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Summary  

It is likely that there are constraints on how evolution can progress, and well-known evolutionary 

phenomena such as convergent evolution, rapid adaptation, and genic evolution would be difficult to 

explain under the absence of any such evolutionary constraint. One dimension of constraint results from a 

finite number of environmental conditions, and thus natural selection scenarios, leading to convergent 

phenotypes. This limits which genetic variants are adaptive, and consequently, constrains how variation is 

inherited across generations. Another, less explored dimension of evolution is functional constraint at the 

molecular level. Some widely accepted examples for this dimension of evolutionary constraint include 

genetic linkage, codon position, and architecture of developmental genetic pathways, that together 

constrain how evolution can shape genomes through limiting which mutations can increase fitness. 

Genomic architecture, which describes how all gene products interact, has been discussed to be another 

dimension of functional genetic constraint. This notion had been largely discredited by the modern 

synthesis, especially because macroevolution was not always found to be perfectly deterministic. But 

debates on whether evolutionary constraint stems mostly from environmental (extrinsic) or genetic 

(intrinsic) factors have mostly been held at the intellectual level using sporadic evidence. Quantifying the 

relative contributions of these different dimensions of constraint is, however, fundamentally important to 

understand the mechanistic basis of seemingly deterministic evolutionary outcomes. In some model 

organisms, genetic constraint has already been quantitatively explored. Forays into testing the relationship 

between genomic architecture and evolution included studies on protein evolutionary rate variation in 

essential versus nonessential genes, and observations that the number of protein interactions within a cell 

(gene pleiotropy) determines the fitness effect of mutations. In this contribution, existing evidence for 

functional genetic constraint as shaping evolutionary outcomes is reviewed and testable hypotheses are 

defined for functional genetic constraint influencing (i) convergent evolution, (ii) rapid adaptation, and 

(iii) genic adaptation. An analysis of the yeast interactome incorporating recently published data on its 

evolution, reveals new support for the existence of genomic architecture as a functional genetic dimension 

of evolutionary constraint. As functional genetic networks are becoming increasingly available, 

evolutionary biologists should strive to evaluate functional genetic network constraint, against variables 

describing complex phenotypes and environments, for better understanding commonly observed 

deterministic patterns of evolution in non-model organisms. This may help to quantify the extrinsic versus 

intrinsic dimensions of evolutionary constraint, and result in a better understanding of how fast, 

effectively, or deterministically organisms adapt. 
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Glossary:  

● Evolutionary constraint [1]: the phenomenon of evolution producing a finite number of genomic and 

associated phenotypic outcomes from a near infinite number of possible genetic variants. 

● Genetic constraint: The portion of evolutionary constraint which is determined at the level of genes or their 
gene products, for example codon constraint or developmental genetic pathways. 

● Functional network constraint: The portion of network constraint attributed to the structure or architecture of 

gene interactions that can be expressed in form of a network. Networks consist of nodes (genes) and edges 

(functional interactions between these genes). 

● Orthogenesis, Structuralism: The idea that properties inherent in organisms can direct evolution. 

Structuralism bases these properties on functional relationships of components that organisms are made of. 

Orthogenesis usually also implies that evolution is directed towards a goal. This view is not accepted within the 

modern synthesis of evolution. 

● Genic evolution: The phenomenon of different evolutionary outcomes being the outcome of independent 

mutation and selection events in different genes. For example, the occurrence of convergent evolution in 

diverging populations, both of which are caused by evolution in distinct genes.  
● Rapid adaptation: The phenomenon of adaptive change in allele frequencies of a population to natural 

selection, taking place within just a few generations. 

● Convergent evolution/convergence: Similar phenotypes evolving from similar selective pressure. May be (but 

doesn’t have to be) caused at the genomic level through genomic re-use of the same genes or alleles, which is 

also called parallel genetic evolution or genomic re-use. 

● Gene dispensability: a variable to measure gene essentiality. The less dispensable a gene is for organismal 

growth and function, the more essential it is.  

● Pleiotropy and cost of complexity: Gene products with many functional interactions with other gene products 

are constrained to accumulate less nonsynonymous mutations, because this would negatively affect the 

phenotype in many ways. Consequently, more complex genome organisation leads to higher constraint. 

● Gene expression level CAI: The amount of mRNA produced by each gene in regular somatic cells. CAI 

(Codon Adaptation Index) is used as a substitute variable in this paper, and is derived from codon use bias in 
yeast that correlates with mRNA levels.  

● Omega ω: the ratio of nonsynonymous to synonymous substitutions dN/dS. It is assumed that dS remains 

constant, and dN is used as a measure for directional evolution.  

● Gamma γ: A score developed for quantifying or predicting events of rewiring functional connections between 

network nodes over the course of evolution. Developed on the example of five species of yeasts.  

● Neighborhood connectivity: A network statistic used to describe the structure of a functional genetic network. 

