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Figure 6: Dense trajectory motion descriptors of cotton (A) and silk (B) videos. The first step in computing dense trajectory is the

dense sampling of interest points. In the sub-panels of A1 and B1, the red dots show the sampled interest points and the green short

trails describe their trajectories (see supplementary materials for the video examples). In addition to Trajectory Shape, four more motion

descriptors are also constructed. HOF provides frame-by-frame motion information (A2 and B2), and HOG focuses on static appearance

information (A3 and B3). Both MBHx (A4 and B4 ) and MBHy (A5 and B5) are used to get rid of uniform motion. In all sub-panels

A2-4 and B2-4, gradient/flow orientation is indicated by hue and magnitude by saturation.

4.1.2 Datasets and models

We fitted our data using a support vector machine regression model that was optimized with dual stochastic gradient descent. With

this same method, we built three models in this experiment. Table 1 summarizes the training and testing datasets for these three models.

Eleven of thirteen videos of Scene 1 with cotton textures from Experiment 1a were used as training data for the Regression model.

The physical bending stiffness of these 11 videos were {0.005, 0.01, 1, 5, 10, 25, 40, 80, 180, 300, 450}. For each video, we chose

6 clips with random durations ranging from 1.25 seconds to 2.69 seconds. Thus, our training dataset contained 66 cotton video clips

of different durations. Because the wind forces were varied throughout the original video, each video clip included in the training

dataset also contained unique wind forces. We used the mean perceptual scale across observers as the ground-truth for the training data

(Figure 4C, blue line).

We included two testing datasets for the regression model. The first testing dataset (testing data1) contained the 11 silk videos

in Scene 1 from Experiment1. The second testing dataset (testing data2) contained silk and cotton videos with the other two bending

stiffness levels that the model had not seen. We applied the same clipping procedure as we did for the training data to create the testing

video clips, resulting in 66 video clips for testing data1 and 12 for testing data2. The details of our experiments are discussed in Section

4.1.3. In sum, the main differences between the training and testing data are the lengths of the videos, the wind forces, and the optical

appearance of the cloth. Due to this difference, the testing videos (silk, Figure 6A1) had very different trajectories from the training

ones (cotton, Figure 6B1).

The Scrambled model was built using the same method except that the training and testing data were from the scrambled videos.

This model provided a baseline measurement when the longish temporal correlation was removed. Lastly, we built a Random model

with randomly generated numbers (from 0 –1) to serve as the chance level baseline.
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Table 1: Datasets for different models in the main testing

Model name

Training data Testing data1 Testing data2

stiffness levels data type size stiffness data type size stiffness data type size

Regression model 0.005, 0.01, 1, 5, 10, original, 66 same as training original, 66 0.1, 110 original, 12

25, 40, 80, 180, 300, 450 cotton silk silk+cotton

Scrambled model 0.005, 0.01, 1, 5, 10, scrambled, 66 same as training scrambled, 66 0.1, 110 scrambled, 12

25, 40, 80, 180, 300, 450 cotton silk silk+cotton

Random model - random 66 - random 66 - random 12

points - points - points

Note: All training data come from Scene 1. All testing data come from Scene 2.

Table 2: Datasets for validation tests

Model name

Training data Testing data1 Testing data2

stiffness levels data type size stiffness data type size stiffness data type size

Combined 0.005, 0.01, 1, 5, 10, cotton 110 same as silk 66 same as silk 44

Regression model 25, 40, 80, 180, 300, 450 (Scene 1 + Scene 2) training (Scene 1) training (Scene 2)

Validation1 Combined 0.005, 0.01, 1, 5, 10, scrambled cotton 110 same as scrambled silk 66 same as scrambled silk 44

Scrambled model 25, 40, 80, 180, 300, 450 (Scene 1 + Scene 2) training (Scene 1) training (Scene 2)

Validation2 Regression model 0.005, 0.01, 1, 5, 10, cotton 66 same as silk 66 - - -

25, 40, 80, 180, 300, 450 (Scene 1 ) training (Scene 2)

2-frame 0.005, 0.01, 1, 5, 10, cotton 66 same as silk 66 - - -

Regression model 25, 40, 80, 180, 300, 450 (Scene 1 ) training (Scene 2)

