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ABSTRACT 
Chronic pain is exacerbated by maladaptive cognition such as pain catastrophizing (PC). Biomarkers of 
PC mechanisms may aid precision medicine for chronic pain. Here, we investigate EEG biomarkers 
using mass univariate and multivariate (machine learning) approaches. We test theoretical notions 
that PC results from a combination of augmented aversive-value encoding (“magnification”) and 
persistent expectations of pain (“rumination”). Healthy individuals with high or low levels of PC 
underwent an experimental pain model involving nociceptive laser stimuli preceded by cues predicting 
forthcoming pain intensity. Analysis of EEG acquired during the cue and laser stimulation provided 
event-related potentials (ERPs) identifying spatially and temporally-extended neural representations 
associated with pain catastrophizing. Specifically, differential neural responses to cues predicting high 
vs. low intensity pain (i.e. aversive value encoding) were larger in the high PC group, largely originating 
from mid-cingulate and superior parietal cortex. Multivariate spatiotemporal EEG patterns evoked 
from cues with high aversive value selectively and significantly differentiated the high PC from low PC 
group (64.6% classification accuracy). Regression analyses revealed that neural patterns classifying 
groups could be partially predicted (R2 = 28%) from those neural patterns classifying the aversive value 
of cues. In contrast, behavioural and EEG analyses did not provide evidence that PC modifies more 
persistent effects of prior expectation on pain perception and nociceptive responses. These findings 
support the hypothesis of magnification of aversive value encoding but not persistent expression of 
expectation in pain catastrophizers. Multivariate patterns of aversive value encoding provide 
promising biomarkers of maladaptive cognitive responses to chronic pain. 
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INTRODUCTION 
Across a range of physical health conditions, including chronic pain, cognitive factors are known to 
impact on outcomes (Edwards et al., 2011; Ottaviani et al., 2016; Trick et al., 2016). While there has 
been substantial interest in identifying biomarkers that increase the precision of psychiatric 
classification and predict outcomes in mental health disorders (Singh and Rose, 2009), more research 
is needed into biomarkers of cognitive risk factors for physical health conditions such as chronic pain. 
A maladaptive cognitive trait that is widely studied in relation to chronic pain is pain catastrophizing 
(PC). PC has been defined as “an exaggerated negative mental set brought to bear during actual or 
anticipated pain experience” (Sullivan et al., 1995). PC predicts the severity of chronic pain (Edwards 
et al., 2011) and physical dysfunction above and beyond the effects of concurrent depression (Arnow 
et al., 2011). While the importance of PC in chronic pain is rarely disputed, its sub-component 
mechanisms have not so far been clearly defined. 

Sub-components of PC can be described in both psychological and neurobiological terms. 
Psychologically, the three subscales of the Pain Catastrophizing Scale (PCS (Sullivan et al., 1995)) 
characterise PC in terms of augmentation of the aversive value of pain (“magnification”), perseverative 
thinking about pain (“rumination”) and deficits in coping ability (“helplessness”). However, 
neurobiological research has tended to focus on the neural correlates of PC as a unitary construct. 
EEG and fMRI studies in chronic pain patients have found greater activation of the secondary 
somatosensory cortex to non-painful stimuli (Vase et al., 2012) and painful stimuli (Gracely et al., 2004) 
in pain catastrophizers, as well as greater activation of anterior cingulate cortex in both healthy 
volunteers (Seminowicz and Davis, 2006) and fibromyalgia patients (Gracely et al., 2004). Further 
research provided more precise mechanistic insights by identifying anticipatory deficits in lateral 
prefrontal cortex activity in chronic pain patients with greater levels of PC (Brown et al., 2014; Loggia 
et al., 2015), suggestive of a failure of the top-down inhibitory control provided by this brain region 
(Lorenz et al., 2003), which can be remedied through psychological intervention (Brown and Jones, 
2013). This provides a basis for further investigation of clinically viable biomarkers of PC.  

One approach is to investigate PC in pain-free individuals, in order to avoid the potential confound of 
chronic pain symptoms. In this study, we acquired scalp EEG in pain-free individuals with high and low 
levels of PC in order to characterise PC in terms of two hypothesised neural processes: aversive value 
encoding (“magnification”) and perseverative expectation effects (“rumination”). These processes 
were operationalised with respect to the transient (magnification) and persistent (rumination) effects 
of expectancy cues on the temporal dynamics of neural responses as participants anticipated and 
experienced experimental (laser) pain stimuli. This approach to perseverative expectation builds on 
our previous research showing that expectancy effects on nociception and pain persist even if initial 
expectancy cues are followed by contrary information indicating no threat of pain (the so-called ‘prior 
expectancy effect’ (Almarzouki et al., 2017)). Here we address whether this persistent expectancy 
effect differs according to the level of PC or whether differences in cue processing are more transient.  

Our analyses utilised standard mass univariate as well as multivariate analysis of event-related 
potentials (ERPs) in order to identify spatiotemporal patterns that classify high from low PC groups, as 
a step towards biomarker development. Specifically, we used Multivariate Pattern Analysis (MVPA), 
which applies machine-learning algorithms to neuroimaging data. In recent years, MVPA has provided 
predictive measures of pain at the single individual level (Brodersen et al., 2012; Wager et al., 2013) 
and has been applied to ERPs to classify patients with psychiatric disorders (Taylor et al., 2017); here, 
we provide the first attempt to apply this methodology to classifying PC. 
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Figure 1. Conditioning procedure, experimental conditions and contrasts for analysis.  
A) A brief training procedure involved randomised trials of high and low intensity laser stimuli (pain and non-painful 
respectively), each of which was preceded by a visual cue that reliably predicted the laser intensity.  
B) The experiment consisted of randomised trials of conditions 1 to 4 plus reinforcement trials. The conditions differed 
according to the presentation of visual cues consisting of upward and downward-pointing arrows (shown here as triangles), 
and variably intense laser stimuli (represented as circles). In conditions 1 and 2, “low” cues were presented, which most of 
the time (two-thirds, condition 2) led to a low intensity laser stimulus, while the other one-third of trials (condition 3) led to 
a medium intensity laser stimulus that they had previously not been trained to expect (and were not informed might occur). 
Conditions 3 and 4 consisted of a “high” cue that was replaced after 2.5s by a “low” cue. Following this after another 2.5s, 
two-thirds of trials (condition 3) led to a low intensity laser stimulus, while the other one-third of trials (condition 4) led to a 
medium intensity laser stimulus, in a similar way to the contingency in conditions 1 and 2 (which are identical except for the 
lack of a prior “high” cue). Condition 5 acted as a reinforcement of their prior expectation from training, i.e. that upward 
arrows lead to high intensity pain. On every trial, after the laser stimulus participants were asked rate the pain intensity on 
a 0 – 10 numerical rating scale.  
C) For EEG analysis, three contrasts were derived from comparisons of conditions 1-4. The first was the aversive valuation 
contrast on cue processing, namely EEG responses to the “high” cues (conditions 3 and 4) vs. the “low” cues (conditions 1 
and 2). The second was laser intensity contrast of medium intensity stimuli (conditions 2 and 4) vs. low intensity stimuli 
(conditions 1 and 3). The third was the prior pain expectancy contrast on laser stimulus processing, namely medium intensity 
laser stimulus processing from condition 4 vs. condition 2. 

  

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 12, 2018. ; https://doi.org/10.1101/279992doi: bioRxiv preprint 

https://doi.org/10.1101/279992
http://creativecommons.org/licenses/by-nd/4.0/


 

4 
 

RESULTS 
In this study we focus on addressing two key issues. Firstly, is pain catastrophizing characterised by 
magnified aversive value encoding? Secondly, do pain catastrophizers show evidence of more 
persistent pain expectancy (the ‘prior expectancy effect’ (Almarzouki et al., 2017)), which would follow 
if pain catastrophizing is characterised by perseverative processing of pain cues (I.e., rumination)? In 
addition to analysing expectancy effects on pain behaviourally, EEG analyses detail the spatiotemporal 
location and pattern of within-subject effects of cue valuation (visual evoked potential (VEP) responses 
to cues predicting high vs. low pain) and the effects of prior pain expectancy on the laser-evoked 
potential (LEP). We then proceed to compare these within-subject effects to group effects (high vs. 
low PC groups).  

Participants 
Analyses were conducted on data from 16 high pain catatrophisers (“high PC”) and 18 low pain 
catatrophisers (“low PC”) (see supplementary results for screening, recruitment and retention 
numbers). There was no statistically significant age difference between the two groups and groups 
were exactly gender balanced: high PC group (8 female, 8 male; M = 26.6, SD = 10.8); low PC group (9 
female, 9 male; M = 22.6, SD = 4.7). The characteristics of each participant are provided in more detail 
in supplementary table 1. 

Group characteristics: Behavioural results 
The behavioural analyses tested for group differences in dependent variables related to pain 
perception (pain threshold and pain ratings). To summarise, the high (vs. low) PC group were expecting 
to be more distressed by the laser pain stimuli and had a lower pain threshold, but they did not show 
evidence of a larger “prior pain expectancy” effect (supplementary tables 1, 2 and 3). 

More precisely, the high PC group reported significantly greater expectations of emotional distress 
from the laser stimuli (t = 3.48, p < .001, Cohen’s d = 1.03), confirming that catastrophic cognitions 
were successfully provoked by the expected laser stimuli. Furthermore, the mean laser energy used 
to reach pain threshold was lower in the high PC group with a large effect size (Cohen’s d = 0.67) but 
in an independent samples t-test the difference was only marginally significant at an uncorrected p 
value of 0.051. Both groups were found to score roughly equally for all “manipulation check” variables, 
such that there was no evidence of a difference in the extent to which the two groups reported 
attending to anticipation cues, believing in the accuracy of the cues or being influenced by the cues.  

