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Abstract 

High throughput single-cell RNA-seq (scRNA-seq) has enabled the discovery of novel cell 

types, the identification of trajectories during development, and the characterization of 

responses to genetic perturbations. The most popular visualization method for scRNA-seq is t-

Stochastic Neighbor embedding (t-SNE), which accurately captures the local structure of 

datasets, but often distorts global structure, such as distances between clusters. We developed 

a method for visualization and interpretation of scRNA-seq datasets, Similarity Weighted 

Nonnegative Embedding (SWNE), which captures both the global and local structure of the 

data, and enables relevant biological information to be embedded directly onto the visualization. 

SWNE uses nonnegative matrix factorization (NMF) to decompose the gene expression matrix 

into biologically relevant factors, embeds both the cells and the factors in a two dimensional 

visualization, and uses a similarity matrix to ensure that cells which are close in the original 

gene expression space are also close in the visualization. The embedded biological factors can 

be interpreted via their gene loadings, while SWNE can also embed genes onto the visualization 

directly, further enhancing biological interpretation. We demonstrate SWNE’s ability to visualize 

and facilitate interpretation of hematopoietic progenitors and neuronal cells from the human 

visual cortex and cerebellum. The SWNE R package and the scripts used for this paper can be 

found at: https://github.com/yanwu2014/swne. 
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Background 

Single cell gene expression profiling has enabled the quantitative analysis of many different cell 

types and states, such as human brain cell types1,2 and cancer cell states3,4, while also enabling 

the reconstruction of cell state trajectories during reprogramming and development5–7. Recent 

advances in droplet based single cell RNA-seq technology2,8,9 as well as combinatorial indexing 

techniques10,11 have improved throughput to the point where tens of thousands of single cells 

can be sequenced in a single experiment, creating an influx of large single cell gene expression 

datasets. Numerous computational methods have been developed for latent factor 

identification12, clustering13, and cell trajectory reconstruction6,7. However, one of the most 

common visualization methods is still t-Stochastic Neighbor Embedding (t-SNE), a non-linear 

visualization method that tries to minimize the Kullback-Leibler (KL) divergence between the 

probability distribution defined in the high dimensional space and the distribution in the low 

dimensional space14,15. 

 t-SNE very accurately captures local structures in the data, ensuring cells that are in the 

same cluster are close together15. This property enables t-SNE to find structures in the data that 

other methods, such as Principal Component Analysis (PCA)16 and Multidimensional Scaling 

(MDS)17, cannot14. However, t-SNE often fails to accurately capture global structures in the 

data, such as distances between clusters, possibly due to asymmetry in the KL divergence 

metric and the necessity of fine-tuning the perplexity hyperparameter14. Additionally, t-SNE 

visualizations do not provide biological context, such as which genes are expressed in which 

clusters, requiring additional plots or tables to interpret the data. While some newer methods 

such as UMAP address the issue of capturing global structures in the data, no methods, to our 

knowledge, allow for biological information to be embedded onto the visualization18. 

 

Results 
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We developed a method for visualizing high dimensional single cell gene expression datasets, 

Similarity Weighted Nonnegative Embedding (SWNE), which captures both local and global 

properties of the data, while enabling genes and relevant biological factors to be embedded 

directly onto the visualization. SWNE uses the Onco-GPS framework19 to decompose the gene 

expression matrix into latent factors, embeds both factors and cells in two dimensions, and 

improves the embedding by using a similarity matrix to ensure that cells which are close in the 

high dimensional space are also close in the visualization.  

First, SWNE uses Nonnegative Matrix Factorization (NMF)20,21 to create a parts based 

factor decomposition of the data (Figure 1a). The number of factors (𝑘) is chosen by randomly 

selecting 20% of the gene expression matrix to be set to missing, and then finding the 

factorization that best imputes those missing values, minimizing the mean squared error(Figure 

1a). With NMF, the gene expression matrix (𝐴) is decomposed into: (1) a genes by factors 

matrix (𝑊), and (2) a factors by cells matrix (𝐻) (Figure 1a). SWNE then calculates the pairwise 

distances between the rows of the 𝐻 matrix, and uses Sammon mapping22 to project the 

distance matrix onto two dimensions (Figure 1a). SWNE embeds genes relative to the factors 

using the gene loadings in the 𝑊matrix, and embeds cells relative to the factors using the cell 

scores in the 𝐻 matrix (Figure 1a). Finally, SWNE uses a similarity matrix to weight the cell 

coordinates so that cells which are close in the high dimensional space are close in the 

visualization (Figure 1a). In the following analyses, we specifically use a Shared Nearest 

Neighbors (SNN) matrix23 although it is possible to use other types of similarity matrices.  