Describes the number of connections of all neighbors of each node. Highest values expected in intermediately 

located nodes  

● Betweenness centrality: A network statistic used to describe the structure of a functional genetic network, 

describing how a node lies within paths between other nodes. Nodes with many paths progressing through them 

may be important in transmitting information. Highest values expected in central nodes. 
● Average shortest path length: A network statistic used to describe the structure of a functional genetic 

network. Shortest distance between a node and other nodes. Highest values expected in peripheral nodes of a 

network. 
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Genetic constraint and evolutionary outcomes 

Understanding the nature of the genetic dimension to evolutionary constraint is crucial to understanding 

adaptation and repeatedly observed outcomes of evolution such as, for example, convergent evolution 

[2]. Guyer (1922) already pointed out a possible constraint of molecular level processes on selection, 

on the example of convergently evolved bird colour patterns being generated by the same enzymes 

[3]. Genetic constraint is here meant to be similar to the notion of structuralism (constraints on form), 

and distinguished from orthogenesis which describes the notion of a goal-directed evolution, that can 

even be nonadaptive, and stems from inherent organismal properties. Evolutionary constraint is here 

defined as the phenomenon of evolution producing a finite number of genomic and associated 

phenotypic outcomes from a near infinite number of possible genetic variants. Convergence means 

that similar phenotypes arise in phylogenetically distant lineages in response to similar environments 

[2]. Traditionally, convergence has been studied in non-model organisms, and with a focus on 

adaptive modification (e.g., [4]). But more recently, phenotypic convergence has been traced back to 

resulting from identical genotypic variants (called “genomic re-use”, revised in [5]). These can either 

arise as new parallel mutations, or from parallel selection of the same alleles from standing genetic 

variation [5] such as in the independent selection of body armor in the ectodysplasin locus of 

stickleback fish [6]. More tentative evidence for convergence at the molecular level, comes from the 

recent findings of genomic re-use in generating convergent adaptations. For example, two poison frog 

species with a most recent common ancestor estimated at 159 mya, evolved parallel changes in the 

same gene related to skin toxin transport [7]. A recent study of Yudin et al. [8] found several 

independent instances of parallel functional genomic adaptation to temperature in a range of extant 

and extinct mammals inhabiting extreme cold environments. Such genomic re-use causing 

convergence in distantly related lineages may indicate that constraint at the genomic level is 

important to generate convergent evolution. However, it has been argued that this may not be a 

universal phenomenon, as convergent phenotypic adaptations may alternatively be produced by 

different genes. They may also be exaptations, where a similar allele evolved due to ancestrally 

different selective pressures with a subsequent change of function [9]. At present it is unclear whether 

genomic re-use is a common basis for evolutionary constraint, and if so, how often it can be expected 

to occur against a backdrop of a myriad of possible mutated allele combinations and recombinations 

that exist in any given genome. Recent studies, including ours, have provided insights that an 

interplay between environmental (extrinsic) and organismal (intrinsic) constraints may generate 

convergent phenotypes [10,11], with intrinsic constraint being identified as a causative factor for 

speciation [12], but not many comprehensive evaluations of the effect size of genetic constraint on 

evolution have taken place yet.  

Another puzzling outcome of evolution is rapid adaptation within diversifying populations as a rapid 

response to selection such as anthropogenic pollution [13], which can occur even in the presence of 

gene flow [13,14]. The speed of such adaptation and the simultaneous occurrence of both 

convergence (possibly due to genomic re-use) and divergence within the same genome has been 

dubbed the “genic theory of speciation” [14] and was shown to occur in Timema stick insects [15] 

(Table 1 H5). Further evidence for simultaneous convergence and divergence, combined with 

genomic re-use, was found in the extensively studied Caribbean lizards of the genus Anolis [16]. In 

one such example, divergent genetic populations of Anolis cybotes in the Dominican Republic have 

evolved convergent phenotypic, ecological, reproductive, physiological, and parallel genomic 

adaptations to high elevations on three separate mountain chains [17–20]. Certain components of the 
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phenotype in this lizard diverged along the same axes of the phenotype that were modified during 

more ancestral stages of the Anolis radiation, while other components of the phenotype convergently 

adapted to elevation using previously unmodified phenotype components [18]. Genomic signatures of 

this adaptation to climatic clines were found in genes with functions known to be involved in climate 

adaptation across metazoans [20,21], indicating evolutionary re-use of the same genetic pathways to 

similar selection pressures across populations. Other recent research on Anolis lizards suggests that 

such simultaneous convergence and divergence can evolve over the course of just a few generations 

[22–25]. The generally rapid nature of such adaptations was a surprising common feature that 

emerged from the study of Anolis lizards [16,26]. Climate adaptation in Anolis can happen within 

even just one generation, as shown by genomic signatures of selection in Anolis carolinensis in 

response to a polar vortex descending on invasive populations in Texas [27]. Again, these phenomena 

suggest that the variants available to mutation and selection are constrained at the genomic level, 

indicating that genetic constraint is important for understanding outcomes of evolution, such as its 

speed, and upon which genes selection acts.  