These results are consistent with an analysis of pain ratings in response to laser stimuli during the 
experiment and the effect of anticipation cues on these ratings. Specifically, pain ratings did not differ 
overall between groups, which is as expected given that the laser energy used for each participant 
was adjusted to their individual pain perception. Regarding prior expectancy effects on pain (i.e. main 
effect of presence vs. absence of the first “high” expectancy cue), although there was a statistically 
significant within-participant cue effect on pain ratings (F(1,32) = 37.7, p < .001, ηp

2 = 0.54, 
supplementary table 3), there was no interaction between group and this cue effect (p=0.938), 
indicating that the prior pain expectancy effect does not differ between groups. Comparing the effect 
size of the prior expectancy effect in each group separately, the effects are similar: ηp

2 = 0.49 in the 
high PC group and ηp

2 = 0.60 in the low PC group.  

Further ANOVA results show that changes in laser intensity reliably modulated pain perception (F(1,32) 
= 161.7, p <.001, ηp

2 = 0.83). There was no main effect of block on pain perception and block did not 
interact with expectancy, but did interact with intensity (F(1,32) = 8.69, p = .006, ηp

2 = 0.21), with lower 
intensity ratings in block 2, although this effect was not of interest to the analysis. Group did not 
interact with these within-subject factors.  
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Is pain catastrophizing characterised by magnified aversive value encoding? 
To answer this question, we first investigated neural activity related to the encoding of aversive value 
from the visual cues using the contrast of High cue > Low cue (figure 1C), independently of group. The 
results (figure 2) identified specific post-cue latencies and cortical sources that maximally differed 
between conditions (univariate analyses), in addition to spatiotemporal ERP patterns predicted the 
cue type (MVPA analyses). We then proceeded to investigate group differences (figure 3) to address 
whether these differences were related to within-subject aversive valuation effects. In summary of 
the results, within-subject aversive valuation effects were partially distinct, but also partially 
overlapping in space and time with group effects; furthermore, multivariate spatiotemporal patterns 
classifying cue conditions were able to predict group differences to a moderate degree (figure 4). 

In particular, univariate EEG sensor analysis on the within-subjects aversive valuation effect (figure 2A) 
identified spatiotemporal statistical clusters arising from increased positive and negative polarities co-
occurring at similar latencies. This occurred in two distinct latency ranges: an early latency range from 
116ms to 152ms and a late latency range from 362ms to 1312ms post-cue (supplementary table 4). 
Source analysis over these time ranges revealed early latency sources in inferior temporal lobes, 
consistent with activation of the ventral visual pathway, while late latency sources localised to a 
broader range of regions including occipital, parietal, frontal, temporal and cingulate cortices 
(summarised in figure 2B and detailed in supplementary table 5).  
 

 

Figure 2: Aversive value encoding during cue processing (within-participant effect of cue type).  
A. Univariate sensor analysis found four statistical spatiotemporal clusters that differed in the contrast of High>Low 

cue. Clusters ss1 and ss2 are positive and negative polarities of the same ERP components during the early latency 
time window at 116ms to 152ms. Clusters ss3 and ss4 are positive and negative components during the late latency 
period of 362ms to 1312ms. Left: SPM glass brain maps; top is anterior scalp. Middle: grand average waveforms 
and 95% CIs; grey indicates cluster extent, black vertical line indicates latency with largest F statistic, dashed vertical 
line is cue onset. Right: grand average topographies for each condition. 

B. Statistical analysis of the High>Low cue contrast in source-space found greater early activation of the ventral visual 
pathway (top: inferior temporal lobe) and late activation of visual, somatosensory and multimodal brain regions 
represented here in separate colours (for simplification, similar bilateral regions are coloured the same). 

C. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom). Maximal separation occurs 
between the two cue conditions at 485ms, at which time the topographic map (bottom) shows a posterior scalp 
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distribution of activity that separates the two cues. In both time-course scatter plot, each point is a summarised 
weight or projection value (namely, the mean absolute value over the scalp and within a 10ms window). Y axis 
values are normalised to the % contribution, i.e. each data point is a percentage of the sum of all data points over 
time.  

D. Receiver Operating Characteristic (ROC) and MVPA statistics. The ROC illustrates the model sensitivity and 
specificity by plotting the true positive rate (sensitivity) as a function of false positive rate (1 - model specificity). 
The area under the curve (AUC) measures how well the model classifies the cue conditions (greater area means 
better classification). 

 

Continuing our analysis of the within-subject aversive valuation effect, we used MVPA to train a 
classifier on the High vs. Low cue conditions, which provided a 69.12% balanced accuracy in classifying 
the two conditions (p = 0.001). We investigated the latencies of neural activity contributing to this 
classification, firstly with regard to raw weights (figure 2C). In this analysis, there were moderately 
strong weight contributions (> 1 SD from the mean) across the full time range, with the strongest 
weight contribution at 455ms post-cue (> 2 SDs from the mean). However, because larger raw weights 
do not directly imply more class-specific information than lower weights, we transformed the classifier 
weights back into activation patterns (Haufe et al., 2014), providing an interpretable time-course 
(figure 2C, bottom). This shows latencies with the largest condition differences described by the 
classification, and produced a time-course distinct from the original ERP with a steady increase up to 
a maximum at 485ms. The topographic projections of the weights across the scalp at 485ms showed 
a mid-posterior positivity and frontal negativity, reminiscent of (but not identical to) the ERP 
topography at this latency (figure 2A).  

Having characterised the within-subject aversive valuation effect, we now turn our attention to group 
effects on neural activity in the 1500ms following the initial cue (figure 3). Univariate sensor analysis 
results show a main effect of group (high PC > low PC, across both cue conditions) at a mid-to-late 
latency range; two spatiotemporal sensor clusters were identified with the range of 242ms to 604ms, 
with greater activity in the high PC group (figure 3A). Topographic maps show that these two clusters 
correspond to concurrently occurring positive and negative polarities. Source analysis on this time 
range (figure 3B) locates the activity to superior and inferior parietal lobe and occipital lobe bilaterally, 
in addition to mid-cingulate cortex. The group effects therefore overlap both temporally (in the range 
362ms to 502ms) and spatially (in the parietal lobes) with the aversive valuation effect (high vs. low 
cues) 
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Figure 3: Group differences in cue processing. 
A. Univariate sensor analysis found four statistical clusters in the main effect of group. Clusters ss5 and ss6 are positive 

and negative polarities of the same ERP components during the time window of 242ms to 604ms.  
B. Source analysis found greater activation of occipital, parietal and cingulate cortex during cue processing in the 

contrast of High PC > Low PC group. 
C. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom) summarised within 10ms 

windows showing that neural activity maximally classifying the groups (at 495ms) occurs with a posterior scalp 
distribution. 

D. Receiver Operating Characteristic (ROC) and MVPA statistics for classification of group membership using the high 
cue condition only. AUC: Area under the ROC curve. 

E. Univariate sensor analysis of the interaction between group and cue type found a statistical cluster during the time 
window of 1334ms to 1440ms, resulting from a group difference in processing High cues but not Low cues. 

F. Source analysis found interaction effects in superior frontal-parietal cortex and cingulate cortex resulting from 
greater processing of High (vs. Low) cues in the High (vs. Low) PC group. 

See figure 2 legend for further details of the plots. 

 

Interaction F contrasts from the general linear model revealed a spatiotemporal cluster in the ultra-
late latency range from 1334ms to 1440ms, characterised by greater group differences (high PC > low 
PC group) in the high cue compared to the low cue conditions (figure 3E). This latency window is 
considerably later than that found in the analysis of the main effect of group. Visually, as depicted in 
figure 3E, the interaction appears to arise from a group difference after low cues at mid-latencies 
(roughly, 300-400ms), but no group effect thereafter; whereas, after high cues, a similar group effect 
at mid-latencies persists into the ultra-late time window. (In the next section, we investigate whether 
this suggests more persistent expectancy processes that might carry over to affect nociceptive 
processing). We identified sources of these interaction effects as originating from superior parietal 
lobes, precuneus, superior frontal lobes (supplementary motor area) and mid-cingulate cortex (figure 
3F). 
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MVPA results show general agreement with the above univariate results when assessing which 
spatiotemporal characteristics of the EEG data classify the two groups (figure 3c). Additionally, as a 
multivariate method, MVPA takes into account dependencies over time and space, and provides 
spatiotemporal patterns classifying the two groups that we later compare to the patterns classifying 
the two cue conditions. Firstly, two MVPA analyses were conducted to find out if successful group 
classification depends on what EEG data is used – here we look at results using data from high and 
low cue conditions separately. Interestingly, group was decoded from high cue conditions (64.58% 
balanced accuracy, p=0.0010, figure 3D) but not from low cue conditions (37.85% balanced accuracy, 
p=.9964, not shown as a figure). For the successful classification using high cue conditions, relatively 
early latencies (185ms to 245ms post-cue) contributed strongly to the weights (greater than 2 
standard deviations from the mean weight contribution) with the greatest weight (>3SD) at 235ms 
post cue (figure 3C, top). However, as previously discussed, such weights might not be physiologically 
meaningful; for example they may reflect suppression of noise to improve the classification. Hence, 
we analysed the time-course of weight projections contributing to this classification (figure 3C, bottom) 
which showed a very similar temporal profile to the weight projections contributing to classification 
of the cue conditions (figure 2C), with the largest response at 495ms. The topography of the group 
weight projection at 495ms also showed a similar distribution to that classifying the cue conditions. 

Interestingly, in agreement with the interaction effects in the univariate sensor statistics (figure 3E), 
it is clear by comparing figures 2C and 3C that the weight projections classifying groups are more 
sustained at ultra-late latencies than those classifying the cue conditions, pointing to the possibility of 
more sustained representations of aversive value. These augmented representations continue for the 
duration of the analysed time window, but as we detail in the next section, do not sustain as a group 
difference into the post-stimulus time-window. 