To benchmark SWNE against PCA and t-SNE, we used the Splatter scRNA-seq 

simulation method24 to generate a synthetic dataset with 6000 cells split into four clusters, 

where clusters 1 – 3 are close to each other and all far away from cluster 4 (Methods). 

Qualitatively, the PCA plot successfully captures the difference between cluster 4 and clusters 1 

– 3, but is unable to cleanly separate clusters 1 – 3 (Figure 1b). On the other hand, the t-SNE 
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plot is able to cleanly separate all four clusters, but makes it look like all four clusters are 

roughly equidistant, whereas in reality cluster 4 should be farther apart from clusters 1 – 3 

(Figure 1c). The SWNE plot is able to separate all four clusters, and also accurately places 

cluster 4 further from clusters 1 – 3, while also allowing biologically relevant genes and factors 

to be embedded directly onto the plot (Figure 1d). 

We then applied SWNE to analyze the single cell gene expression profiles of 

hematopoietic cells at various stages of differentiation from Paul, et al25 (Figure 2a). Briefly, 

single cells were sorted from bone marrow and their mRNA was sequenced with scRNA-seq25 

(Figure 2a). The differentiation trajectories of these cells were reconstructed using Monocle26, a 

method built to identify branching trajectories and order cells according to their differentiation 

status, or “pseudotime” (Figure 2a). The branched differentiation trajectories are shown in the 

tree in Figure 2a, starting from the monocyte and erythrocyte progenitors (MP/EP) and either 

moving to the erythrocyte (Ery) branch on the left, or the various monocyte cell types on the 

right6. To select the number of factors to use for NMF, we randomly selected 25% of the gene 

expression matrix to set as missing, and then iteratively run NMF across a range of 𝑘 to impute 

the missing values (Figure S1a, Methods). We then take the values of 𝑘 which are at or near 

the minimum mean squared error, and then choose the 𝑘 that qualitatively produces the best 

visualization (Figure S1a, Figure S1b, Methods). 

Qualitatively, the SWNE plot (Figure 2b) separates the different cell types at least as 

well as the t-SNE plot (Figure 2c). However, the SWNE plot does a much better job of capturing 

the two dominant branches: the erythrocyte differentiation branch and the monocyte 

differentiation branch, and shows that those two branches are the primary axes of variation in 

this dataset (Figure 2b). While the t-SNE plot captures the correct orientation of the cell types, it 

is not clear that there are two main branches in the data and that the main variation in this 

dataset is along these two branches (Figure 2c). We also used Monocle2 to calculate 

differentiation pseudotime for the dataset, which is a metric that orders cells by how far along 
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the differentiation trajectory they are6. We then overlaid the pseudotime score on the SWNE and 

t-SNE plots (Figure 2d, Figure 2e). Again, we can see that the SWNE plot captures the 

branching structure and there’s a clear gradient of cells at different stages of differentiation 

along the two main branches (Figure 2d). The gradient in the t-SNE plot is not as visible 

because the t-SNE plot seems to be capturing the variance in the highly differentiated cells, 

which we can see from the large amount of dark red in the t-SNE plot (Figure 2e).  