During the recent decades, network thinking has emerged as a powerful approach to better understand 

biological realities [28]. Networks can lead to improved understanding of systems through their 

emergent properties [29] because systems might operate in ways that are unpredictable by only 

looking at their parts. Functional interactions between many genes in a cell can be modelled as gene 

interaction networks [30] which have been used to explain disease profiles and the functional 

genomic basis of cellular fates [31,32]. The network concept might also have deep implications in 

evolutionary biology. Futuyma [33] cited Schluter [34], noting that correlations between genes could 

reduce the degrees of freedom on which selection can operate. Many studies have shown the non-

independence of genes from one another, be it through physical linkage, phylogenetic relationship, or 

functional interaction (Figure 1). Mayr [35] stated that “coadapted” genes are a result of natural 

selection, being brought together to form a “balanced system”, but ruled out that such gene complexes 

would be of any interest to evolutionary biology, as ultimately only the complete phenotype is 

selected [35], p.184ff (Table 1 H5A). While it is still unclear, and debated [36], whether genetic 

network structure is an outcome of evolution by natural selection, it could have implications for the 

understanding of selection from another, poorly explored perspective: genetic networks may serve as 

a mechanistic basis for genetic evolutionary constraint, and thereby could contribute to constraining 

and thus directing the evolution of genes contained within this structure, and the phenotype 

components associated with it [28]. The present contribution synthesizes empirical studies on genetic 

networks as being predictive for outcomes of evolution through genetic constraint, and explores new 

avenues for future research. I propose approaches to inferring the link between genetic constraint and 

three different evolutionary outcomes, and provide exemplary applications testing for them: 1) 

convergent phenotypes based on parallel genomic evolution, 2) the simultaneous occurrence of 

convergence and divergence within a genome, resulting in genic adaptation, and 3) the existence of 

rapid adaptation. 

 

Genetic constraint through gene functional importance 

The functional importance of a gene has long been thought to cause evolutionary constraint at the 

molecular level: protein-coding genes that are indispensable for the organism should be highly 

conserved and thus, be constrained through evolution, as most nonsynonymous mutations would be 

detrimental to protein function and thus most likely be non-adaptive. Consequently, these genes 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 10, 2018. ; https://doi.org/10.1101/278663doi: bioRxiv preprint 

https://paperpile.com/c/CKPNUh/IKEpv
https://paperpile.com/c/CKPNUh/08NBV+7AeUo
https://paperpile.com/c/CKPNUh/Iat7e+pSIp7+GC6JG+l7AZ5
https://paperpile.com/c/CKPNUh/rCoZ2+G9BxM
https://paperpile.com/c/CKPNUh/PFpto
https://paperpile.com/c/CKPNUh/3SFF
https://paperpile.com/c/CKPNUh/asmk
https://paperpile.com/c/CKPNUh/rUi3E
https://paperpile.com/c/CKPNUh/rR6NN+aZtcr
https://paperpile.com/c/CKPNUh/VrmLo
https://paperpile.com/c/CKPNUh/O6Ca6
https://paperpile.com/c/CKPNUh/HLph9
https://paperpile.com/c/CKPNUh/HLph9
https://paperpile.com/c/CKPNUh/wAJ6
https://paperpile.com/c/CKPNUh/3SFF
https://doi.org/10.1101/278663


5 
 

 
Figure 1. Examples for genetic constraint. On the DNA level, 
positional linkage determines recombination frequency, and gene 
ontogeny comprises a functional constraint (such as in the 
hemoglobin multigene family), that may be overcome by 
functional exaptation. Codon constraint determines how mutations 

accumulate within coding regions, since first codon position 
mutations change amino acid sequence of a protein, and have a 
higher likelihood to be deleterious than second and third codon 
positions. Codons within protein functional sites are constrained 
by protein function. Proteins and noncoding regulatory molecules 
such as RNAs form functional genetic networks (depicted is the 
functional network for genes involved in the human hypoxia 
response). Here, it is proposed that functional genetic network 
structure, as well as node position within the functional network, 

also pose a constraint to how beneficial mutations can accumulate. 

 

should have a lower rate of molecular evolution. Such genes have formerly been identified through 

their “dispensability”, which describes how essential they are for organismal function (Table 1 H1). 

The conserved hox genes causing vertebrate segmentation during embryonic development are 

commonly used as example for this hypothesis.  

Zhang and Yang [37] reviewed evidence from empirical studies, and contrary to the expectation, found 

that across different model organisms including invertebrates and vertebrates, essential genes are not 

evolving more slowly than nonessential genes. Instead, highly expressed genes seem have lower rates 

of protein evolution (dubbed the “E-R anticorrelation” [38,39], Table 1 H1A), which some authors 

relate to translational selection on amino acids with different metabolic cost [38]. But perhaps 

functional importance needs to be defined differently than via gene essentiality or dispensability, and 

expression level may just be another 

correlative variable with another cause -- In 

Saccharomyces cerevisiae (in following: 

yeast), which was used for many studies on 

protein evolutionary rate and functional 

importance, essential genes are required for 

organismal growth and performance under 

optimal environmental conditions. A gene 

that renders an organism nonfunctional 

may thus predominantly be active in 

genetic pathways related to development 

and growth. However, in a complex 

organism such as a vertebrate, also the 

genes that are essential for organismal 

viability and reproduction are of high 

functional importance, and potentially 

could be under evolutionary constraint 

[40], such as in the example of genes 

coding for eye color determining mating 

success in Drosophila melanogaster [41]. 