The above observations of a close spatiotemporal relationship between weight projections classifying 
groups on the one hand, and those classifying aversive value on the other, points to the possibility 
that neural representations that successfully decode groups can be partially explained by 
representations of aversive value. Indeed, further regression analyses support this view. Three 
regression analyses were conducted on MVPA raw weight matrices (figure 4). Firstly, we found that 
variance in the weight matrix that successfully decoded the groups was not explained by variance in 
the weight matrix decoding the cue conditions when both groups’ EEG data was used in the cue-
condition classification analysis (R2 = 0.0056, p=0.612). However, as an alternative predictor variable, 
when we instead utilised the weight matrix from classifying cue-conditions using only the high PC 
group’s data, there was significant prediction of the variance in the group classification weights (R2 = 
0.2785, p=0.005). In the third regression, the cue-classification weights from the low PC group did not 
predict the group classification weights (R2 = 0.0004, p=0.9). Hence, aversive value encoding as 
expressed specifically in the high PC group, but not in the low PC group, partially explains the pattern 
that decodes group membership. 
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Figure 4: Predicting group classifier weights from cue classifier weights. Group classifier weights (y axis) are plotted against 
cue valuation weights (x axis). Cue classifier weights (x axis) are compared from three classification models: when classifying 
cues from both groups’ data (left) or from each group separately (middle and right). 

 

Is pain catastrophizing characterised by prior pain expectancy effects on 
nociception? 
We addressed this second question using the same methodology as in the previous section, except 
analyses were conducted on the post-stimulus Laser-Evoked Potential (LEP). As a preliminary step, we 
conducted univariate and multivariate analysis on the LEP to identify spatiotemporal representations 
of pain intensity; this acted as validation of the analysis methods for the study as a whole, by enabling 
comparison of the latencies and sources of LEP components in this study to those found in previous 
research. These findings are in Supplementary Results and figure 5 A-D and are not referred to further 
here. In this current section, we instead focus on the investigation of the effects of prior pain 
expectation on LEP responses to medium intensity stimuli (contrast shown in figure 1) and whether 
this effect was augmented in the high PC group. 
 

 

Figure 5: Effects of laser intensity and prior expectation on nociceptive processing. 
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A. Univariate sensor analysis found three statistical clusters from increasing laser intensity (medium>low), 
corresponding to components N2 (ss8, 308ms to 310ms) and P2/P3 (ss9, 388ms to 726ms; ss10, 382ms to 670ms).  

B. Source analysis found widespread cortical modulation in response to increases in pain intensity. 
C. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom) found that intensity was 

classified with the greatest contribution from neural activity during early latencies (N2 time window) and a fronto-
central scalp distribution. 

D. Receiver Operating Characteristic (ROC) and MVPA statistics. AUC: Area under the ROC curve. 
E. Univariate sensor analysis found a single cluster from the prior pain expectancy effect, corresponding to 

component P2 (ss11, 416ms to 478ms).  
F. Source analysis found that prior pain expectancy increases post-laser stimulus activation of the inferior parietal 

lobes. 
G. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom) found that classification of the 

expectancy conditions involved neural activity patterns at both early latencies (N2 time window) and late latencies 
(P2/P3). 

H. Receiver Operating Characteristic (ROC) and MVPA statistics. AUC: Area under the ROC curve. 
See figure 2 legend for further details of the plots. 

 

Univariate sensor analyses found neural activity related to the presentation of a prior high pain cue to 
be maximal at a latency of 434ms post-stimulus (cluster range: 416 to 478ms), consistent with the 
commonly observed P2 peak (figure 5E). At this latency, the P2 was maximal at electrode FCz. Source 
analysis revealed a contribution of bilateral inferior parietal cortex to this effect (figure 5F). 
Classification of the two conditions using MVPA provided 73.53% classification accuracy (p = 0.001). 
The latencies most greatly contributing to the weights (> 2 standard deviations from the mean) were 
far broader than that of the P2 peak, covering the full latency range of the window analysed. However, 
weight projections (figure 5G, bottom) identified more defined temporal regions at the latency of the 
N2 peak (maximal at 315ms) and at a later latency between the P2 and P3 peaks (605ms to 715ms). 
Topographic projections at 315ms were consistent with the commonly observed N2 peak of the LEP. 
The discrepancy between these latencies and those identified from the univariate results (i.e. P2 peak) 
highlights that univariate and multivariate analyses are sensitive to different signals: absolute mean 
activity within spatiotemporally restricted areas vs. relative patterns of activity over distributed 
regions respectively.  

Despite significant univariate and multivariate EEG sensor differences between conditions, there was 
no evidence of a main effect of group or interaction between group and condition using mass 
univariate statistics. Likewise, MVPA was not able to obtain a statistically significant classification of 
the groups, either for spatiotemporal sensor data from the prior pain expectation condition (50%, 
p=0.9), nor using data from the low expectation condition (47.06%, p=0.9).   
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DISCUSSION 
In this paper we sought to address the general problem of a lack of viable biomarkers of the 
neurocognitive mechanisms influencing physical health outcomes. We specifically assessed neural 
representations of pain catastrophizing (PC) in healthy individuals using an experimental pain model. 
We found evidence in favour of a “magnification” hypothesis, namely augmented neural processing 
of cues predicting aversive (vs. non-aversive) outcomes, suggestive of magnified aversive valuation 
processes, which persisted for up to 1.5s after the aversive cue. MVPA provided moderately successful 
classification of high (relative to low) PC when applied specifically to processing of high aversive value 
cues, but not to the processing of low aversive cues, suggesting that neural representations of highly 
aversive cues best characterise pain catastrophizers. Indeed, this was further suggested by analyses 
showing that MVPA patterns from group classification were partially predicted by those patterns 
classifying aversive value in high pain catastrophizers specifically, suggesting an overlap in neural 
representations of aversive valuation and PC. This provides evidence supporting aversive valuation 
processes in the brain as potential biomarkers of mechanisms contributing to PC.  

On the other hand, we did not find evidence that expectancy effects on nociception and pain were 
more persistent in the high vs. low PC group after initially negative expectations were updated by 
contrary information indicating no threat of pain. We previously found that pain perception in healthy 
individuals undergoing a similar procedure were still influenced by expectations from the initial highly 
aversive cue, despite the presentation of a second cue to update expectation (the so-called ‘prior 
expectancy effect’ (Almarzouki et al., 2017)). However, in this study, although neural activity directly 
after aversive cues (prior to the second update cues) appeared to be more persistent over the 1.5s 
analysed in the high vs. low PC group, pointing to greater pain expectancy, none of the analyses 
(behavioural, univariate EEG or multivariate EEG) provided evidence that prior pain expectancy had a 
greater influence on pain and nociception in the high PC group. Overall, these findings suggest that 
anticipatory processes may be the most fruitful area for future investigation of biomarkers of PC 
mechanisms. In what follows, we discuss the nature of the biomarkers identified in this study and 
make comprehensive suggestions for future research. 

By combining univariate and multivariate analysis approaches to the EEG data, we were able to both 
identify biomarkers (spatiotemporal patterns) classifying PC groups as well as gain insight into the 
timing and spatial localisation in the brain of these biomarkers. The topographies and timing of neural 
representations associated with PC (i.e. derived from transformed weight matrices from the MVPA 
analyses) are consistent with the commonly observed P3b (“endogenous” P3) and late-positivity 
waves of the visual-evoked potential, peaking in mid-posterior scalp regions at around 450-500ms 
post-cue. This positivity is commonly evoked by task-relevant stimuli and represents activity in 
multimodal networks thought to be involved with maintaining and updating representations of the 
task (Polich, 2009). Our source analysis found both aversive valuation and PC effects at this latency to 
originate from superior parietal and cingulate cortex. These regions may reflect one or a number of 
augmented cognitive processes in individuals with high PC. For example, a current neurobiological 
model of attention posits a dorsal frontoparietal network (including superior parietal lobule and 
dorsolateral prefrontal cortex (DLPFC)) as mediating top-down attention (Corbetta et al., 2002, 2008), 
a network that can be recruited via midcingulate cortex when signalling the need for greater cognitive 
control (Ridderinkhof et al., 2004). This is interestingly in light of the observation that it is a distinct 
ventral frontoparietal network that primarily responds to salient stimuli such as pain (Downar et al., 
2003) or its anticipation (Wiech et al., 2010). Greater dorsal frontoparietal responses in individuals 
with high PC therefore may therefore not necessarily indicate magnification of the salience of aversive 
stimuli, but rather a gain on the recruitment of subsequent cognitive control mechanisms. 
Interestingly, research has found that these cognitive control mechanisms are linked to descending 
control of anticipated pain (Wager et al., 2004). However, our analyses are not able to delineate how 
or whether these precise mechanisms contribute to PC. Important questions for the future are 
whether this source activity reflects greater excitatory or inhibitory activity in cortical neurons and 
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whether increases in activity reflect changes in bottom-up or top-down streams of information 
processing. 

The results highlight the utility of EEG for identifying temporally-defined neural patterns that could be 
the focus of further biomarker studies. However, there are clear limits on our ability to generalise the 
results of this study to chronic pain patients in the absence of further research in these populations. 
Despite the use of cross-validation to provide greater predictive validity to the results, the biomarkers 
were identified in healthy volunteers and so may still not generalise to chronic pain patients. We 
therefore view the results of the current study as providing an initial indication of neural targets, the 
robustness of which can be tested later as predictors of PC in chronic pain patients under a variety of 
contexts. These contexts might include alternative experimental designs that improve classification 
accuracy. Our design utilised very brief nociceptive stimulation of 100ms, which previous work has 
shown provides insights into the neural correlates of pain perception (Lee et al., 2009) and it’s 
modulation by expectation (Brown et al., 2008b). The brevity of the laser stimuli served two of our 
purposes well, which were to provide a relatively easy to tolerate stimulus that would be suitable for 
use in individuals who catastrophize about pain, allowing multiple trials of stimulation required to 
generate robust ERPs (Luck, 2005). However, despite these practical advantages, the use of brief 
nociceptive stimuli might not be an optimal method for inducing catastrophic cognitions. Support for 
our approach includes the moderate success we had in classifying high vs low PC groups using the 
neural pattern data and the fact that high PC participants rated themselves as expecting to be much 
more distressed by the laser stimuli than the low PC participants. However, future work could 
investigate whether pain catastrophizing is better classified by neural representations during more 
enduring and unpleasant tonic pain stimuli that provide a more realistic model of chronic pain.  