SWNE provides an intuitive framework to visualize how specific genes and biological 

factors contribute to the visual separation of cell types or cell trajectories by embedding factors 

and genes onto the visualization. We used the gene loadings matrix (𝑊) to identify the top 

genes associated with each factor, as well as the top marker genes for each cell type, defined 

using Seurat26 (Methods). We chose three factors and five genes that we found biologically 

relevant (Figure S2a, Figure S2b, Figure S2c). The five genes are: Apoe, Flt3, Mt2, Sun2, and 

Pglyrp. The three factors are: Antigen Presentation, Metal Binding, and Platelet Generation, and 

factor names were determined from the top genes and associated with each factor (Figure S2a) 

(Table S1). The factors and genes enable a viewer to associate biological processes and genes 

with the cell types and latent structure shown in the data visualization. For example, dendritic 

cells (DC) are associated with Antigen Presentation, while erythrocytes (Ery) are associated 

with Heme metabolism and express Mt2, a key metal binding protein (Figure 2b). Additionally, 

the embedded factors and genes allow for interpretation of the overall differentiation process 

(Figure 2d). Undifferentiated progenitors (MP/EP) express Apoe, while more differentiated 

monocytes express Sun2 and Pglyrp1 (Figure 2d, Figure S3a).  

We also applied SWNE to a single nucleus RNA-seq human brain dataset2 from the 

visual cortex (13,232 cells) and the cerebellum (9,921 cells) (Figure 3a). Briefly, single nuclei 

were dissociated from the visual cortex and cerebellum of a single donor and sequenced using 

single nucleus Drop-seq2. We also applied SWNE to the subset of layer specific excitatory 

neurons in the visual cortex, where each layer has different functions27–29 (Figure 3a, inset). For 
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the SWNE plot, we selected the number of factors using the same missing value imputation 

method as for the hematopoiesis dataset (Figure S1c, Figure S1d). We can see that both the 

SWNE plot (Figure 3b) and the t-SNE plot (Figure 3d) are able to visually separate the various 

brain cell types. However, the SWNE plot is able to ensure that related cell types are close in 

the visualization, specifically that the inhibitory neuron subtypes (In1 – 8) are together in the top 

of the plot (Figure 3b). In the t-SNE plot the inhibitory neuron subtypes are separated by the 

Astrocytes (Ast) and the Oligodendrocytes (Oli) (Figure 3d).  

As with the hematopoiesis dataset, SWNE facilitates interpretation of the data via gene 

and biological factor embedding. We selected three factors (Myelin, Cell Junctions, and Immune 

Response) and 8 genes (PLP1, GRIK1, SLC1A2, LHFPL3, CBLN2, NRGN, GRM1, FSTL5) to 

project onto the SWNE plot using the cell type markers and gene loadings (Figure S2d, Figure 

S2e, Figure S2f, Table S1), adding biological context to the spatial placement of the cell types 

(Figure 3b). We can see that CBLN2, a gene known to be expressed in excitatory neuron 

types30, is expressed in the visual cortex excitatory neurons and that GRIK1, a key glutamate 

receptor31, is expressed in inhibitory neurons (Figure 3b, Figure S3b). Additionally, the Myelin 

biological factor is associated with Oligodendrocytes (Oli), consistent with their function in 

creating the myelin sheath32 (Figure 3b). The Cell junction biological factor is very close to 

Endothelial cells (End), reinforcing their functions as the linings of blood vessels (Figure 3b). 

Finally, SWNE has a unique advantage over t-SNE in capturing the local and global 

structure of the data, allowing for visualization of both the physical structure and function of the 

layer specific excitatory neurons (Figure 3c, 3e). The SWNE plot visually separates the different 

neuronal layers, while also showing that the main axis of variance is along the six cortical layers 

of the human brain (Figure 3c). We can clearly trace a trajectory from the most superficial 

neuron layers (L2/3) to the deepest neuron layers (L6/6b) (Figure 3c). The t-SNE plot can 

visually separate the layers, but the layer structure is not apparent (Figure 3e). With the t-SNE 

plot, it is unclear that the main axis of variance is between the different layers (Figure 3e). 
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Additionally, we selected five layer specific marker genes (DAB1, NTNG1, DCC, HS3ST2, 

POSTN) to project onto the SWNE plot (Figure S2g, Figure 3c). DAB1, a signal transducer for 

Reelin33, is primarily expressed in Layer 2/3 excitatory neurons, while NTNG1, a protein 

involved in axon guidance34, is expressed in Layer 4 neurons (Figure 3c, Figure S3c). 

