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Fig. 3. Illustration of the data-flow for experiment 1 (orange arrows), 2 (green ar-
rows), 3 (blue arrows) and 4 (red arrows). Experiment 1 and 2 gives the well posed
forward solution calculated by convolving the ground truth with the dipole kernel as
an input to DeepQSM. Experiment 3 and 4 use a background field corrected single
orientation 3D GRE MRI phase as input for DeepQSM.

gle orientation phase data and compare the reconstruction to
the thresholded k-space division (TKD)(33), a widely uti-
lized, fast, QSM reconstruction technique. TKD overcomes
the ill-posed problem by setting values close to zero to a man-
ually chosen threshold which depends on the noise and signal
characteristics of the dataset. The threshold used for this data
was 0.19 as it yielded the best-trade off between streaking
artifacts and image quality.

Experiment 4. The fourth experiment tests if DeepQSM can
reconstruct a susceptibility map from clinical single orien-
tation phase data of a patient with multiple sclerosis. The
quantitative susceptibility maps are compared with a standard
Magnetization Prepared Rapid Acquisition GRE (MPRAGE)
and a fluid-attenuated inversion recovery (FLAIR) sequence.

Results
We have trained a deep convolutional neuronal network on
forward and inverse examples generated from synthetic data
in 15 hours. The following experiments demonstrate the per-
formance of the network trained on this synthetic data and ap-
plied to a variety of datasets with increasing complexity from
experiment 1 to 4. For an illustration of the pre-processing
and calculation of the results, see Figure 3. All DeepQSM
predictions were computed in approximately 10 seconds on a
standard workstation.

Experiment 1: Synthetic Data. To verify that the network
can solve an inverse problem similar to the training data, we
applied the trained network to a synthetic dataset generated
with the same rules as the training data. Figure 4 illustrates
the prediction performance of DeepQSM on synthetic data
and compares it to the simulated ground truth. This figure
illustrates DeepQSM’s capability of reverting the effects of
the dipole on synthetic data without suffering from streaking
artifacts or introducing smoothing.
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Fig. 4. One representative slice from a 3D volume of synthetic data. Left: Ground
truth, Middle: Forward solution obtained after convolving the QSM dipole kernel with
the ground truth, Right: DeepQSM reconstruction of the forward solution.

Experiment 2: Forward Simulation. The second experi-
ment aims to test if the network can predict on structures
dissimilar from data during the training-phase consisting of
simple shapes. In this experiment we used a human brain
QSM reconstruction from multiple orientations as the ground
truth. This brain was then convolved with the dipole ker-
nel to generate the input for DeepQSM (well-posed forward
solution). Figure 5 shows DeepQSM’s ability to revert the
ill-posed dipole kernel operation on a realistic brain dataset
without introducing any artifacts.
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Fig. 5. Axial, sagittal and coronal middle slice from a 3D volume. First row shows
the ground truth, second row shows the result of convolving the ground truth with
the dipole kernel to generate the input data for DeepQSM. The third row shows the
resulting reconstruction by DeepQSM.

Experiment 3: Single Orientation 3D GRE MRI Phase
Data. The third experiment tests if DeepQSM can predict
susceptibility maps based on measured single orientation in
vivo phase data and compares the results to the established
inversion technique TKD with a manually chosen threshold
of 0.19 yielding the best trade-off between quantification ac-
curacy and artifacts. The result can be seen in Figure 6 that
shows how DeepQSM is able to solve the inverse problem on
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realistic phase data from a single orientation without intro-
ducing smoothing or requiring the explicit choice of regular-
ization parameters.
A zoomed version of the coronal orientation is shown in Fig-
ure 1, to illustrate how substructures of interest such as puta-
men, globus pallidus, subthalamic nucleus, and substantia ni-
gra are present in the susceptibility map resulting from Deep-
QSM.

Experiment 4: Clinical 3D GRE MRI Phase Data. A clin-
ical dataset is shown in Figure 7 to illustrate that DeepQSM
can process real-world clinical data and show the sensitiv-
ity to multiple sclerosis lesions. This example also illustrates
how little smoothing DeepQSM introduces with the conse-
quence that small blood vessels are visible in the DeepQSM
reconstruction.

Discussion
In this proof-of-concept study we demonstrated that the chal-
lenging inverse problem underlying QSM can be solved
by using a fully convolutional neural network. DeepQSM
yielded a low level of streaking artifacts and preserved small
anatomical structures. We achieved this by computing the
well-posed QSM forward solution of synthetic data consist-
ing of simple shapes and we trained the network on these in-
verse and forward solution pairs. The first experiment tested
the performance on a data set very similar to the training data.
The network was able to invert this problem, but it could have
done this by overfitting the training data due to its simple na-
ture. Therefore, the second experiment investigated the net-
work’s performance on a more realistic data set, containing
structures that the network has never seen during training.
We used the STI χ33 ground truth from the 2016 QSM recon-
struction challenge (31) and computed the well-posed QSM
forward solution. Then we used the network trained on sim-
ple shapes to invert the field-to-source problem for a data set
with realistic anatomical structures. This showed that the net-
work has learned the general concept of the dipole inversion
and not just the shapes presented during training. The third
experiment goes one step further and tests if the inversion
works with real-world in vivo phase data, containing mea-
surement noise and error propagation through previous steps
of the QSM pipeline. For this we used a single orientation
scan from the 2016 QSM reconstruction challenge (31) and
demonstrate that the network can invert this problem while
preserving fine spatial structures. Finally we show that deep-
QSM can also invert clinical data from a patient with multiple
sclerosis.
We compared the susceptibility reconstructions from Deep-
QSM with a widely utilized reconstruction method TKD and
showed that DeepQSM is capable of delivering robust re-
sults. One of the major benefits of DeepQSM compared to
TKD (and other existing algorithms) is that DeepQSM does
not utilize explicit regularization parameters to yield a bal-
ance between smoothing, artifacts and quantification accu-
racy and additionally works as an end-to-end algorithm capa-
ble of computing susceptibility maps within seconds.