There are a number of other potential options for improving the identification of biomarkers of 
perseverative cognitions. Firstly, term “rumination” (Ottaviani et al., 2016) commonly refers to 
persistent, perseverative cognitions over longer timescales that we assessed here. Further research 
could aim to assess such persistent cognitions as well more naturalistically measure the dynamics of 
changes in pain expectancy (for example, during the course of a fluctuating tonic pain stimulus that 
mimics chronic pain symptoms). Secondly, regarding optimal neurophysiological measurements, 
neural representations of enduring cognitions may be better assessed by analysis of baseline or 
resting-state neural activity rather than using ERPs. Thirdly, a challenge for future studies is how to 
measure or influence rumination orthogonally to related cognitions such as magnification. The results 
of any such investigation will be highly dependent on how these variables are operationalised. Cross-
sectional or longitudinal designs using questionnaire measures of trait rumination would require very 
large sample sizes to disentangle within or between-subject variance in rumination from that of 
related cognitive factors. For example, in our study, rumination was measured via one subscale of the 
PCS questionnaire, but the small sample size prohibited identifying variance specific to rumination and 
magnification. Alternatively, cognitive-behavioural interventions could be targeted to rumination, but 
such efforts are likely to produce knock-on effects to other cognitive variables.  

Independently of issues of generalisation and optimal experimental design, the MVPA analyses 
presented here rely on certain assumptions and simplifications. Firstly, the study design leant itself to 
the use of binary classification; however, this approach assumes that PC is a unitary construct and that 
individuals in the high PC group differ from those in the low PC group according to homogeneous 
cognitive factors and corresponding neural representations; this is likely to be an over-simplification. 
Secondly, our analysis involved comparisons of weight matrices, but the interpretation of these values 
is complex, as weight values can vary either in relation to the signal of interest or in relation to their 
function in suppressing noise to improve prediction (Haufe et al., 2014). Hence raw weights do not 
have a simple neurophysiological interpretation. We therefore complimented raw weight information 
with a transformation of these weights as previously described (Haufe et al., 2014; Wardle et al., 2016) 
in order to enable interpretation of which physiological events contribute to the classification. 
However, other methods also exist for spatial and temporal localisation of neural signals contributing 
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to multivariate classification (e.g. searchlight mapping (Etzel et al., 2013), sparse algorithms (Kampa 
et al., 2014), multiple kernel learning methods (Schrouff et al., 2018), etc.) and these methods merit 
exploration to assess consistency with our findings.  

In conclusion, the results of this study support the hypothesis that pain catastrophizing is 
characterised by magnification of aversive value encoding in cingulate and parietal cortices, possibly 
reflecting the initiation of cognitive control mechanisms. Our results provide an initial indication of 
neural targets that can be further tested as cognitive risk factors for chronic pain and disability. We 
have made suggestions for how future studies could improve classification of magnification processes 
as well as better characterise neural representations of rumination. In particular, we have highlighted 
the utility of EEG for identifying temporally-defined neural patterns that have potential as biomarkers 
of maladaptive cognition and we have pointed to the need for further research identifying optimal 
methodologies for biomarker development.  
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METHODS 

Study design  
A single session 2×2x2 mixed design was used, with group (high, low catastrophizing) as the between-
participants variable and two within-participants variables each with two levels: Expectancy (“prior 
high” and “low”) and laser heat intensity (“medium” and “low”); in addition to these conditions, 
additional trials were randomised into the procedure that served to reinforce pain expectancy 
responses to high cues by following these cues with high intensity laser stimuli (figure 1). The study 
consisted of a psychophysics test, a training procedure, and then the experiment proper, which took 
place over the course of two blocks of stimulation. 

Power calculation 
This study was powered to detect a group difference with 80% power and an alpha of 0.05 with a large 
effect size (Cohen’s d of 1.0). A large effect size was anticipated based on the recruitment strategy: 
study power was maximised by recruiting participants scoring in the upper and lower quartile of the 
Pain Catastrophizing Scale (PCS – see below), providing a large group separation on this measure 
(Cohen’s d effect size of 1.92 – see supplementary table 1) that was expected to translate to large 
effect sizes in the outcomes of interest (pain ratings and EEG responses). 

Ethics and recruitment  
Ethical approval was obtained from North West Nine Research Ethics Committee in the United 
Kingdom. Volunteers were mainly recruited through The University of Manchester. Participants 
received an honorarium of £10 per hour, in addition to travel expenses.  

Participants: Screening 
All participants described themselves as above 18, right handed, free from pain, neurological illness, 
morbid psychiatric illness, peripheral vascular disease, ischemic heart disease, chronic skin disease 
(e.g. eczema, psoriasis) and hypertension not controlled by medication.  

Volunteers were screened by scores on the self-report Pain Catastrophizing Scale (PCS) (Sullivan et al., 
1995), which they completed prior to recruitment by email or through an online survey tool. The PCS 
is a 13-item questionnaire relating to thoughts and feelings about pain, with 5-point Likert-scale 
response categories ranging from zero (“not at all”) to five (“all the time”). The questionnaire consists 
of separate subscales for rumination, magnification, and helplessness, which can be calculated 
separately or combined to form a total score.  

Participants: Grouping 
Participants with total PCS scores in the upper (hitherto referred to as the “high PC” group) and lower 
quartile (“low PC”) of the PCS were identified according to the score ranges in the scale manual 
(Sullivan et al., 1995). These participants were invited to participate in the study. Participants were 
asked to repeat the PCS upon attending the laboratory to ensure the answers given during screening 
were reliable.  

Study procedures 

Participant expectations prior to the experiment 
While the PCS provided a general (trait) measure of expected distress from painful situations, it did 
not specify participants’ expected distress from the particular situation of this experiment. To check 
whether participants with high PCS scores were indeed anticipating the laser stimuli in this experiment 
to be more distressing that the low PCS group, following Brown et al. (Brown et al., 2008b), 
participants were asked to rate their expected distress using nine items from the profile of mood 
states (POMS) scale (sad, angry, discouraged, hopeless, hostile, irritable, tense, anxious and worried), 
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rated on a 5-point Likert scale from 0 (‘‘not at all”) to 4 (‘‘very much”). The sum of these items was 
taken as a measure of anticipated emotional distress (Brown et al., 2008b). 

Laser stimulation and psychophysics 
All participants received “high” (moderately painful), “medium” (pain threshold) and “low” (non-
painful) intensity laser stimuli during the experiment. Laser stimuli were used due to their high 
selectivity to A-delta and C nociceptive fibers (Meyer et al., 1976), and were administered using a 
thulium laser with a beam diameter of 6 mm and pulse duration of 100 milliseconds to the dorsal 
surface of the right forearm. The pulses were systematically moved around the skin surface to avoid 
skin sensitisation, damage, and habituation. Participants wore protective safety goggles throughout 
the study. 

We sought to provoke roughly equivalent levels of painful and non-painful stimuli across individuals. 
Hence, laser intensities were individually calibrated using a psychophysics test prior to the experiment 
proper. In this test, participants rated the intensity of each stimulus on a 0 to 10 numerical pain rating 
scale (NRS) in which level 4/10 was defined as pain threshold. Three additional points on the scale 
were defined as anchors to enable consistency across participants: level 3/10 (low-intensity stimulus) 
was described to the volunteer as hot, but not painful; level 5/10 (medium-intensity stimulus) was 
described as a low and ignorable painful sensation; level 7/10 (high-intensity stimulus) was described 
as moderately painful and not easy to ignore. To find these levels for each participant, the intensity of 
the stimuli was gradually increased starting from an imperceptible level and progressing to the 
moderately painful level (7/10), as decided by the participant. This was repeated three times. At the 
end of the test, the three levels were selected based on averaged scores from the three runs. 

Training procedure  
Participants were trained to calibrate their expectations of pain intensity in relation to two types of 
visual cues that would be presented prior to laser stimulation during the experiment. A brief training 
procedure (figure 1A) involved presentations of upward or downward arrows that predicted (after 
2.5s) the occurrence of high and low intensity laser stimuli respectively. There were 10 trials in total 
consisting of five trials of each cue/laser pairing (randomised order). Participants were not made 
aware that they would also be presented with medium intensity laser stimuli during the subsequent 
experiment.  

Main experiment 
Participants were informed that, on each trial of the main experiment, the trial would start with an 
initial cue (a downward or upward arrow) that would inform them about the subsequent stimulus 
intensity. In addition, they were informed that, unlike during training, the arrows might change before 
the laser stimulus was delivered and that, in this case, it was only the arrow directly preceding each 
laser stimulus that was accurate in predicting its intensity.  

There were four experimental conditions (figure 1b), which varied according to the expectations 
created by different cue stimuli and the consistency between those cues and the laser stimulus that 
followed. Regarding expectancy cue conditions, all experimental trials presented a low intensity cue 
(downward arrow) followed by a laser stimulus that the participant was asked to rate. In conditions 1 
and 2 (“low” expectancy conditions), only a “low” cue was presented, followed by the laser stimulus 
2.5s later. In conditions 3 and 4 (“prior high” expectancy conditions), the “low” cue was preceded by 
a “high” cue, which was delivered 2.5s earlier; the laser stimulus also occurred 2.5s after the “low” 
cues on these trials. Each cue was presented for 2s. This design enabled us to compare EEG responses 
to the “high” cues (conditions 3 and 4) vs. the “low” cues (conditions 1 and 2) to identify the effect of 
aversive valuation of the cues (figure 1c).  

Regarding the orthogonal second within-participant factor in the design, namely laser stimulus 
intensity, in conditions 1 and 3 the intensity of the laser stimulus was consistent with the “low” cue 
on most (two thirds) of the trials; in the remaining third of trials (conditions 2 and 4) a medium 
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intensity laser stimulus was delivered. This enabled the second major comparison which was with 
regarding to post-stimulus processing between medium intensity stimuli (conditions 2 and 4) vs. low 
intensity stimuli (conditions 1 and 3) to identify the effects of laser intensity (N.B. the numbers of trials 
each intensity were matched for analysis purposes - see analysis section). The third comparison, also 
on post-stimulus processing, involved only medium intensity stimuli from condition 4 vs. condition 2 
to identify the prior pain expectancy effect. 