 

Discussion 

One important SWNE parameter is the number of factors (𝑘) used for the decomposition (Figure 

1a). We used a model selection method, suggested by the author of the NNLM35 package, 

which uses NMF to impute missing values in the gene expression matrix (𝐴) and tries to select 

the 𝑘 that minimizes the imputation error (Figure S1, Methods). However, oftentimes there is a 

range of 𝑘 that is very close to the global minimum error, such as in Figure S1a where 𝑘 could 

be anywhere from 12 to 16. We have found that the global minimum will also sometimes vary 

depending on the fraction of values set missing in 𝐴, and also the specific sampling of matrix 

elements. Additionally, there are oftentimes multiple local minima. Because of this variability, we 

only use our model selection method to narrow down the range of possible 𝑘 values, and then 

construct visualizations across this narrower range of 𝑘 to pick the qualitatively best 

visualization (Methods). One area of future work could be to develop an unbiased model 

selection method explicitly for creating the optimal visualization.  

 Selecting which genes and factors to embed onto the SWNE plot is an important 

process. Ideally one wants to select the best marker genes for cell types of interest, or the 

genes with the highest magnitude loadings for biologically relevant factors. Since embedding a 

gene as a single data point on the plot does not convey the same amount of information as 

overlaying the gene expression, we created feature plots for key genes in the hematopoiesis, 

cortex & cerebellum, and layer specific excitatory neuron datasets to demonstrate that cells 

which are spatially close to an embedded gene actually express more of that gene (Figure S4a, 
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S4b, S4c). For example, we can see in Figure S4b that the excitatory neurons close to the 

embedded CBLN2 point express more CBLN2. In cases where the gene selected is not a good 

cell type marker, then the gene’s embedded coordinates should be near the center of the plot, 

equidistant to one or more groups of cells. 

One additional highlight of SWNE is that that the underlying methodology is fairly simple, 

especially compared to methods such as UMAP and t-SNE14,18. The Onco-GPS based 

embedding, and subsequent similarity matrix weighting is very transparent, allowing users to 

understand how the visualization is being produced. For many users, methods such as UMAP 

and t-SNE can be a black box that they use to generate visualizations.  

The simplicity of SWNE also makes it possible to project additional data onto an existing 

SWNE plot, something that is difficult to do with non-linear methods like t-SNE and UMAP 

(Methods, Figure S5a, Figure S5b). To demonstrate data projection, we used a 3,000 PBMC 

dataset generated by 10X genomics36, and split the data into training and test datasets. We ran 

the standard SWNE embedding on the training dataset, and then projected the test dataset onto 

the training SWNE embedding (Figure S5a, Figure S5b). We can see that the various clusters 

occupy the same general coordinates in the SWNE plot from training to test, except for the 

Megakaryocyte cells (Figure S5a, Figure S5b). We believe that this is because there are only 

15 Megakaryocyte cells total, which makes their embedding somewhat unstable. 

   

Conclusion 

Overall, we developed a visualization method, SWNE, which captures both the local and global 

structure of the data, and enables relevant biological factors and genes to be embedded directly 

onto the visualization. Capturing global structure enables SWNE to successfully capture 

differentiation trajectories, and layer specific neuron structure that is not apparent in other 

visualizations such as t-SNE. Being able to embed key marker genes and relevant biological 

factors adds important biological context to the SWNE plot, facilitating interpretation. Finally, the 
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simplicity of SWNE allows users to intuitively understand the embedding process, as well as 

project new data on existing SWNE visualizations. We applied SWNE to a hematopoiesis 

dataset, where it was able to capture the branched differentiation trajectory. We also applied 

SWNE to cells from the visual cortex and cerebellum, where it was able to visually separate 

different cell types while ensuring close cell types, such as different inhibitory neuron subtypes, 

are close together. Additionally, SWNE was able to capture the layer specific structure of 

excitatory neurons, demonstrating that SWNE can visualize both biological structure and 

function. 