A high proportion of the human genome 

has also been found to be under selective 

constraint in other mammals, indicating 

that gene dispensability is not a binary 

variable [42]. As reviewed by Zhang and 

Yang [37], Wilson et al. [43] suggested that 

evolutionary rate may instead be 

determined by functional importance and 

functional constraint. If functional 

importance measured as (negative) gene 

dispensability does not predict variations 

and constraints of evolutionary rate, perhaps functionally more constrained genes are the ones 

evolving slowly (Table 1 H1A). Prior studies have attempted to identify functional constraint in terms 

of protein functional sites, called protein functional site constraint in Figure 1, and the Neutral Theory 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 10, 2018. ; https://doi.org/10.1101/278663doi: bioRxiv preprint 

https://paperpile.com/c/CKPNUh/mncPc
https://paperpile.com/c/CKPNUh/wXEx+YVDq
https://paperpile.com/c/CKPNUh/wXEx
https://paperpile.com/c/CKPNUh/mpgI
https://paperpile.com/c/CKPNUh/0Km2B
https://paperpile.com/c/CKPNUh/vkncE
https://paperpile.com/c/CKPNUh/mncPc
https://paperpile.com/c/CKPNUh/xXaiO
https://doi.org/10.1101/278663


6 
 

[44] already identified codon constraint as important for evolution. The fact that gene products 

interact with others within functional genetic networks, is a less explored dimension for functional 

importance, and explanation for functional constraint of evolutionary rate (Figure 1). For example, a 

study by Jeong and colleagues [45] found that genes with many functional interaction partners are 

more likely to also be essential, which, however, does not provide enough evidence to extrapolate 

directly from functional constraint to evolutionary outcome. 

 

Genetic constraint through pleiotropy 

Functional genetic network structure has been shown to affect evolutionary outcomes through 

pleiotropy in yeast: genes that interact with many other gene products are thought to be involved in 

many cellular functions and have multiple (pleiotropic) effects on the phenotype [46,47]. Fitness 

effects of mutations in them are partitioned across several phenotypic components, increasing the 

likelihood of maladaptive effects, which means that often they are more conserved through evolution 

and evolve more slowly [46]. Furthermore, proteins with many interactants may be constrained in the 

evolution of their functional sites to instances of co-evolution with the interactant genes, in order to 

maintain their functionality (Table 1 H2)[48]. A corresponding model of evolutionary constraint on 

evolution through pleiotropy that was explicitly based on functional network node hierarchy within an 

interactome, was proposed by Pavlicev and Wagner [49]. They argued that for genetic adaptation in a 

target gene to happen, selection has to overcome the inertia generated through stabilizing selection of 

the genes functionally connected with the target [49]. The premise of this model is that any change in 

genotype-phenotype interaction represents a change in a developmental pathway and, due the position 

of a gene within a network, will have pleiotropic effects on the phenotype [49]. This pleiotropic effect 

was found to be small for most genes, but genes with large phenotypic effect also are more 

pleiotropic [40]. High pleiotropy is assumed to have a cost for adaptation, which was explained as 

nodes central to a network evolving slower [40,50]. This idea, dubbed the “cost of complexity” [51] 

would lead to faster evolution of organisms with less complex genomic architecture due to this 

constraint being relaxed [40], and to adaptive selection on standing genetic variation preferentially to 

occur in genes with low pleiotropic effects [5](Table 1 H3). With regards to evolutionary outcomes, 

pleiotropy was suggested to limit events of genomic co-evolution [48], genomic adaptation [5], and 

convergent evolution [5] in nodes central to a network (Table 1 H4). Consequently, the properties of 

nodes within a functional genetic network, may be informative to understand their evolutionary 

constraint. However, genes with the highest number of interactants, or according to [46–49,51], the 

highest degree of pleiotropy, are not necessarily the nodes central to the network as assumed by 

Wagner and colleagues, but are instead nodes with intermediate position within a network [52]. The 

number of edges of a node may, consequently, not be sufficient to disentangle the effects of network 

structure on evolutionary constraint since it only measures one of a network’s many properties. More 

comprehensive measures of genomic network architecture may be necessary than just the number of 

functional connections a gene has with others.  

 

Genetic constraint through functional network architecture 

Gene interaction networks were found to evolve either faster or slower than comparable genes 

functioning without being connected to others [53–56][57], so that the overall network architecture or 

hierarchy of genes within the network is likely to contribute to the speed and mode of evolution, 

regulated through functional constraint of nodes within the network. Different nodes within such 
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networks may play different roles in evolution, resulting from hierarchical node organization. Box 1 

outlines a hypothetical scenario of functional genetic network architecture influencing evolutionary 

outcomes: When selection acts upon a population (for example, through a sudden change in climate), 

advantageous mutations will be selected from standing genetic variation (allele frequencies). 

Organisms possess a finite subset of biochemical pathways (underlying functional genetic networks) 

that are related to temperature homeostasis [21,58,59], and that align to a finite amount of selected 

phenotype components. The population must adapt to the newly arising selective pressure through 

selection of non-deleterious mutations in one of these subnetworks, but not of mutations in any other 

subnetwork, as these are unrelated to the stimulus / organismal fitness in response to it, and would 

therefore not result in adaptation. This constrains the number of mutations in the genome that 

selection will operate on in this case, and thus determines the evolutionary response through genetic 

constraint. Second, and of high importance for the general mechanism proposed herein, node 

hierarchy within these subnetworks poses an additional level of constraint: and this additional level 

reduces the “evolutionary search space” for potential beneficial variants. This can be illustrated 

through reducing network structure to distinct types of nodes, which I outline below: Network nodes 

which are functionally important for the operation of the network (hub nodes central to the network - 

in following H-nodes), should be less likely to already harbor significant genetic variation in first- or 

second-codon positions or regulatory regions because of their high functional constraint. 