A fifth trial type was also used (but for the analysis, not regarded as an experimental condition of 
interest), in which only “high” cues were delivered followed by a high intensity laser stimulus 2.5s later. 
These trials were designed to ensure that the “high” cue was perceived as a meaningful predictor of 
a high intensity stimulus in conditions 3 and 4.  These trials were not included in the EEG analyses. The 
five trial types were delivered in random order, across two blocks of 140 trials each, with each block 
containing the same proportion of stimuli from each condition. The two blocks differed according to 
the instructions given, with participants being asked to focus on the painfulness of the stimuli in block 
1 and to identify the location of the stimulus in block 2. However, to test the hypotheses in the current 
analysis, this block difference was not of interest; to account for any variance in the results as a results 
of task or time effects over blocks, block was included as a (nuisance) factor in the statistical models. 

Behavioural measures 
The primary behavioural outcome was the volunteers’ self-reported pain ratings (especially, for 
medium intensity stimuli) and their modulation by cues. To record this, on every trial, after the laser 
stimulus participants were prompted to rate the pain intensity on a 0 – 10 numerical rating scale (NRS) 
via appearance of the scale on the computer screen three seconds after the laser pulse. Volunteers 
reported their pain using a button pad. 

Post-experiment manipulation check  
After completion of the experiment we checked that participants were engaging with the visual cues. 
Three questions were asked: (i) During the task, how much did you focus on the direction of the arrows? 
(ii) How accurately did the arrow cues predict the intensity of the pain that followed? (iii) When rating 
the intensity of the pain, how much was your rating based on the direction of the preceding arrow 
cue? In each case, participants were asked to select an answer ranging from “not at all” to “all the 
time”. Participants who reported ignoring the cues completely or most of the time were excluded 
from the analysis.  

EEG acquisition parameters 
Electroencephalography (EEG) was acquired during the main experiment from 59 Ag/AgCl surface 
electrodes attached to an elastic cap placed in accordance with the extended international 10-20 
system (BrainVision ActiCap combined with a Neuroscan head box and amplifier system). Band-pass 
filters were set at DC to 100Hz with a sampling rate of 500Hz. Electrodes were referenced to the 
ipsilateral (right) earlobe and later (during analysis) re-referenced to the common average. In addition 
to the 59 scalp channels, the horizontal and vertical electro-oculograms (EOG) were measured for 
detection of eye-movement and blink artefacts. 

Data analysis 

EEG data pre-processing  
EEG data pre-processing was performed using EEGLAB version 13.1.1 (Delorme and Makeig, 2004). 
Continuous data were initially low pass filtered at 45Hz to exclude electrical noise. Data were then 
segmented into epochs including from -5500ms preceding the laser stimulus (including from -500ms 
pre-cue) to 2000ms post-stimulus. Data containing excessive eye movement or muscular artefact 
were rejected by a quasi-automated procedure: noisy channels and epochs were identified by 
calculating their normalised variance and then manually rejected or retained by visual confirmation. 
Independent component analysis (ICA) based on the Infomax ICA algorithm (Bell and Sejnowski, 1995) 
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was run on the clean data excluding bad channels using the ‘runica’ function in EEGLAB. ICA 
components were visually inspected and bad components rejected. Bad channels previously identified 
by visual inspection were then replaced by spherical spline interpolation of neighbouring electrodes.  
Data were then re-referenced to the average of 59 channels (excluding reference and ocular channels). 
ERPs were calculated for each subject and condition by averaging epochs. 

EEG statistical analysis: overview 
Our analyses focussed on identifying within-subject effects and then characterising the groups in 
terms of these effects. The three within-subjects effects of interest were (1) the aversive cue valuation 
effect (High cue (conditions 1 and 2) > Low cue (conditions 3 and 4)), (2) the main effect of laser 
stimulus intensity (Medium (condition 2) > Low (condition 4)), and (3) the prior expectancy effect on 
post-laser stimulus nociceptive processing of medium intensity stimuli only (Prior High expectation 
(condition 4) > Low expectation (condition 2)). For each effect, and then in further comparing effects 
between groups, three EEG statistical analysis approaches were used: (1) mass univariate analysis 
(MUA) of the sensor data, (2) MUA of source data, and (3) multivariate pattern analysis (MVPA) of 
sensor data.  

The univariate and multivariate analyses had different but complementary goals. MUA is sensitive to 
mean differences in neural activity within localised regions; hence it can be used to test for 
interactions in amplitude of evoked responses, in specific spatiotemporal regions, between groups 
and conditions from mixed designs. Hence we used MUA to analyse the localisation (in sensor and 
source space) of amplitude differences for the effects of interest. In contrast, MVPA ignores average 
univariate effects to focus on neural patterns. One advantage of applying MVPA to EEG (as opposed 
to fMRI) data is the ability to utilise high-resolution temporal information. MVPA is sensitive to 
distributed coding of neural information (Jimura and Poldrack, 2012) across space and time, providing 
spatiotemporal patterns that classify groups and conditions. We depart from commonly used methods 
that consider time points as independent (e.g. applying searchlight analysis over time (King and 
Dehaene, 2014)) by assuming that the brain performs both spatial and temporal coding in an 
integrated fashion. This spatiotemporal approach to MVPA has been successfully applied recently to 
the classification of patients with schizophrenia (Taylor et al., 2017) and provides algorithmic and 
statistical efficiency. Furthermore, group-level MVPA was preferred here over subject-level MVPA for 
within-subjects contrasts, as it has been recently shown to provide more consistent and interpretable 
results across subjects (Gilron et al., 2017). 

EEG sensor data: Mass univariate analysis (MUA) 
Sensor analyses were conducted by converting sensor-by-time EEG data to three-dimensional images 
using the Statistical Parametric Mapping software (SPM12, www.fil.ion.ucl.ac.uk/spm) (Litvak and 
Friston, 2008), and subjecting these to mass univariate analysis (in SPM12) with correction for multiple 
comparisons using random field theory. This is the standard approach to EEG analysis implemented in 
SPM12 (Litvak et al., 2011) and is described further in Supplementary Methods.  

General Linear Models (GLMs) were estimated at the group level consisting of the between-subject 
factors Subject and Group (High PC, Low PC), the within-subject effect of interest (either aversive 
valuation effect, pain intensity effect or prior expectancy effect in different models) and a further 
within-subject factor of Block. The Block variable was a nuisance variable included to account for data 
variability related to the different tasks in blocks 1 and 2. More specifically, the GLM model of the cue 
valuation effect (High cue > Low cue) included EEG data from the time window of 0ms to 1500ms after 
High cues (conditions 3 and 4) and contrasted to the same time window after Low cues (conditions 1 
and 2; see figure 1). The pain intensity and prior expectancy effects on nociceptive processing were 
both modelled using the time window of 0ms to 1500ms post-laser stimulus. In both cases, EEG sensor 
images were first baseline corrected to the 500ms preceding the window-of-interest. For each GLM, 
three F-contrasts were relevant: (1) the main within-subjects effect of interest (aversive valuation, 
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pain intensity or prior expectancy effect), (2) the main effect of Group (between-subjects factor of 
interest), (2) the interaction of these between and within-subjects factors.  

For any statistical models in which there was an imbalance in the number of trials between conditions 
in the design (for example, in contrast 2 between medium and low intensity laser stimuli), trials were 
randomly sampled from the condition with the larger number of trials to match the number in the 
conditions with the smaller number. This balancing was also critically important for subsequent MVPA 
analyses to ensure validity of the results. 

EEG source analysis 
Further analysis aimed to identify sources of the ERPs during those time windows that showed 
statistically significant effects in the sensor analysis. Canonical sensor locations were coregistered with 
the canonical head model in SPM12. Lead field computation used a boundary element model (Litvak 
et al., 2011). The Bayesian source reconstruction method in SPM12 was used with Multiple Spare 
Priors (Friston et al., 2008) to estimate sources across the temporal window-of-interest (the same 
windows as described above for sensor analysis). Subsequently, source activity was averaged in a 
series of smaller time clusters corresponding to the statistically significant effects from the sensor 
analyses. Using F contrasts, significant differences were identified in source space and reported 
significant at a cluster-level significance of p (FWE) < 0.05 when considering statistical maps 
thresholded at p < 0.001. 

EEG sensor data: multivariate pattern analysis (MVPA) 
MVPA involved learning classifiers on sensor images at the 2nd (group) level using the Pattern 
Recognition for Neuroimaging Toolbox (PRoNTo) (Schrouff et al., 2013b). Classifiers are trained to 
identify patterns differentiating between the two levels of each within-subject factor of interest (cue 
type and prior expectation) and between groups at each time window of interest. The feature spaces 
used were the same three-dimensional spatiotemporal sensor images as used for MUA; when 
combined over subjects and conditions, these formed the feature vector for the Group or Condition 
targets that were fed into the classifier.  

Regarding the classification algorithm and normalisation procedures, we used recommendations from 
a recent study of ERP biomarkers in Schizophrenia (Taylor et al., 2017). We used a Gaussian process 
classifier (GPC) (Rasmussen and Williams, 2004). GPC uses Bayesian modelling to estimate the 
likelihood that a test sample belongs to a particular class, by using the covariance structure of the data 
to make predictions and assign a class label. Performance of the classifier is assessed against the true 
target assignments. To avoid the problem of over-fitting and to improve generalisation of the results, 
parameter estimation is regularised and the performance of models were tested using a leave-one-
subject-out-per-group cross-validation scheme, in which the classifiers were trained on data from all 
subjects bar one from each group, and tested on the excluded subjects. Across a number of ‘folds’, 
subjects were iteratively assigned for testing the model until all had been used once. During cross-
validation, mean-centering was applied. Statistical significance of classification accuracy was assessed 
using permutation tests, involving retraining each model 10,000 times with randomised target labels. 