 Future work could include examining how external methods for generating similarity 

matrices and for factor decomposition work within the SWNE framework. For example, one 

could use SIMLR13 to create the similarity matrix instead of using an SNN matrix. There are also 

a variety of methods for decomposing gene expression matrices into latent factors, including f-

scLVM and pagoda/pagoda212,37. Both these methods can use pre-annotated gene sets to 

guide the factor decomposition, which would allow the embedded factors to be even more easily 

interpreted. 
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The SWNE package is available at https://github.com/yanwu2014/swne. The scripts used for 
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Methods 

 

Normalization, variance adjustment, and scaling 

We normalize the data matrix by dividing each column (sample) by the column sum and 

multiplying by a scaling factor. Batch effects were normalized by a simple model, adapted from 

pagoda237,38, that subtracts any batch specific expression from each gene. We used the 

variance adjustment method from pagoda37 to adjust the variance of features, an important step 

when dealing with RNA-seq data. Briefly, a mean-variance relationship for each feature is fit 

using a generalized additive model (GAM) and each feature is multiplied by a variance scaling 

factor calculated from the GAM fit. Feature scaling is also performed using either a log-

transform, or the Freeman-Tukey transform. 

 

Nonnegative Matrix Factorization and model selection 

We use the NNLM package35 to run the Nonnegative Matrix Factorization (NMF). Equation 1 

shows the NMF decomposition: 

𝐴 = 𝑊𝐻     (1) 

Where 𝐴 is the (features x samples) data matrix, 𝑊 is the (features x factors) feature loading 

matrix, and 𝐻 is the (factors x samples) low dimensional representation of the data. We select 
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the number of factors by setting a random subset of the data as missing, usually around 25% of 

the matrix, and then use the NMF reconstruction (𝑊 𝑥 𝐻) to impute the missing values across a 

range of factors. The number of factors, k, which minimizes the mean squared error, is typically 

the optimal number of factors to use. In some cases, there are multiple local minima, or there 

are multiple values of k that are very close to the global minimum, so we create SWNE 

visualizations for a subset of those values of k and pick the k which results in the qualitatively 

best visualization. 

 

Onco-GPS embedding 

We then use the embedding method from Onco-GPS19 to embed those components onto a two 

dimensional visualization. Briefly, Onco-GPS embedding calculates the pairwise similarities 

between the factors (rows of the 𝐻 matrix) using either Pearson correlation, or mutual 

information39. The similarity is converted into a distance with equation 2:  

𝐷 = √2(1 − 𝑅)     (2) 

Here, 𝑅 is the pairwise similarity. We use Sammon mapping22 to project the distance matrix into 

two dimensions, which represent the x and y coordinates for each factor. The factor coordinates 

are rescaled to be within the range zero to one. Let 𝐹𝑖𝑥 , 𝐹𝑖𝑦 represent the x and y coordinates for 

factor 𝑖. To embed the samples, we use equations 3 & 4: 

𝐿𝑗𝑥 =
∑ (𝐻𝑖𝑗𝐹𝑖𝑥)𝛼 𝑖

∑ 𝐻𝑖𝑗
𝛼  𝑖

    (3) 

𝐿𝑗𝑦 =
∑ (𝐻𝑖𝑗𝐹𝑖𝑦)𝛼  𝑖

∑ 𝐻𝑖𝑗
𝛼  𝑖

    (4) 

𝑗 is the sample index and 𝑖 is iterating over the number of factors in the decomposition (number 

of rows in the 𝐻 matrix). The exponent 𝛼 can be used to increase the “pull” of the NMF 

components to improve separation between sample clusters, at the cost of distorting the data. 
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Additionally, we can choose to sum over a subset of the top factors by magnitude for a given 

sample, which can sometimes help reduce noise. 

 

Embedding features 

In addition to embedding factors directly on the SWNE visualization, we can also use the gene 

loadings matrix (𝑊) to embed genes onto the visualization. We simply use the 𝑊 matrix to 

embed a gene relative to each factor, using the same method we used to embed the cells in the 

𝐻 matrix. If a gene has a very high loading for a factor, then it will be very close to that factor in 

the plot, and far from factors for which the gene has zero loadings. We do not use any sort of 

similarity matrix to bring the genes together, like we did with the cells. 

