none 1.02 (1.53/ n/a) 

2B 

Succinyl-CoA ligase 

α-subunit 

P0AGE9 

β-subunit 

P0A836 

1SCU 

(100%/100%) 

1OI7 

(44%) 

none 0.66 (1.02/ n/a) 

2C 

Succinyl-CoA ligase 

α-subunit 

B7I6T1 

β-subunit 

B7I6T2 

1SCU 

(71%/65%) 

1OI7 

(57%) 

none 3.56 (5.19/ n/a) 

2D 

Succinyl-CoA ligase 

α-subunit 

Q51567 

β-subunit 

P53593 

1SCU 

(89%/77%) 

1OI7 

(58%) 

none 2.72 (3.95/ n/a) 

3A 

F1-ATP synthase 

β-subunit 

P06576 

α-subunit 

P25705 

1COW 

(99%/98%) 

4Q4L 

(70%) 

2R9V 

(59%) 

4.72 (5.13/4.29) [A:D] 

5.06 (6.05/4.14) [A:E] 
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3B 

F1-ATP synthase 

β-subunit 

P0ABB4 

P0ABB0 3OAA 

(100%/100%) 

4Q4L 

(80%) 

2R9V 

(55%) 

4.76 (5.30/4.21) [A:D] 

4.79 (5.65/3.87) [A:E] 

4 

Profilin- β-actin complex 

Profilin-1 

P07737 

β-actin 

P60709 

2BTF 

(95%/100%) 

1PNE 

(95%) 

1IJJ (94%) 0.75 (0.40/0.99) 

5 

Alu binding proteins 

SRP14 

P37108 

SRP9 

P49458 

4UYK 

(100%/100%) 

2W9J 

(31%) 

none 1.51 (2.12/ n/a) 

6 

BAM complex 

BamD 

P0AC02 

BamC 

P0A903 

3TGO 

(100%/100%) 

3Q5M 

(100%) 

none 1.36 (1.78/ n/a) 

7 

GTPase 

Inhibitor 

P50395 

Rab14 

P61106 

1UKV 

(56%/46%) 

1GND 

(87%) 

4D0G 

(99%) 

2.20 (1.56/3.02) 

8 

ElonginB- ElonginC 

ElonginC 

Q15369 

ElonginB 

Q15370 

1VCB 

(100%/100%) 

1HV2 

(40%) 

none 1.46 (1.99/ n/a) 

1 Human proteins are listed in roman, and other proteins in italic. 
2 In parentheses are the sequence identities between the PDB entries and the UniProt sequences in the second and third columns. 
3 In parentheses are the sequence identities between the PDB entries and the UniProt 1 sequences in the second column. 
4 In parentheses are the sequence identities between the PDB entries and the UniProt 2 sequences in the third column. 
5 In parentheses are the I-RMSDs for the two individual proteins. When an unbound structure was not available, the I-RMSD became 
formally zero and is listed as n/a. I-RMSDs are given for distinct interfaces when present, which are denoted in square brackets. 
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Table 2: Cross-linked sites for the test cases with the Euclidean and void-volume 
distances (using Cβ atoms) computed using the bound structures (for each case ordered 
by Euclidean distance). 
 

Case Residue 1 Residue 2 Euclidean 
distance (Å) 

Void-volume 
distance (Å) 

1 216 326 14.4 16.9 

216 336 22.1 25.0 

336 394 22.3 30.6 

324 394 24.7 28.5 

216 338 27.7 31.3 

2A 192 403 26.0 29.9 

90 271  28.0 32.0 

2B 256 146 15.3 15.5 

241 56 18.2 20.1 

285 372 20.5 23.1 

144 372 22.2 24.9 

256 56 22.8 27.3 

144 359 26.6 28.6 

43 172  33.8 37.5 

 2C 43 173 35.4 41.0 

 2D 43 175 39.0 44.2 

3A 133 123 14.7 18.9 

480 427  20.1 25.3 

522 427 20.9 23.3 

522 531 24.6 25.3 

485 506 25.3 28.5 

480 531 26.4 31.4 
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519 531 26.6 28.3 

3B 372 419 16.4 21.2 

4 70 291  15.5 17.9 

54 113 23.7 27.0 

5 66 30 14.8 20.2 

19 30 15.6 26.7 

6 149 166 38.8 42.5 

7 221 61 31.1 34.0 

8 72 46 22.3 27.2 
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Table 3: Docking results. 
 