MVPA weight matrix analyses 
Analysis was conducted on the spatiotemporal weight matrices outputted from MVPA. Firstly, we 
identified temporal windows that contributed the most to the classification for each model, providing 
a supplement to univariate analysis of the temporal localisation of each effect. Because it is not 
meaningful to threshold the obtained weight map,  we used a posteriori weight summarization 
(Schrouff et al., 2013a) in which local averages of the weights are obtained. In our case, local averages 
were calculated over the two spatial dimensions of the image (i.e. the scalp map) within consecutive 
non-overlapping 10ms time windows. Furthermore, because larger raw weights do not directly imply 
more class-specific information than lower weights, we used a solution introduced by Haufe et al. 
(Haufe et al., 2014) (previously applied to MEG decoding by Wardle et al. (Wardle et al., 2016)) which 
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involves transforming the classifier weights back into activation patterns, providing an interpretable 
time-course. This involves multiplication of the weight matrices with the covariance in the EEG data 
used to derive those weights. 

We also sought to identify the existence of shared representations contributing to both group and 
condition classifications. We quantified the degree of representational similarity (Kriegeskorte, 2008) 
by regressing vectorised spatiotemporal raw weight matrices from the classification of groups (pain 
catastrophizing effect) on those classifying the cue types (aversive valuation effect). P-values were 
calculated from bootstrap tests in which regressions were run for 1000 permuted classifications and 
their resulting weight matrices (this was kept to 1000 due to the computational load of outputting 
weight matrices using PRoNTo). 

SUPPLEMENTARY RESULTS 

Participant numbers 
163 participants (53 high PC, 65 low PC and 45 in-between) completed the PCS screening procedure 
and the high and low PC individuals were invited to participate in the EEG experiment. Of these, 36 
high PC and 30 low PC attended the study visit, while the remainder did not accept the invitation. 
Upon repeat assessment using the PCS during the study visit, 13 high PC and 6 low PC no longer fell in 
the upper/lower quartile on the PCS respectively and were excluded. Three further volunteers from 
the high PC group withdrew from the study due to discomfort from the laser stimulation or application 
of the EEG cap, while two participants were excluded from the low PC group because they did not find 
the stimulus painful. A further 3 participants’ data from each group was not included in the final 
analyses due to excessive artefact in the EEG data that could not be removed. One participant in each 
group was excluded from analysis due to failing the manipulation check, having reported not attending 
to the visual cues. 

Sensor and source analysis of laser intensity coding 
Initial validation of the univariate sensor and source analysis was conducted on the time range of the 
LEP by investigating the main effect of laser stimulus intensity (see figure 1C for conditions included). 
The temporal and spatial effects of intensity were consistent with the findings of previous research. 
Intensity increased LEP amplitudes at latencies consistent with the commonly observed N2 and P2 
peaks (figure 5A) at 308ms to 310ms and 382ms to 726ms respectively (supplementary table 4). 
Source results from the intensity contrast at each of these mid and late latencies were very similar 
(figure 5B and supplementary table 5), showing intensity modulation of widespread cortical regions. 
Importantly, these included commonly activated regions of the “pain matrix”, namely the insula, 
fronto-parietal operculum, primary somatosensory cortex, mid-cingulate cortex, plus a broader range 
of multimodal regions in frontal, parietal and temporal lobes. Classification of the two intensity 
conditions was conducted using MVPA, providing a strong classification accuracy at 80.88% (p = 
0.0001). The latencies of the raw weights and transformed weights most contributing to the 
classification are consistent with the latencies of the N2, P2 and P3 components of the LEP, with a 
greater weighting towards the N2 latency range (maximal raw weight: 285ms; maximal transformed 
weight projection: 305ms). 

SUPPLEMENTARY METHODS 

Latency windows used for EEG analysis 
For both univariate and multivariate analyses of EEG data, analysis of cue processing was restricted to 
the first 1500ms following the first cue rather than utilising the whole window up until the laser 
stimulus. This served two purposes: (1) for MVPA, reducing the feature space as far as possible to 
minimise over-fitting, (2) removing ERP signals at around the time of 2000ms after each cue, at which 
time the offset of the visual cues occurred, which generated small additional visual-evoked responses 
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that were not of interest in the analysis. The first 1500ms post-cue is likely sufficient to include both 
conventional visual evoked responses to the cues and subsequent anticipatory responses prior to the 
laser stimuli, which can be assumed to change as a matter of degree rather than kind from that point 
on. This is suggested by our previous work showing mid-range anticipatory responses having the same 
character as that of late-range (immediately pre-laser) responses (Brown et al., 2008a). 

EEG Sensor Analysis in SPM 
This analysis deals with the multiple comparisons problem (in this case, statistical inference over many 
peri-stimulus time points and many electrodes) in a way that does not require narrowing down the 
search space by making assumptions as to the precise timing or topographic location of physiologically 
important events. More precisely, random field theory (RFT) is used to make inferences over space 
and time while adjusting p-values in a way that takes into account the non-independence of 
neighbouring sensors and time-points (Litvak et al., 2011). Applying to smooth data, the RFT 
adjustment is more sensitive than a Bonferroni correction. Hence, after data conversion from EEGLAB 
to SPM format, for each participant, experiment and digit, SPM EEG sensor data were transformed to 
3-D Scalp [x, y] × Time [z] images and smoothed in the spatial dimension to 12mm full-width half-
maximum (FWHM).   
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SUPPLEMENTARY TABLE 1: PARTICIPANT DATA 
SUBJECT ID GROUP GENDER AGE PAIN CATASTROPHISING SCALE SCORES EXPECTED 

DISTRESS 
/20 

PAIN THRESHOLD MANIPULATION CHECKS /5 

    
Total Rumination Magnification Helplessness  % max laser output Cue: Prediction Cue: Attention Cue: Influence 

1 High PC F 54 39 11 10 20 9 42 3 3 2 

2 High PC F 22 34 12 7 11 5 24 4 4 4 

3 High PC F 51 42 16 8 18 3 32 3 4 4 

4 High PC M 28 34 13 10 18 7 22 4 4 4 

5 High PC M 22 35 14 10 13 11 40 4 5 5 

6 High PC F 28 30 12 7 18 19 30 4 5 1 

7 High PC F 20 33 15 5 16 15 30 3 5 1 

8 High PC F 21 33 11 6 11 9 38 5 6 3 

9 High PC M 21 32 14 5 13 7 34 4 5 2 

10 High PC M 24 32 10 9 16 12 32 3 5 2 

11 High PC F 22 36 16 4 16 6 28 2 5 2 

12 High PC M 23 37 15 10 17 4 26 MD MD MD 

13 High PC F 33 32 9 10 17 14 28 4 4 2 

14 High PC M 19 31 13 5 11 10 14 4 4 2 

15 High PC M 19 26 10 4 14 12 22 4 5 2 

16 High PC M 19 31 8 10 12 12 32 4 3 3 

MEAN 
(GROUP) 

  
26.63 33.56 12.44 7.50 15.06 9.69 29.63 3.67 4.47 2.60 

SD (GROUP) 
  

10.81 3.76 2.48 2.39 2.93 4.32 7.20 0.72 0.83 1.18 
             

17 Low PC F 18 4 3 0 2 7 32 3 4 3 

18 Low PC F 23 6 2 0 2 2 32 3 4 3 

19 Low PC F 20 2 1 2 0 3 32 3 4 2 

20 Low PC M 22 4 2 2 2 0 32 1 4 2 
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21 Low PC M 21 2 1 0 1 3 44 4 4 2 

22 Low PC M 22 3 3 0 0 0 32 3 5 3 

23 Low PC M 22 5 2 0 2 7 30 4 3 2 

24 Low PC M 23 9 2 0 0 2 34 4 5 1 

25 Low PC F 21 1 1 1 0 2 26 4 5 2 

26 Low PC F 20 10 4 2 3 14 34 4 5 3 

27 Low PC F 24 0 4 0 2 2 28 3 4 3 

28 Low PC F 21 6 1 0 1 0 42 4 5 2 

29 Low PC M 20 9 4 2 1 15 38 2 5 2 

30 Low PC M 26 0 0 0 0 0 26 4 5 5 

31 Low PC F 40 3 4 2 1 6 44 4 5 2 

32 Low PC M 20 5 2 0 2 3 34 4 5 2 

33 Low PC M 20 6 4 1 1 4 32 4 5 2 

34 Low PC F 23 8 3 2 4 9 42 4 3 1 

MEAN 
(GROUP) 

  
22.56 4.61 2.39 0.78 1.33 4.39 34.11 3.44 4.44 2.33 

SD (GROUP) 
  

4.73 3.07 1.29 0.94 1.14 4.53 5.68 0.86 0.70 0.91 

SD (POOLED) 
  

8.30 15.05 5.44 3.83 7.28 5.12 6.73 0.79 0.75 1.03 
             

INDEPENDENT SAMPLES T TEST (HIGH PC > LOW PC) 
        

T STATISTIC 
  

1.45 24.71 15.09 11.01 18.40 3.48 -2.03 0.80 0.08 0.73 

P VALUE 
  

0.157 0.000 0.000 0.000 0.000 0.001 0.051 0.432 0.934 0.469 

EFFECT SIZE (COHEN'S D) 
 

0.49 1.92 1.85 1.76 1.89 1.03 0.67 0.28 0.03 0.26 

 

LEGEND (FOR SUPPLEMENTARY TABLES 1 AND 2) 

PC Pain catastrophising 

SD Standard deviation 

M/F Male/Female 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 12, 2018. ; https://doi.org/10.1101/279992doi: bioRxiv preprint 

https://doi.org/10.1101/279992
http://creativecommons.org/licenses/by-nd/4.0/


 

23 
 

CUE: PREDICTION How accurately did the arrow cues predict the intensity of the pain that 
followed? 

CUE: ATTENTION ) During the task, how much did you focus on the direction of the arrows? 