4.1.3. Model Implementation

Figure 7 shows the pipeline of our framework of estimating perceptual scales of cloth from videos. First, we extracted the dense

trajectories from both the training and testing dataset. With the parameters set to default according to the source code in (Wang et al.,

2011). The following element is five descriptors concatenated one by one:

Trajectory: 2 × [trajectory length] (default 30 dimension); 2 is two spatial directions

HOG: 8 × [spatial cells] × [spatial cells] × [temporal cells] (default 96 dimension)

HOF: 9 × [spatial cells] × [spatial cells] × [temporal cells] (default108 dimension)

MBHx: 8 × [spatial cells] × [spatial cells] × [temporal cells] (default 96 dimension)

MBHy: 8 × [spatial cells] × [spatial cells] × [temporal cells] (default 96 dimension)

Then we randomly sub-sampled 5000 points from each motion descriptor for each movie clip. Next, we used PCA to reduce the

dimensions of the motion descriptors to half of their original dimensions (5000 × (15 + 48 + 54 + 48 + 48)). This number of the

dimensionality reduction was decided empirically in the original algorithm.

We used a generative Gaussian Mixture Model (GMM) to fit the distribution of features x∈ RD extracted from the video and

determined the GMM parameters like mixture weight ωk, mean vector µk, and the standard deviation vector σk, to best fit the features.
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Table 3: Results summary of all tests

Section name Model name

Testing data1 Testing data2

R-square predicting error (SD) significance R-square predicting error (SD) significance

Regression model 0.81 0.11(0.09) - 0.14(0.13)

Main test Scrambled model 0.15 0.29(0.14) p <0.001 - 0.43(0.28) p <0.005

Random model 0.12 0.39(0.25) 0.38(0.23)

Validation1 Combined Regression model 0.77 0.12(0.10) p <0.001 0.84 0.11(0.09) p <0.005

Combined Scrambled model 0.13 0.29(0.20) 0.51 0.23(0.11)

Validation2 Regression model 0.81 0.11(0.09) p <0.001 - - -

2-frame regression model 0.12 0.25(0.24) - -

Note: R-square is calculated from the model prediction and the ground truth.
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Figure 7: The pipeline of our framework for estimating perceptual scale of stiffness from videos. Upper panels show the training

process. The dense motion features are first extracted from the training videos. Then, for each training video, PCA is applied to reduce

the dimension of the features. Based on the features with reduced dimension, a Gaussian Mixture model is trained and the Fisher Vectors

are calculated accordingly. The regression model takes the concatenation of these Fisher Vectors as input. Lower panels show the testing

process. Lower panels show the testing process. For testing, we used the same coefficients for performing PCA and training GMM as

those in the training process. The rest of the steps in the testing process are the same as the training. The output of the model is the

predicted perceptual scale of the testing videos.

Then the Fisher Vectors (FV) were calculated from the fitted GMM models (Perronnin, Sánchez, & Mensink, 2010; Sánchez, Perronnin,

Mensink, & Verbeek, 2013). In this experiment, we used K=256 Gaussians to represent the trajectory features. The final dimensionality

of the FV is 2× D × K where D is the dimensionality of the descriptor (i.e., 15+48+54+48+48), and K is the number of GMM
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components (i.e., 256). Finally, we applied power and L2 normalization to the FVs, as in Wang et al. (2013). To combine different types

of descriptors, we concatenated their normalized FVs into a single long vector with the dimension of 54,528. This concatenated Fisher

Vector would be used as the input to our models. In the testing stage, we used the same coefficients for performing PCA and training

GMM as those in the training process. The computation of GMM and FV was done using VLFeat package in MATLAB (Vedaldi &

Fulkerson, 2008).

4.2 Results

In this section, we demonstrate the effectiveness of dense trajectory features in predicting the perceptual scale of bending stiffness

of cloth in videos. The results are summarized in Table 3 (Main test). In Figure 8A, we plotted the predicted scale of stiffness from

the regression model versus the ground-truth physical parameters and compared it with the perceptual scale obtained in Experiment 1a

(silk texture in Scene 1) by human observers. This figure shows that the predicted scale and the perceptual scale are highly correlated

(R2 = 0.81). Thus, the regression model is able to differentiate cloths with different bending stiffness in the videos as well as humans

can.