Consequently, genetic variation, as well as fast adaptation to an environmental selective pressure, 

should both be more likely to occur within non-hub nodes (Table 1 H3) within the subnetwork. Nodes 

with highest number of edges are intermediately positioned within a network (intermediate nodes, in 

following I-nodes) and were shown to have weaker selective constraint [60,61] than centrally 

positioned nodes, as they have lower functional constraint than H-nodes. Consequently, they should 

evolve faster (Table 1, H2A). This assumption differs from the pleiotropy hypothesis, which places 

the highest functional constraint on these nodes (cf., Table 1 H2). However, because of their high cost 

of complexity, adaptation in I-nodes should be highly constrained in terms of which genes can adapt 

(depending on the nature of their functional interactions) and how (through changing the wiring 

pattern with other nodes). Because of pleiotropy, adaptations that do evolve in these nodes should 

have a larger phenotypic effect, which combined with the reduced possibilities for adaptation, 

increases the likelihood for convergent evolution in them (Table 1 H4A). Genes peripheral in the 

network (peripheral nodes, in following, P-nodes) have higher degrees of freedom due to the lowest 

degree of pleiotropy and should be able to accumulate genetic variation with least cost. As a 

consequence, the population should already harbor more genetic variation within these peripheral 

genes that selection can operate on. Change in such nodes however, due to lower  pleiotropic 

interactions, would result in less phenotypic effect and thus they are less likely to promote large 

evolutionary changes. In such nodes, divergence is more likely to accumulate than convergence 

(Table 1 H4A, Box 1).  

The expectation is thus that different node types will differ in standing genetic variation due to the 

different genetic constraints acting upon them. H-nodes will be very strongly constrained and only 

can accumulate little standing genetic variation, resulting in a low potential for selection to operate 

on. I-nodes will harbor sufficient standing genetic variation but be under high functional constraint, 

so that selection can only operate on a limited amount of variants that all have multiple phenotypic 

effects. In different organisms, the same variants can be selected quickly due to this reduced search 

space, which leads to parallel genomic evolution resulting in convergent phenotypes. P-nodes will be 
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least constrained, allowing a lot of variation but less sweeping phenotypic effects due to lower 

pleiotropy. Selection can operate on multiple variants in these, selective advantages are more likely 

due to the lower pleiotropy in more genes, so selection will less likely lead to convergence. All three 

evolutionary outcomes can be explained with this mechanism of constraint through functional genetic 

network structure. 

 

Empirical hypotheses tests using data on yeast network evolution 

A recent paper published by Schoenrock et al. [62] uses a data set of 4,179 protein-coding genes 

(sourced from [38,63]) to investigate the involvement of network structure in protein evolution. The 

data was obtained from five species of yeasts (Saccharomyces cerevisiae, S. paradoxus, S. bayanus, 

S. kudriavzevii, and S. mikatae). This study explicitly compares a quantitative variable related to 

network structure (computationally predicted re-wiring of nodes through evolution γ), with the 

protein evolutionary rate on nodes (substitution rate ω, measured as dN/dS). The authors find that the 

degree of rewiring of nodes across the phylogeny is only poorly associated with evolutionary 

sequence divergence, but nodes with very low evolutionary rate had high variability of rewiring 

scores, which indicates that changing gene interactions is an important mechanism how functionally 

constrained genes may evolve. While the study remained somewhat inconclusive about the influence 

of network structure and node rewiring on protein evolution, the data contained within it, combined 

with additional data, allow for a quick initial assessment of the three evolutionary outcomes outlined 

above (results are summarized in Table 1). 

The most straightforward assessment can be done for outcome (iii) Genic evolution meaning 

differential evolution within the genome through selection on different subnetworks, as it is already 

discussed in the source paper [62]. Schoenrock et al. [62] could show that some nodes that are 

functionally similar experienced lower than expected levels of protein evolution, indicating purifying 

selection. Nodes that were evolving through fewer re-wiring events than expected, included functions 

 
Box 1. Proposed testable relationship between functional genomic network architecture, structural node position, and 

evolutionary outcomes.  
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Figure 2. Distribution of yeast interactome nodes within 

network parameter space (neighborhood connectivity, 

average shortest path length, and betweenness centrality). 

The top values for each axis are colored in shades of red 

(light, filled: P-nodes; light, open: I-nodes; dark, filled: H-

nodes). Convergent evolution nodes are indicated in dark 

blue. These top values for each axis formed the basis to 

classify the remaining nodes based on discriminant function 

analysis.  