CUE: INFLUENCE When rating the intensity of the pain, how much was your rating based on the 
direction of the preceding arrow cue? 
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SUPPLEMENTARY TABLE 2: PAIN RATINGS 
SUBJECT ID GROUP NUMERICAL RATINGS OF PAIN /10 
  

Block 1 Block 2 
 

  
Low laser intensity Medium laser intensity Low laser intensity Medium laser intensity High laser intensity 

  
Low cue Prior high cue Low cue Prior high cue Low cue Prior high cue Low cue Prior high cue High cue 

1 High PC 1.70 1.78 2.95 3.75 1.89 2.15 3.50 3.10 5.63 

2 High PC 2.32 2.59 4.10 4.65 2.38 2.62 3.55 4.15 5.66 

3 High PC 2.05 2.03 3.85 3.85 3.16 3.26 3.90 3.90 5.78 

4 High PC 2.39 2.76 4.25 4.45 2.65 2.87 4.30 4.20 5.22 

5 High PC 1.86 1.41 3.80 4.45 2.16 2.23 3.40 3.35 6.24 

6 High PC 0.95 0.95 1.60 1.65 1.11 1.15 1.80 1.90 4.37 

7 High PC 2.32 2.65 4.65 5.50 2.22 2.51 4.20 4.50 6.56 

8 High PC 2.30 2.38 3.10 3.15 2.30 2.44 3.30 3.65 5.54 

9 High PC 2.95 3.03 4.35 5.00 3.30 3.33 4.20 4.55 6.46 

10 High PC 3.30 2.92 2.75 3.25 3.76 3.72 2.70 2.90 3.68 

11 High PC 2.20 2.73 4.65 4.45 2.62 2.87 3.95 3.65 5.93 

12 High PC 2.80 3.22 4.50 4.40 2.92 2.87 4.75 4.60 6.49 

13 High PC 2.34 2.45 3.81 4.06 2.40 2.52 3.61 3.76 5.65 

14 High PC 2.23 2.11 3.25 3.65 1.78 2.00 4.70 4.20 5.46 

15 High PC 2.77 3.54 4.75 4.75 0.41 0.62 2.15 3.05 5.56 

16 High PC 3.02 2.59 4.85 5.00 3.00 3.00 4.45 4.45 6.17 

MEAN (GROUP) 
 

2.34 2.45 3.83 4.13 2.38 2.51 3.65 3.74 5.65 

SD (GROUP) 
 

0.57 0.67 0.89 0.92 0.83 0.78 0.85 0.74 0.76 
           

17 Low PC 1.98 1.84 4.05 4.60 2.74 2.87 4.25 3.94 6.16 

18 Low PC 1.71 1.65 4.11 4.72 1.43 1.44 4.55 4.50 5.95 

19 Low PC 2.98 2.92 5.20 5.65 3.00 2.90 4.25 4.85 5.66 

20 Low PC 3.02 3.32 5.15 5.35 2.65 2.69 4.65 4.55 6.17 
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21 Low PC 1.93 2.49 3.20 3.60 2.30 2.49 2.75 3.35 5.05 

22 Low PC 1.82 2.16 4.25 3.85 2.14 2.33 3.50 4.05 5.59 

23 Low PC 2.23 1.73 3.70 3.55 2.43 2.38 3.35 3.65 5.93 

24 Low PC 1.89 2.24 3.55 3.60 2.38 2.26 2.90 3.00 5.76 

25 Low PC 3.39 3.49 4.65 4.70 3.35 3.56 4.45 4.35 6.20 

26 Low PC 3.59 3.97 4.25 4.25 3.00 2.97 3.10 3.20 5.41 

27 Low PC 2.91 3.11 4.65 3.95 2.27 2.46 3.35 4.05 6.22 

28 Low PC 2.36 2.19 2.70 3.75 2.95 3.21 3.10 3.80 5.44 

29 Low PC 1.15 1.05 1.90 2.15 1.05 1.38 2.15 2.10 3.33 

30 Low PC 2.02 2.19 3.70 3.65 1.62 2.03 3.35 3.15 6.44 

31 Low PC 2.14 2.43 2.85 3.65 3.16 2.85 3.40 3.10 5.34 

32 Low PC 1.98 1.97 3.45 3.90 2.22 2.28 3.55 3.80 6.63 

33 Low PC 3.32 3.38 3.95 4.20 2.43 3.21 4.80 4.95 5.49 

34 Low PC 1.77 2.11 2.90 3.00 2.32 2.21 2.90 3.45 4.98 

MEAN (GROUP) 
 

2.34 2.46 3.79 4.01 2.41 2.53 3.58 3.77 5.65 

SD (GROUP) 
 

0.69 0.76 0.87 0.82 0.60 0.58 0.75 0.73 0.74 

SD (POOLED) 
 

0.62 0.71 0.87 0.86 0.71 0.67 0.79 0.72 0.74 
           

INDEPENDENT SAMPLES T TEST (HIGH PC > LOW PC) 
      

T STATISTIC 
 

0.00 -0.05 0.12 0.40 -0.14 -0.08 0.29 -0.10 -0.01 

P VALUE 
 

0.999 0.963 0.906 0.692 0.889 0.936 0.776 0.923 0.991 

EFFECT SIZE (COHEN'S D) 0.00 0.02 0.04 0.14 0.05 0.03 0.10 0.03 0.00 
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SUPPLEMENTARY TABLE 3: MIXED ANOVA FOR PAIN RATINGS 
SOURCE F P PARTIAL ETA SQUARED 

BLOCK 1.10 0.302 0.03 

BLOCK * GROUP 0.04 0.846 0.00 

INTENSITY 161.70 0.000 0.83 

INTENSITY * GROUP 0.10 0.754 0.00 

CUE 37.67 0.000 0.54 

CUE * GROUP 0.01 0.938 0.00 

BLOCK * INTENSITY 8.69 0.006 0.21 

BLOCK * INTENSITY * GROUP 0.02 0.890 0.00 

BLOCK * CUE 1.07 0.308 0.03 

BLOCK * CUE * GROUP 0.66 0.422 0.02 

INTENSITY * CUE 2.40 0.131 0.07 

INTENSITY * CUE * GROUP 0.01 0.910 0.00 

BLOCK * INTENSITY * CUE 1.13 0.296 0.03 

BLOCK * INTENSITY * CUE * GROUP 0.74 0.396 0.02 

GROUP 0.01 0.930 0.00 
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SUPPLEMENTARY TABLE 4: EEG SENSOR STATISTICS 
 

CONTRAST CLUSTER CODE TEMPORAL EXTENT (MS) P(FWE-CORR) CLUSTER SIZE (VOXELS) SPATIAL COORDINATES (MM) 
  

Min Max 
  

x y 

VISUAL CUE PROCESSING 
      

CUE ss1 116 152 0.003 3303 9 56 

CUE ss2 150 150 0.000 4629 -17 -62 

CUE ss3 362 1312 0.000 127902 4 -62 

CUE ss4 384 1112 0.000 94700 -68 18 

GROUP ss5 256 604 0.000 28786 -21 -41 

GROUP ss6 242 502 0.000 8616 -68 18 

GROUP*CUE ss7 1334 1440 0.001 3936 30 -36 

NOCICEPTIVE PROCESSING 
      

INTENSITY ss8 308 310 0.000 8572 -17 2 

INTENSITY ss9 388 726 0.000 55016 -4 -25 

INTENSITY ss10 382 670 0.000 16672 -68 -41 

EXPECTATION ss11 416 478 0.002 2802 21 -3 
        

FWE: Family-wise error rate 
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SUPPLEMENTARY TABLE 5: EEG SOURCE STATISTICS 
CONTRAST SOURCE 

CLUSTER 
CODE 

CORRESPONDING 
SENSOR 
CLUSTER(S) 

TEMPORAL 
WINDOW 
(MS) 

P(FWE-
CORR) 

CLUSTER 
SIZE 
(VOXELS) 

SPATIAL MNI 
COORDINATES (MM) 

AAL REGIONS 

   
Min Max 

  
x y z 

 

VISUAL CUE PROCESSING 

CUE sc1 ss1/2 116 152 0.000 2190 36 -42 -20 Fusiform_L, Temporal_Mid_L, Temporal_Pole_Mid_L, Temporal_Inf_L 

CUE sc2 ss1/2 116 152 0.000 1426 -34 -2 -44 ParaHippocampal_R, Fusiform_R, Temporal_Mid_R, Temporal_Inf_R, 
Cerebelum_Crus1_R, Cerebelum_6_R 

CUE sc3 ss3/4 362 1312 0.000 5739 -18 -84 38 Precentral_R, Cuneus_R, Occipital_Sup_R, Occipital_Mid_R, Occipital_Inf_R, 
Fusiform_R, Postcentral_R, Parietal_Sup_R, Parietal_Inf_R, SupraMarginal_R, 
Angular_R, Precuneus_L, Precuneus_R, Paracentral_Lobule_R, Temporal_Sup_R, 
Temporal_Mid_R, Temporal_Inf_R 

CUE sc4 ss3/4 362 1312 0.008 381 30 -60 -8 Lingual_L, Fusiform_L, Cerebelum_Crus1_L, Cerebelum_6_L 

CUE sc5 ss3/4 362 1312 0.000 4209 -34 0 -16 Frontal_Mid_2_R, Frontal_Inf_Tri_R, Frontal_Inf_Orb_2_R, Olfactory_R, OFCant_R, 
OFCpost_R, OFClat_R, Insula_R, ParaHippocampal_R, Amygdala_R, Fusiform_R, 
Putamen_R, Temporal_Sup_R, Temporal_Pole_Sup_R, Temporal_Mid_R, 
Temporal_Pole_Mid_R, Temporal_Inf_R 

CUE sc6 ss3/4 362 1312 0.000 3659 2 -4 26 Frontal_Sup_2_L, Frontal_Mid_2_L, Supp_Motor_Area_L, Frontal_Sup_Medial_L, 
Cingulate_Ant_L, Cingulate_Ant_R, Cingulate_Mid_L, Cingulate_Mid_R, 
Cingulate_Post_L, Cingulate_Post_R, Precuneus_R, Thalamus_L, Thalamus_R 