To provide a baseline for the evaluation of the predictive performance of the regression model, we trained a random model which

utilized features that were randomly valued between 0 and 1. In contrast to the regression model, the prediction of the random model

was poorly correlated with the perceptual scale (R2 = 0.12) (Figure 8B). We then did a paired t-test on the absolute predicting error

(|ŷ− y|) of the two models. Results revealed that mean predicting error of the regression model (M = 0.11, SD = 0.09) was significantly

lower than that of the random model (M=0.39, SD=0.25), t(65) = 7.93, p < .0001, demonstrating that the regression model trained with

multi-frame spatiotemporal information was able to predict perceptual scales of bending stiffness.

Table 4: Model predictions (mean ± SD) of two new bending stiffness (BS) levels

Mean perceptual scale Regression model Random model Scrambled model

BS = 0.1 0.03 0.27 ± 0.13 0.56 ± 0.19 0.27 ± 0.25

BS = 110 0.83 0.85 ± 0.05 0.66 ± 0.21 0.23 ± 0.24

To further test the hypothesis that correct multi-frame motion is necessary in estimating stiffness from videos, we evaluated the

performance of the scrambled model. Figure 8C shows that the prediction from the scrambled model are poorly correlated with the

ground-truth perceptual scale (R2 = 0.15).

To test whether the regression model is significantly better than the other two models, we did a one-way ANOVA on the absolute

predicting error (|ŷ − y|). Results (Figure 8D) revealed significant differences among the regression model (M=0.11, SD = 0.09), the

scrambled model (M=0.29, SD = 0.14), and the random model (M=0.39, SD=0.25), F(2, 195) = 41.58, p < .0001. A Bonferroni post-hoc

test revealed that predicting error of the regression model was significantly smaller than that of the scrambled model, which was also

smaller than that of the random model (ps < .01). Thus, the scrambled model still performs better than chance level. One possibility is

that cues such as appearance and shape were preserved in the scrambled videos, which could be indicative of the bending stiffness.

To test whether our model can be generalized to predict new stiffness values, we assessed the model predictions on two more

stiffness levels that had never been seen during the training process: a soft cloth (bending stiffness = 0.1) and a stiff cloth (bending

stiffness = 110) (i.e., testing data 2). As shown in Table 4, the ground-truth perceptual scale for these two stiffness levels are 0.03

and 0.83, respectively. A Mann-Whiteney U test was applied to determine the differences between the predictions of the two stiffness

levels. Results indicated that the regression model predicted the softer cloth to be significantly softer than the stiffer cloth (p < .005).

By contrast, both the random model and the scrambled model failed to yield different predictions for the softer and stiffer cloth (ps >
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Figure 8: Results of Experiment 2. A) Comparison of the predicted perceptual scale by the regression (cyan line) model to the perceptual

scale (black line) obtained from human observers. The model prediction fits well with the human scales. B) Comparison of the predicted

scale by the random model (pink line) to the perceptual scale (black line). C) Comparison of the predicted scale by the scrambled model

(orange line) to the perceptual scale (black line). D) Comparison of the predictive performance of the three models. It shows that the

regression model performs much better when compared to the other two models. Each dot in the A, B, C represents a single test video

clip.

.1). Overall, the results demonstrated that correct multi-frame motion information is critical in distinguishing bending stiffness from

videos.

4.3 Further validation

In this section, we aim to verify the findings from Experiment 2 that multi-frame motion is necessary in predicting perceived

stiffness in more than one dynamic scene. Here, we trained another regression model (a combined regression model) with training

data containing 110 cotton video clips from both Scene 1 (66 video clips) and Scene 2 (44 video clips). The training labels were the

corresponding average perceptual scale for each scene (i.e., Figure 4C and Figure 4F, blue line). Because Scene 1 and Scene 2 differ in

scene setups and wind forces, incorporating videos from both scenes will lead to different model input space and hence yield different

models. The testing data contained 66 silk videos from Scene 1 and 22 silk videos from Scene 2. Table 2 summarizes the training

and testing datasets for this validation. To evaluate the contribution of multi-frame motion information, we trained another scrambled
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model (a combined scrambled model) using the same approach except that the training and testing data came from the scrambled videos

instead of the original ones.