 

 

related to phosphorylation, mitochondrial translation, response to pheromone, small GTPase mediated 

signal transduction, and transport. Nodes that were evolving among the five yeast species with higher 

than expected degrees of re-wiring, included the functions metabolic process, and various gene 

ontologies related to transcription and its regulation, as well as the regulation of transposition 

regulation. As indicated in Box 1, these results prove that evolutionary outcomes are different for 

functionally different subnetworks within an interactome. It might be worth noting that, as outlined 

above, none of these functions is particularly related to development but rather to maintaining 

organismal function, which is why they would be overlooked if conserved genes were only classified 

by the criterion of dispensability for colony growth. Gresham et al. [64] similarly showed that 

evolutionary constraint in experimentally evolved yeast populations over 200 generations is 

dependent on the type of selection (limiting Glucose or Phosphate vs. Sulphur), with convergence 

being an outcome of the system level organization of the respective metabolic pathway. 

To assess evolutionary outcomes (i) Rapid 

adaptation and (ii) Convergent evolution, as 

well as to address the important factor of gene 

expression in shaping protein-coding gene 

evolution, the Schoenrock et al. [62] data set 

needs to be rearranged and expanded on. For this 

purpose, I obtained the data of [62] including 

yeast ORF ID, computationally predicted 

evolutionary PPI re-wiring score (γ), and 

substitution rate (ω). This data set was then 

integrated with data downloaded from Wall et al. 

[38] including ORF ID, and CAI (Codon 

Adaptation Index, a measure of RNA expression 

levels, based on [65]). With the goal to calculate 

a classifier that will aid in describing 

hierarchical node position within networks, 

common network statistical parameters were 

calculated from the yeast interactome in 

CYTOSCAPE v.3.6.0 [66] using the Network 

Analyzer function. Data for the matching node 

ORFs were appended to the data set, and 

variables with non-normal distribution were 

BoxCox transformed. The final data set 

contained 2209 ORFs. The parameters obtained from the yeast interactome were average shortest 

path length (maximal in peripheral nodes), neighborhood connectivity (maximal in nodes 

intermediate to the network), and betweenness centrality (maximal in nodes connecting subnetworks). 

Nodes with maximum values for each one of these three statistical parameters, and that were not 

overlapping with each other (1081 nodes, Figure 2), were each assigned to a category: P (peripheral 

nodes), I (intermediate nodes) and H (hub nodes). To assign node categories to the remaining nodes 

in the network that may be harder to visually allocate, a discriminant function analysis (DFA) was 

employed in STATISTICA (V13, Tibco).  
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Figure 3. Visualization of node classification scheme in 

yeast interactome. Values of a) average shortest path length, 

b) neighborhood connectivity, and c) betweenness centrality 

within the yeast interactome (left panels), and values for the 

DFA-derived hierarchical node categories P, I and H, and for 

nodes known to be under convergent evolution in yeasts (C, 

N=18). Small inset network shows the location of convergently 

evolved genes (C-nodes) within the interactome (yellow, on 

black background). 

 

 

 

All remaining nodes could with significant statistical support be associated to one of these three 

categories (Table 2). To explore the network position of nodes that have undergone convergent 

adaptation, ORF IDs that were demonstrated experimentally to show convergent genomic adaptation 

in independent experiments, strains, or species of yeasts (C-nodes) were identified from the literature 

([67], [68], [69], [70], [64], [71], Table 3). Out of the 26 obtained C-nodes, 21 nodes were allocated 

by DFA to the I category, and five were allocated to the P-category.  

 Figure 3 shows that DFA-allocated P, I, H, 

and C node categories significantly differed in 

the network statistics used to generate them. All 

network statistics significantly differed between 

node categories, as shown with Kruskal-Wallis 

tests: Average shortest path length: KW-

H(3,2208) = 1220.5906, p = 0.0000; 

neighborhood connectivity, KW-H(3,2208) = 

926.5707, p < 0.0001; betweenness centrality 

KW-H(3,2208) = 926.5707, p < 0.0001. It was 

then tested, how network statistical parameters 

relate to the evolutionary parameters ω, γ, and 

CAI. First, a general linear model was run with 

evolutionary parameters as dependent variables, 

and network parameters as predictor variables. 

All three network statistical parameters were 

found to significantly predict evolutionary 

outcomes (Table 4). All node categories have 

significantly different values for ω (KW-

H(3,2204) = 20.1345, p = 0.0002), CAI (KW-

H(3,2195) = 26.1472, p = 0.00001) and γ (KW-

H(3,2195) = 36.7936, p = 0.00000), as shown 

by Kruskal-Wallis tests (Figure 4). With regards 

to hypothesis (1) Rapid adaptation, Figure 4 

shows that highest values of ω are found both in 

P and I-nodes with almost identical median 

values (0.93 vs. 0.91), and lowest values were 

found in H nodes. This shows that nodes located 

less centrally in the network evolve faster than 

other nodes, but does not identify peripheral 

nodes as particularly fast-adapting. CAI 

increases towards the center of the network, 

with mRNA expression level being highest in hub nodes. Network node hierarchy may therefore be 

able to explain the E-R anticorrelation (gene expression levels being negatively correlated with 

evolutionary rate [37]): H-nodes connect various subnetworks with one another, and thus are likely to 

be involved in more diverse functions (which might be partitioned across different tissues, processes 
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Figure 4. Relationship between hierarchical node structure of yeast interactome and evolutionary parameters. Node 
types are designated as peripheral (P), intermediate (I), or hub (H) based on discriminant function analysis, and nodes 
that were found to evolve convergently (C; N=22) in yeasts. Three evolutionary outcomes (a) substitution rate, (b) 
expression level, measured as CAI (Codon Adaptation Index), and (c) evolutionary rewiring score significantly differ 
among node categories (see text). C-node boxes are sorted by Median. Double red line: outliers above median not 
shown in figure but included in tests. Raw data points - triangles, circles - outliers, stars - extreme values, squares - 