 

Similarity weighting 

In order to ensure that samples which are close to each other in the high dimensional space are 

close in the 2d embedding, we use a similarity matrix. Specifically, we use a Shared Nearest-

Neighbors (SNN) matrix. The SNN matrix is calculated using the Seurat package26. Briefly, 

Seurat calculates the approximate k-nearest neighbors for each sample using the Euclidean 

distance metric (either in the original gene expression space, or in the Principal Component 

space). For each sample, Seurat then calculates the fraction of shared nearest neighbors 

between that sample and the top 10*k closest samples. We can then raise the SNN matrix, 

denoted here as 𝑆, to the exponent 𝛽: 𝑆 = 𝑆𝛽. If 𝛽 > 1, then the effects of neighbors on the cell 

embedding coordinates will be decreased, and if 𝛽 < 1, then the effects will be increased. We 

then normalize the SNN matrix so that each row sums up to one. Let 𝑆 represent the cell to cell 

similarity matrix, then the sample coordinates 𝐿𝑥 and 𝐿𝑦 are re-calculated using equations 5 & 

6: 

𝐿𝑥
′ = 𝑆𝐿𝑥      (5) 
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𝐿𝑦
′ = 𝑆𝐿𝑦     (6) 

While we have found that an SNN matrix works well in improving the local accuracy of the 

embedding, other similarity matrices, such as those generated by scRNA-seq specific methods 

like SIMLR, could also work. In general, you should use whichever similarity or distance matrix 

you used for clustering.  

The SNN matrix can be constructed from either the original gene expression matrix (𝐴), 

or on some type of dimensional reduction. We have found that constructing the SNN matrix from 

a PCA reduction tends to work well, especially in datasets where that follow a trajectory or 

trajectories (Figure S4a). Constructing the SNN matrix from the gene expression matrix is 

somewhat similar to using PCA; although the separation between cell types is not as clear 

(Figure S4b). However, using the NMF factors to build the SNN matrix oftentimes does not 

capture the primary axis or axes of variance, especially in cases where there is some type of 

smooth trajectory (Figure S4c). We believe this is due to PCA’s ability to capture the axes of 

maximum variance, while NMF looks for a parts-based representation16,20. For datasets where 

there are discrete cell types, constructing the SNN matrix from the NMF factors is often similar 

to constructing the SNN matrix from PCA components. Thus, we default to building the SNN 

matrix from principal components. 

 

Interpreting NMF components 

In order to interpret the low dimensional factors, we look at the gene loadings matrix (𝑊). We 

can find the top genes associated with each factor, in a manner similar to finding marker genes 

for cell clusters. Since we oftentimes only run the NMF decomposition on a subset of the 

overdispersed features, we can use a nonnegative linear model to project the all the genes onto 

the low dimensional factor matrix. We can also run Geneset Enrichment Analysis40 on the gene 

loadings for each factor to find the top genesets associated with that factor.  
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Projecting New Data 

To project new data onto an existing SWNE embedding, we first have to project the new gene 

expression matrix onto an existing NMF decomposition, which we can do using a simple 

nonnegative linear model. The new decomposition looks like equation 7: 

𝐴′ = 𝑊𝐻′   (7) 

Here, A’ is the new gene expression matrix, and W is the original gene loadings matrix, which 

are both known. Thus, we can simply solve for H’. The next step is to project the new samples 

onto the existing SNN matrix. We project the new samples onto the existing principal 

components, and then for each test sample, we calculate the k closest training samples. Since 

we already have the kNN graph for the training samples, we can calculate, for each test sample, 

the fraction of Shared Nearest Neighbors between the test sample and every training sample. 

With the test factor matrix H’, and the test SNN matrix, we can run the SWNE embedding as 

previously described to project the new samples onto the existing SWNE visualization.  
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Figure 1: (a) Schematic overview of SWNE. The gene expression matrix (A) is decomposed 

into a gene loadings matrix (W) and a factor matrix (H) using Nonnegative Matrix Factorization 

(NMF), with the number of factors selected via minimizing imputation error. The factors are 

projected onto 2D via Sammon mapping by calculating pairwise distances between the factors 

(rows of H). Selected genes can be embedded relative to the factors using the gene loadings 