CUE sc7 ss3/4 362 1312 0.000 5189 46 -70 22 Precentral_L, Occipital_Mid_L, Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, 
SupraMarginal_L, Angular_L, Precuneus_L, Paracentral_Lobule_L, Temporal_Sup_L, 
Temporal_Mid_L 

CUE sc8 ss3/4 362 1312 0.000 650 24 56 24 Frontal_Sup_2_L, Frontal_Mid_2_L, Frontal_Inf_Tri_L, Frontal_Sup_Medial_L 

CUE sc9 ss3/4 362 1312 0.006 404 -20 -62 -12 Lingual_R, Fusiform_R, Temporal_Inf_R, Cerebelum_6_R 

CUE sc10 ss3/4 362 1312 0.035 260 -18 50 28 Frontal_Sup_2_R, Frontal_Sup_Medial_R 

CUE sc11 ss3/4 362 1312 0.001 537 10 -78 28 Calcarine_L, Cuneus_L, Occipital_Sup_L, Occipital_Mid_L, Occipital_Inf_L, 
Precuneus_L 

CUE sc12 ss3/4 362 1312 0.000 1588 -8 16 44 Frontal_Sup_2_R, Supp_Motor_Area_R, Frontal_Sup_Medial_R, Cingulate_Mid_R 

GROUP sc13 ss5/6 242 604 0.000 1121 -6 -68 52 Cuneus_R, Occipital_Sup_R, Postcentral_R, Parietal_Sup_R, Precuneus_L, 
Precuneus_R, Paracentral_Lobule_R 

GROUP sc14 ss5/6 242 604 0.000 1175 10 -70 50 Occipital_Sup_L, Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, Precuneus_L 

GROUP sc15 ss5/6 242 604 0.002 512 -34 -56 42 Occipital_Mid_R, Parietal_Inf_R, Angular_R, Temporal_Mid_R 

GROUP sc16 ss5/6 242 604 0.018 311 34 -86 24 Occipital_Mid_L, Angular_L, Temporal_Mid_L 
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GROUP sc17 ss5/6 242 604 0.016 321 -30 -80 14 Calcarine_R, Cuneus_R, Occipital_Sup_R, Occipital_Mid_R 

GROUP sc18 ss5/6 242 604 0.000 921 4 -8 22 Cingulate_Ant_R, Cingulate_Mid_R, Cingulate_Post_L, Cingulate_Post_R, 
Precuneus_R, Thalamus_R 

GROUP * CUE sc19 ss7 1334 1440 0.000 1025 30 -50 66 Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, Precuneus_L 

GROUP * CUE sc20 ss7 1334 1440 0.000 767 -16 -54 50 Cuneus_R, Postcentral_R, Parietal_Sup_R, Precuneus_L, Precuneus_R, 
Paracentral_Lobule_R 

GROUP * CUE sc21 ss7 1334 1440 0.000 748 4 12 54 Frontal_Sup_2_L, Frontal_Mid_2_L, Supp_Motor_Area_L, Frontal_Sup_Medial_L, 
Cingulate_Mid_L 

GROUP * CUE sc22 ss7 1334 1440 0.006 470 -8 10 38 Frontal_Sup_2_R, Supp_Motor_Area_R, Frontal_Sup_Medial_R, Cingulate_Mid_R 

NOCICEPTIVE PROCESSING 

INTENSITY sc23 ss8 308 310 0.000 36733 -38 -60 20 Precentral_L, Precentral_R, Frontal_Sup_2_L, Frontal_Sup_2_R, Frontal_Mid_2_L, 
Frontal_Mid_2_R, Frontal_Inf_Oper_L, Frontal_Inf_Oper_R, Frontal_Inf_Tri_L, 
Frontal_Inf_Tri_R, Frontal_Inf_Orb_2_R, Rolandic_Oper_L, Supp_Motor_Area_L, 
Supp_Motor_Area_R, Olfactory_L, Olfactory_R, Frontal_Sup_Medial_L, 
Frontal_Sup_Medial_R, Frontal_Med_Orb_L, Frontal_Med_Orb_R, Rectus_L, 
Rectus_R, OFCmed_L, OFCmed_R, OFCant_L, OFCant_R, Insula_L, Cingulate_Ant_L, 
Cingulate_Ant_R, Cingulate_Mid_L, Cingulate_Mid_R, Calcarine_R, Cuneus_R, 
Lingual_R, Occipital_Sup_R, Occipital_Mid_L, Occipital_Mid_R, Occipital_Inf_L, 
Occipital_Inf_R, Fusiform_L, Fusiform_R, Postcentral_L, Postcentral_R, 
Parietal_Sup_L, Parietal_Sup_R, Parietal_Inf_L, Parietal_Inf_R, SupraMarginal_L, 
SupraMarginal_R, Angular_L, Angular_R, Precuneus_L, Precuneus_R, 
Paracentral_Lobule_L, Paracentral_Lobule_R, Caudate_L, Heschl_L, 
Temporal_Sup_L, Temporal_Sup_R, Temporal_Pole_Sup_L, Temporal_Mid_L, 
Temporal_Mid_R, Temporal_Pole_Mid_L, Temporal_Inf_L, Temporal_Inf_R, 
Cerebelum_Crus1_L, Cerebelum_Crus1_R, Cerebelum_6_L, Cerebelum_6_R 

INTENSITY sc24 ss8 308 310 0.000 6140 -32 -22 10 Frontal_Inf_Oper_R, Frontal_Inf_Tri_R, Frontal_Inf_Orb_2_R, Rolandic_Oper_R, 
Insula_R, ParaHippocampal_R, Amygdala_R, Occipital_Inf_R, Fusiform_R, 
Putamen_R, Heschl_R, Temporal_Sup_R, Temporal_Pole_Sup_R, Temporal_Mid_R, 
Temporal_Pole_Mid_R, Temporal_Inf_R, Cerebelum_Crus1_R, Cerebelum_6_R 

INTENSITY sc25 ss8 308 310 0.000 2050 14 -102 12 Calcarine_L, Cuneus_L, Lingual_L, Occipital_Sup_L, Occipital_Mid_L, Occipital_Inf_L, 
Fusiform_L, Cerebelum_6_L 

INTENSITY sc26 ss8 308 310 0.000 1710 0 -2 28 Cingulate_Ant_L, Cingulate_Ant_R, Cingulate_Mid_L, Cingulate_Mid_R, 
Cingulate_Post_L, Cingulate_Post_R, Precuneus_R, Thalamus_L, Thalamus_R 

INTENSITY sc27 ss9/10 382 726 0.000 5903 -48 -18 -22 Frontal_Inf_Oper_R, Frontal_Inf_Tri_R, Rolandic_Oper_R, Insula_R, 
ParaHippocampal_R, Occipital_Inf_R, Fusiform_R, Putamen_R, Heschl_R, 
Temporal_Sup_R, Temporal_Pole_Sup_R, Temporal_Mid_R, Temporal_Pole_Mid_R, 
Temporal_Inf_R, Cerebelum_Crus1_R, Cerebelum_6_R 

INTENSITY sc28 ss9/10 382 726 0.000 7228 38 -42 -22 Precentral_L, Frontal_Inf_Oper_L, Rolandic_Oper_L, Insula_L, Occipital_Inf_L, 
Fusiform_L, Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, SupraMarginal_L, 
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Angular_L, Heschl_L, Temporal_Sup_L, Temporal_Pole_Sup_L, Temporal_Mid_L, 
Temporal_Pole_Mid_L, Temporal_Inf_L, Cerebelum_Crus1_L, Cerebelum_6_L 

INTENSITY sc29 ss9/10 382 726 0.000 2617 -40 -56 42 Occipital_Sup_R, Occipital_Mid_R, Postcentral_R, Parietal_Sup_R, Parietal_Inf_R, 
SupraMarginal_R, Angular_R, Temporal_Mid_R 

INTENSITY sc30 ss9/10 382 726 0.002 833 50 -66 20 Occipital_Mid_L, Parietal_Inf_L, Angular_L, Temporal_Mid_L 

INTENSITY sc31 ss9/10 382 726 0.000 2351 24 48 18 Frontal_Sup_2_L, Frontal_Mid_2_L, Frontal_Inf_Tri_L, Frontal_Sup_Medial_L, 
Frontal_Med_Orb_L, OFCant_L, Cingulate_Ant_L 

INTENSITY sc32 ss9/10 382 726 0.000 3475 8 -16 58 Precentral_L, Frontal_Sup_2_L, Frontal_Mid_2_L, Supp_Motor_Area_L, 
Frontal_Sup_Medial_L, Cingulate_Mid_L, Postcentral_L, Parietal_Sup_L, 
Precuneus_L, Paracentral_Lobule_L 

INTENSITY sc33 ss9/10 382 726 0.000 3838 -22 -8 58 Precentral_R, Frontal_Sup_2_R, Supp_Motor_Area_R, Frontal_Sup_Medial_R, 
Cingulate_Mid_R, Postcentral_R, Parietal_Sup_R, Precuneus_R, 
Paracentral_Lobule_R 

INTENSITY sc34 ss9/10 382 726 0.000 1650 -22 42 20 Frontal_Sup_2_R, Frontal_Mid_2_R, Frontal_Inf_Tri_R, Frontal_Sup_Medial_R, 
Frontal_Med_Orb_R, OFCant_R, Cingulate_Ant_R 

INTENSITY sc35 ss9/10 382 726 0.000 1221 0 -4 30 Cingulate_Ant_L, Cingulate_Ant_R, Cingulate_Mid_R, Cingulate_Post_L, 
Cingulate_Post_R, Precuneus_R, Thalamus_R 

EXPECTATION sc36 ss11 416 478 0.001 910 36 -28 34 Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, Angular_L 

EXPECTATION sc37 ss11 416 478 0.000 1172 -34 -30 38 Postcentral_R, Parietal_Sup_R, Parietal_Inf_R, SupraMarginal_R, Angular_R 
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