Medians, boxes - 25-75% data, whiskers - non-outlier range. 

or life history phases), than nodes more peripheral in a network (Figure 4). Such common functions 

may require a high amount of product, which may translate into high levels of mRNA expression in 

these nodes. γ is highest in P and I-nodes, indicating that evolutionary rewiring events are more 

common in less central parts of the networks. I-nodes harbor the majority of edges within a network - 

genetically re-wiring these nodes could lead to rapid adaptation [72]. Centrality of H-nodes seems to 

reduce their adaptability while peripheral and intermediate nodes are less constrained to adapt, and 

this process may involve rewiring within the network. This demonstrates how functional constraint 

can explain evolutionary outcomes better than dispensability.  

 

 

 

 

 

 

 

 

Hypothesis (2) Convergent adaptation through network constraint is also tentatively supported 

through Figures 3 and 4. C-nodes are most similar to I-nodes, showing that convergently adapting 

genes have similar evolutionary rates, expression levels, and degrees, as nodes that are located 

intermediately in the interactome. This supports the idea that nodes with highest number of edges and 

intermediate network position are constrained to adapt and thus increase the likelihood for convergent 

evolution. Gresham et al. [64], from which five C-nodes were obtained, also showed that convergent 

evolution is related to system level organization of the respective metabolic pathway. In summary, 

these results show a clear relationship between network node structure and evolutionary outcomes. 

An overview of all results linking network parameters to evolutionary outcomes is provided in Table 

1. 

 

From yeast to non-model organisms 

Metagenomic resequencing of every 500 generations within a 60,000 generation E. coli long term 

evolution experiment [73] revealed that certain genes accumulated beneficial mutations through 

selection significantly more often than expected by chance, and were very often affected by parallel 

adaptation [73]. These results, together with the incidences of parallel genomic adaptations reviewed 

herein, demonstrate that the above described relationship between network structure and convergent 

evolution may be expandable to organisms other than yeasts [5]. Apart from the quick assessment 
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performed in this contribution, the influence of network structure in shaping evolutionary outcomes in 

more complex organisms than yeast such as vertebrates still needs to be comprehensively tested. As 

demonstrated above in the yeast example, the impending advent of large-scale functional genomic 

networks for many new species makes it possible to convert functional genomic network structure 

into variables describing hierarchical node position within the network. Future tests relating evolution 

to genomic constraint could include node architecture, and revolve around (1) Comparing standing 

genetic variation to network node position (while considering the effect of demography, selective 

sweeps, genetic drift, bottlenecks, and other levels of extrinsic constraint); (2) Testing whether similar 

subnetworks/node hierarchies adapt to same selection pressure in different organisms. (3) Comparing 

the speed of realized adaptation to a mutation/selection expectation, without considering network 

constraint. The potential benefits on better understanding genetic constraint leading to deterministic 

evolution may be wide ranging: in humans, the use of functional interaction networks is omnipresent 

in genomic and transcriptomic study of cancer data, and recently, calls have been made for 

evolutionary methods to be applied to cancer problems [74]. A recent study demonstrates how the 

early progression of pancreatic cancer is defined through evolutionary constraints resulting from 

following one of three tumor suppressive pathways, and thus may be predictable [75]. Previous 

criticism against recognizing network constraint as evolutionary force has centered around the idea 

that this would disregard evolution through natural selection [76]. Instead of upholding such a 

dichotomy, I argue that the goal should instead be to quantify “background genetic constraint” 

through functional network structure, in order to better allocate the remaining variance to mutation 

and selection in directing rapid, convergent, and genic phenotypic evolution.  
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Table 1. Hypotheses relating network constraint to evolutionary outcomes and results of hypothesis 

assessment using a node classification scheme in yeast. 

 

Evolutionary outcome Hypothesi

s No. 

Hypothesis (H) Alternative Hypothesis 

(HA) 

Results in this paper 

following assessment with 

hierarchical node 

classification scheme. 

Speed of evolution 1 Indispensable or essential genes 

are more constrained and evolve 

slowly [77]. 

 

 

Functionally important and 

thus functionally constrained 

genes evolve slowly, 

independent of dispensability 

[43]. 

Highly expressed genes 

evolve slowest [38,39]. 

 

HA: Functionally most 

constrained genes (H-

nodes) have the lowest 

substitution ratios of all 

categories, and are most 

highly expressed, but have 

lower scores of 

evolutionary rewiring than 

P and I-nodes. 

Speed of evolution 2 Central nodes have highest 

number of edges, evolve very 

slowly because any change will 

lead to maladaptive pleiotropic 

effects - causes balancing 

selection through cost of 

complexity. 

[5],[51],[40],[50] 

Intermediate nodes evolve 

fastest as their higher number 

of edges allows for evolution 

through rewiring  

([60,61], this contribution). 