Test 
Case1 

Number 
of pairs 
of cross- 
linked 
sites 

iRMSD 
cutoff 
used 
(Å) 

Rank 
without 

constraints 

Rank with Euclidean 
constraints (post-processing) 

Rank with Euclidean 
constraints (within FFT) 

Rank with void-volume constraints 
(post-processing) 

30 Å 35 Å 40 Å 30 Å 35 Å 40 Å 35 Å 40 Å 45 Å 

1 2+3 5.0 6 1 1 3 1 1 3 1 
(4th/75)2 

2  
(3rd/58)2 

2 

1 (B:A) 2 5.0 6 1 1 3 1 1 3 1 
(4th/75)2 

2  
(3rd/58)2 

2 

1 (B:C) 3 5.0 164 4 5 7 4 6 7 15 
(3rd/1033)2 

2 3 

  

2A 2 5.0 3 1 1 1 1 1 1 1 1 1  

2B 43 5.0 8 none 1 1 2 1 1 none 1 1 

2C 1 7.5 200 none none 824 
(4th/1874)2 

2808 2483 988 none none 617 
(4th/1874)2 

2D 1 5.0 58 none none 712 
(4th/1332)2 

none none 816 none none 563 
(4th/1332)2 

3A 2+5 7.5 11 none 1 
(2nd/29)2 

1 1 1 1 1 
(2nd/29)2 

1 
(2nd/29)2 

1 
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3A (A:D) 2 7.5 469 none 3 8 1 1 9 2 3 7  

3A (A:E) 5 7.5 11 none 1 
(2nd/29)2 

1 1 1 1 1 
(2nd/29)2 

1 
(2nd/29)2 

1 

3B 1 7.5 23 3 8 13 3 9 11 4 7 12 

3B (A:D) 0 7.5 2020 n/a4 n/a4 n/a4 n/a4 n/a4 n/a4 n/a4 n/a4 n/a4 

3B (A:E) 1 7.5 23 3 8 13 3 9 11 4 7 12 

4 2 5.0 61 5 8 12 5 8 14 4 4 7 

5 2 5.0 2 2 2 2 2 2 2 1 1 1 

6 1 5.0 9 none none 8 
(2nd/17)2 

none none 8 none none 43 
(3rd/141)2 

7 1 5.0 13 3 3 6 3 3 6 2 2 2 

8 1 5.0 1 1 1 1 1 1 1 1 1 1 

 
1 When more than one distinct interface was present, the predictions were evaluated for the different interfaces combined, and 
separately for each specific interface as denoted in parentheses. See text for details. 
2 The top-ranked hit(s) prior to post-processing did not satisfy the cross-link(s), thus the top-ranked hit after filtering is not equivalent 
to the original top-ranked hit. In parentheses we show the number of the hit in the unfiltered list and its rank in the unfiltered list. 
3 Although there are seven observed pairs of cross-linked sites for case 2B (Table 2), only four could be applied due to the 
incompleteness of the template used for homology modeling the unbound structure. 
4 There were no cross-linking constraints applicable to this interface.  
  