(W) matrix. Finally, the cells are embedded relative to the factors using the cell scores in the H 

matrix and the cell coordinates are then refined using a similarity matrix. (b) PCA plot of 

simulated scRNA-seq data generated using Splatter with four distinct clusters, where cluster 4 is 

further from clusters 1 – 3. (c) t-SNE plot of the simulated scRNA-seq data. (d) SWNE plot of 

the simulated scRNA-seq data, with simulated factors and genes projected onto the plot. 
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Figure 2: (a) Paul et al sorted single hematopoietic cells from bone marrow, sequenced them 

using scRNA-seq, and identified the relevant cell types. The hematopoiesis trajectories were 

reconstructed using Monocle2, and the cells were ordered according to their differentiation 

pseudotime. (b) SWNE plot of hematopoiesis dataset, with selected genes and biological 

factors displayed. (c) t-SNE plot of hematopoiesis dataset. (d) SWNE plot of hematopoiesis 

dataset, with developmental pseudotime calculated from Monocle2 overlaid onto the plot. (e) t-

SNE plot of hematopoiesis dataset, with developmental pseudotime overlaid onto the plot. 
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Figure 3: (a) Single nuclei were dissociated from the visual cortex and the cerebellum, and 

sequenced using single nucleus RNA-seq. The inset shows that the excitatory neurons from the 
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visual cortex are grouped into different spatial layers, each of which has different functions. (b) 

SWNE plot of single cells from the visual cortex and cerebellum, with selected genes and 

factors displayed. (c) Inset: SWNE plot of the excitatory neurons from the visual cortex only, 

colored by the spatial layer the excitatory neurons belong to. (d) t-SNE plot of single cells from 

the visual cortex and cerebellum. (e) t-SNE plot of the excitatory neurons from the visual cortex 

only, colored by the spatial layer the excitatory neurons belong to. 
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Figure S1: (a) A subset of the gene expression matrix is set to missing, and NMF is run across 

a range of factors, and the missing values are imputed. We then plot the imputation error vs 

number of factors (k), and select the k values close to the minimum imputation error to create 

SWNE visualizations with. The k that gives the best visualization is selected. (b) Imputation 

error versus number of NMF factors for the hematopoiesis dataset (c) Imputation error versus 

number of NMF factors for the cortex & cerebellum dataset. (d) Imputation error versus number 

of NMF factors for the layer specific excitatory neurons. 
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Figure S2: Genes and factors highlighted in blue are embedded in the corresponding 

visualization. (a) Log fold-change heatmap for the top cell type specific markers in the 

hematopoiesis dataset (Figure 2b, Figure 2d). (b) Top gene loadings heatmap for NMF factors 

in the hematopoiesis dataset (Figure 2b, Figure 2d). (c) Mutual information heatmap between 

the cell types and NMF factors in the hematopoiesis dataset (Figure 2b, Figure 2d). (d) Log 

fold-change heatmap for the top cell type specific markers in the cortex & cerebellum dataset 

(Figure 3b). (e) Top gene loadings heatmap for NMF factors in the cortex & cerebellum dataset 

(Figure 3b). (f) Mutual information heatmap between the cell types and NMF factors in the 

cortex & cerebellum dataset (Figure 3b). (g) Log fold-change heatmap for the top layer specific 

marker genes in the visual cortex excitatory neuron layers (Figure 3c). 
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Figure S3: (a) Apoe projected onto the hematopoiesis SWNE plot with Apoe expression 

overlaid, validating the location of the Apoe projection. Sun2 projected onto the hematopoiesis 

SWNE plot with Sun2 expression overlaid. (b) CBLN2 projected onto the cortex & cerebellum 

SWNE plot with CBLN2 expression overlaid. PLP1 projected onto the cortex & cerebellum 

SWNE plot with PLP1 expression overlaid. (c) DAB1 projected onto the layer specific excitatory 

neuron SWNE plot with DAB1 expression overlaid. NTNG1 projected onto the layer specific 

excitatory neuron SWNE plot with NTNG1 expression overlaid. 
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Figure S4: (a) SWNE plot of layer specific excitatory neurons with the SNN matrix constructed 

from PCA components (same as Figure 3c). (b) SWNE plot of layer specific excitatory neurons 

with the SNN matrix constructed from the gene expression matrix. (c) SWNE plot of layer 

specific excitatory neurons with the SNN matrix constructed from the NMF factors. 
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Figure S5: A 3,000 cell dataset of PBMCs was split in half to create training and test datasets. 

(a) SWNE plot of the training dataset only. (b) SWNE plot of the test dataset only, projected 

onto the training embedding. 
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