Although we used a very simplistic training data set we
achieve high quality QSM reconstructions in the brain. This
shows that our network has learned to approximate the un-
derlying physics of dipole inversion and can potentially use
training data sets with anatomical priors to help condition
the ill-posed nature of the problem further. This could be
achieved by utilizing a minimum deformation model (61, 62)
of the human brain anatomy to generate high quality training
data. The more similar the training data is to the real brain
anatomy, the more prior knowledge the network will be able
to utilize, similar to QSM algorithms exploiting morphologi-
cal features (37).
We have demonstrated the potential of our newly presented
approach by using brain scans. However, our method is not
only applicable to solving the QSM inverse problem in the
brain but can be extended to other regions in the body, such
as the liver or the heart. For this, a basic network could be
trained on simple shapes, as we did in this work, and then use
this basic network in a second transfer learning phase, where
the anatomical priors are learned from the organ of interest.
It has been shown, that a fine-tuning of pre-trained convolu-
tional neuronal networks outperforms networks trained from
scratch (63). Fine-tuning a pre-trained network requires a
smaller amount of training data compared to training a net-
work from scratch (42). This is especially useful in the field
of QSM where high quality training data is costly and diffi-
cult to obtain.
Currently, we have used background field corrected data to
compute a QSM solution. However, it is also possible to
incorporate realistic simulations of background fields origi-
nating at tissue boundaries into the training step. This would
then allow the background field removal together with the
field-to-source inversion in a single step, similar to state-of-
the-art iterative QSM algorithms (39).
In our current implementation we utilized a simple dipole
model with the assumption that magnetic susceptibility is
a scalar quantity. An advantage of our proposed approach
is that it can potentially utilize any forward model and as
such could incorporate additional model terms accounting
for anisotropy of magnetic susceptibility and structural tis-
sue anisotropy. Currently the inverse problem posed by
these more sophisticated models, such as the Generalized
Lorentzian Tensor Approach (GLTA) (58), cannot be solved
with existing procedures. However, our deep learning ap-
proach could potentially incorporate additional measure-
ments to help condition these inverse problems.
This new class of QSM algorithms has a wide range of clini-
cal applications. DeepQSM could for example be combined
with a fast imaging sequence based on echo planar imaging,
such as the recently proposed planes-on-a-paddlewheel se-
quence (64). This would allow the routine acquisition and
reconstruction of QSM data in under 1 minute, compared
to current techniques requiring at least 5 minutes. This in-
creases patient comfort and helps with motion artifacts in
clinical populations. This could enable the standard clini-
cal use of QSM in assessing microbleeds (21, 65), the diag-
nosis of Alzheimer’s (18, 66, 67), Parkinson’s (20, 68–72),
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Fig. 6. Comparison of A) thresholded k-space division (TKD) with a threshold value of 0.19. and B) DeepQSM. The first row shows an axial, sagittal and coronal slice of
the reconstructed 3D susceptibility maps. The reconstructions have been performed on single orientation background field-removed phase data. The second row shows the
absolute difference maps between the reconstructed image and the ground truth from the 2016 QSM reconstruction challenge.
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Fig. 7. A clinical example showing data from a patient with multiple sclerosis.
The image shows three modalities, MPRAGE (left), FLAIR (middle), and DeepQSM
(right). The red arrows highlight lesions (A, B, C) and it can also be observed that
DeepQSM allows distinguishing small blood vessels (D).

and Huntington Disease (8), Multiple Sclerosis (17, 73, 74),
Amyotrophic Lateral Sclerosis (75), Wilson Disease (13)
or more general in diseases with a dysregulation of iron
metabolism (12, 76, 77). QSM could also help in localiz-
ing targets, such as the Subthalamic Nucleus, for Deep Brain
Stimulation Surgery (78).

Conclusions
In summary, we have described the foundations for a new
class of QSM inversion algorithms that allow the solution of
the QSM inverse problem without requiring explicit regular-
ization parameters and manual parameter tweaking. This has
the potential to create algorithms that can reconstruct QSM
from clinical single-orientation phase data in a fraction of the
time that is currently required for standard iterative proce-
dures. Our approach delivers artifact-free susceptibility maps
and the presented algorithm can be extended to include more
realistic forward models that could allow the modeling of
anisotropic components in QSM.
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