 

HA: Nodes with highest 

number of edges are 

intermediate to the network, 

evolve fast (high ɷ) and 

have a high score of 

rewiring (ɣ), indicating that 

the substitution rate of these 

genes may be associated 

with evolutionary rewiring 

events.  

Speed of evolution 

 

3 Nodes with a low number of 

edges evolve fastest due to higher 

degrees of freedom which allows 

for genetic adaptations minimising 

pleiotropic effects. 

[78], [5] 

 

--- 

 

H: Peripheral nodes evolve 

fast (high ɷ) and have a 

high score of rewiring (ɣ), 

indicating that the 

substitution rate of these 

genes may be associated 

with evolutionary rewiring 

events.  

Convergent evolution 4 Nodes with a low number of 

edges should be the prime target 

of convergent evolution. 

Pleiotropic negative effects are 

expected to be low, and mutations 

in them can maximise adaptation 

[5]. 

Peripheral nodes have the 

highest degrees of freedom 

and thus divergence is more 

likely than convergence in 

them. Convergent evolution 

should instead be favored in 

nodes that allow for genetic 

variance, while having 

reduced degrees of freedom 

(I-nodes)  

(this contribution). 

HA: 21 out of 26 nodes 

with convergent evolution 

demonstrated in yeasts were 

classified as I- nodes by 

DFA, and five as P nodes. ɷ 

and CAI were similar to I-

nodes, but none of these 26 

nodes showed evidence of 

evolutionary rewiring. 

Genic evolution 5 Adaptations can be characterized 

(either causative or correlative for 

the speciation process) by any 

number of divergent genes within 

the genome, whereas other genes 

are not associated with adaptation. 

[14]. 

Only the complete phenotype 

is selected, the genic 

component is less important 

[35]. 

H: Different clusters of 

functionally similar nodes 

experience either higher, 

lower than expected, or 

neutral rates of evolution 

across five species of yeast 

[69]. Causation or 

correlation to speciation 

process not testable with 

data. 
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Table 2. Discriminant function analysis summary to assign node categories H, I, P to nodes within 

dataset. Wilks' Lambda: 0.0704 approx. F (6,2152)=992.780 p<0.001. 

 

  Wilks 

Lambda 

Partial 

Lambda 

F-remove 

2,1076 

p-value Toler. 1-Toler. (R-

sqr.) 

Neighborhood 

connectivity 

0.137 0.514 507.835 <0.001 0.988 0.012 

 

Betweenness centrality 0.105 0.673 261.039 <0.001 0.994 0.006 

Average shortest path 

length 

0.133 0.528 480.907 <0.001 0.983 0.017 
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Table 3. List of yeast genes that were found to adapt to novel environments, and were additionally shown 

to evolve these adaptations convergently across populations or species of yeast. Node hierarchy categories 

after discriminant function analysis (DFA) are shown in the first column. P - peripheral nodes, I - 

intermediate nodes.  

DFA estimated Node 

hierarchy 

Gene symbol ORF ID Reference 

I STE11 YLR362W Lang et al., 2013 

I STE12 YHR084W Lang et al., 2013 

I STE4 YOR212W Lang et al., 2013 

P KRE6 YPR159W Lang et al., 2013 

I SFL1 YOR140W Lang et al., 2013 

I STE5 YDR103W Lang et al., 2013 

P ANP1 YEL036C Lang et al., 2013 

I GCN1 YGL195W Lang et al., 2013 

I ERG5 YMR015C Gerstein et al., 2012 

P ERG7 YHR072W Gerstein et al., 2012 

I CNE1 YAL058W Lang et al., 2013 

I GPB1 YOR371C Lang et al., 2013 

P KEG1 YFR042W Lang et al., 2013 

I KRE5 YOR336W Lang et al., 2013 

I TOH1 YJL171C Lang et al., 2013 

P SUL4 YBR294W Gresham et al 2008 

I GAL3 YDR009W Hittinger et al., 2004; Stern, 2013 

I GIN4 YDR507C Gresham et al 2008 

I PDR1 YGL013C Anderson et al. 2003 

I SGF73 YGL066W Gresham et al 2008 

I SET4 YJL105W Lang et al., 2013 

I SIR1 YKR101W Gresham et al 2008 

I ACE2 YLR131C Lang et al., 2013 

I GAS1 YMR307W Lang et al., 2013 

I WHI2 YOR043W Lang et al., 2013 

I CKA2 YOR061W Gresham et al 200 
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Table 4. Multivariate Wilks tests of significance and powers for network parameters to explain protein 

evolutionary rate (𝛚), gene expression (Codon Adaptation Index CAI), and evolutionary rewiring 

between species of yeast (𝛄). All predictors were significant. 

 

  Wilks’ 
Lambda 

F Effect 
df 

Error 
df 

p Observed power 
(alpha) 

Intercept 0.317 1569.597 3 2188 <0.001 1.000 

Neighborhood 

connectivity 
0.924 59.892 3 2188 <0.001 1.000 

Betweenness centrality 0.995 3.931 3 2188 0.008 0.832 

Average shortest path 

length 
0.961 29.553 3 2188 <0.001 1.000 
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