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted M

arch 3, 2018. 
; 

https://doi.org/10.1101/275891
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/275891


 
 

22 

Table 4: Number of test cases with hits in the 1, 5, and 10 highest ranked predictions (using the data from Table 3 and only 
the interface-specific evaluations for cases 1, 3A, and 3B)  
 

Number of 
predictions 

made  

ZDOCK 
without 

constraints 

ZDOCK with Euclidean 
constraints (post-processing) 

ZDOCK with Euclidean 
constraints (within FFT) 

ZDOCK with void-volume 
constraints (post-processing) 

 
 

30 Å 35 Å 40 Å 30 Å 35 Å 40 Å 35 Å 40 Å 45 Å 

1 1 3 5 4 5 6 4 5 5 5 

5 3 8 9 6 11 8 6 9 10 8 

10 6 8 11 10 11 11 10 9 11 10 
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Table 5: iRMSDs before and after symmetrizing. The iRMSDs for symmetrized structures 
are shown only when they are close to the original predictions (symmetrizing iRMSD ≤ 
2.5 Å and all cross-link distances ≤ 30 Å, see Tables S1-S6) and for the symmetry with the 
lowest symmetrizing iRMSD. Shaded iRMSD pairs are within same the cutoff as for a hit, 
defined as iRMSD ≤ 5.0 Å and 7.5 Å for case 1 and 3A, respectively. 
 

Interfaces Case 1 Case 3A 

B:C/ 

A:D 

B:A/ 

A:E 

Original 

iRMSD (Å) 

Symmetrized 

iRMSD (Å) 

 Original 

iRMSD (Å) 

Symmetrized 

iRMSD (Å) 

 

 

 

B:C B:A B:C B:A Sym A:D A:E A:D A:E Sym 

1 1 24.07 3.59    6.32 5.72 6.60 5.93 C4 

1 2 24.07 21.20    6.32 24.99    

1 3 24.07 5.02    6.32 8.16 6.58 7.13 C3 

1 4 24.07 3.51    6.32 17.76    

1 5 24.07 3.76    6.32 14.48    

2 1 18.27 3.59    9.80 5.72 9.26 6.43 C4 

2 2 18.27 21.20    9.80 24.99    

2 3 18.27 5.02    9.80 8.16    

2 4 18.27 3.51    9.80 17.76    

2 5 18.27 3.76    9.80 14.48    

3 1 19.25 3.59    6.70 5.72 6.57 5.82 C3 

3 2 19.25 21.20    6.70 24.99    

3 3 19.25 5.02    6.70 8.16 7.09 7.65 C3 

3 4 19.25 3.51    6.70 17.76    

3 5 19.25 3.76    6.70 14.48    

4 1 3.57 3.59    9.27 5.72    

4 2 3.57 21.20    9.27 24.99    

4 3 3.57 5.02    9.27 8.16    
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4 4 3.57 3.51    9.27 17.76    

4 5 3.57 3.76    9.27 14.48    

5 1 18.95 3.59    5.23 5.72 5.47 5.89 C4 

5 2 18.95 21.20 20.24 20.70 C4 5.23 24.99    

5 3 18.95 5.02    5.23 8.16 5.56 6.93 C3 

5 4 18.95 3.51    5.23 17.76    

5 5 18.95 3.76    5.23 14.48    
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Figure 1: Complexes in the test set. Unique components are in red and blue, and the equivalent
(same sequence) components in light red and light blue. The green protein chains in 1, 3A, and
3B, and RNA in 5 were not included in the prediction and analysis.  
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Figure 2: For the test cases with multiple cross-links, we calculated a binary vector for each
cross-link with elements whether each of the top 200 ZDOCK predictions satisfied the cross-link
(30 Å cutoff, Euclidean distance), and then computed the correlation coefficients (r) between all
pairs of vectors. This figure shows the correlations r between the cross-links in each test case,
with the positively correlated cross-links with values r>0.1 shaded. The indices correspond to
the cross-links as ordered in Table 2, and were rearranged to obtain a block-diagonal shading
pattern for cases 1 and 3A. Each shaded block corresponds to a distinct interface. 
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Figure 3: Example of the symmetry analysis (case 3A, first and third prediction for interface A:E 
and A:D, respectively). 
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