Results of this validation test is summarized in Table 3 (Validation1). Figure 9 plots the comparison of predictions from the

combined regression model and the combined scrambled model. Figure 9A and B plot the predictions from the combined regression

model for the two scenes together with the corresponding ground-truth perceptual scale (black line in Figure 9). Model predictions

corresponded well with the perceptual scales in both Scene 1 (R2 = 0.77) and Scene 2 (R2 = 0.84). Similarly, predictions by the

combined scrambled model are shown in Figure 9 C and D. In this case, model predictions did not correlate well with the perceptual

scales in both Scenes (Scene 1: R2 = 0.13; Scene 2 = R2 = 0.51). Moreover, in both scenes, the predicting error (|ŷ − y|) of the

combined regression model (Scene 1: M=0.12, SD=0.10; Scene 2: M=0.11, SD=0.09) was smaller than that of the combined scrambled

model (Scene 1: M=0.29, SD=0.20; Scene 2: M=0.23, SD=0.11). A paired t-test shows that the observed difference is significant (Scene

1: t(65) = 6.25, p < .0001; Scene 2: t(21) = 3.28, p < .0005).

These results were consistent with those of Experiment 2, verifying that multi-frame motion is important in estimating material

properties of cloth in more than one scene.

Scene2: Combined scrambled model
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Figure 9: Results from combined models that trained with videos from two scenes. The model trained with original videos (upper

panel) performs much better than that trained with scrambled videos (lower panel). A) Comparisons of the model predicted scale (cyan

line) with the human perceptual scale obtained in Experiment 1a (black line). The model is trained with cotton videos from Scene 1 and

Scene 2 and tested on silk videos in Scene 1. B) Comparisons of the model predicted scale (cyan line) with the human perceptual scale

obtained in Experiment 1b (black line). The model is trained with cotton videos from Scene 1 and Scene 2 and tested on silk videos

in Scene 2. C) Same as A, except that the model is trained and tested with scrambled videos. D) Same as B, except that the model is

trained and tested with scrambled videos. Each dot in the plots represents a single test video clip.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/238782doi: bioRxiv preprint 

https://doi.org/10.1101/238782


5. General Discussion

This paper aimed to investigate the effect of multi-frame motion information on estimating the stiffness of cloth. To achieve this

goal, we first investigated how perceptual impressions are linked to physical variables. Using MLDS, we derived perceptual scales

of cloth stiffness in two different dynamic wind scenes (free-corner and pinned-corner) and of two different textures (silk and cotton)

(Experiment 1a). We found that in both of the two dynamic scenes, the perceived bending stiffness of cloth was linearly correlated with

log-adjusted physical bending stiffness, and optical properties (e.g. textures and thickness) did not influence humans’ perceptual scale

of stiffness. This indicated that observers have a robust estimation of the bending stiffness of cloth under variation of external forces

and optical appearance. In Experiment 1b, we investigated the effect of correct motion sequences on the perceptual scale of bending

stiffness. Using the same scene, we randomly scrambled the frame sequences of the videos and discovered that the observers’ perceptual

scale was much less correlated with the physical values. Together, the results of Experiment 1a and 1b illustrate that multi-frame motion

information is important for viewers to assess cloth stiffness in dynamic scenes.

In Experiment 2, we provided further evidence for the effect of multi-frame motion information on estimating bending stiffness.

Specifically, we trained a machine-learning model with only features extracted from the multi-frame motion fields of the videos. The

model predictions were highly correlated with the human perceptual scales and the results could be generalized to new bending stiffness

values and new dynamic scenes. When multi-frame motion information was removed, such that the model was trained and tested with

scrambled videos, the model’s performance dropped dramatically. These findings were consistent with Experiment 1, suggesting that

multi-frame motion information is robust in estimating stiffness of cloth in dynamic scenes.

5.1 Multi-frame motion information is robust in recovering mechanical properties of deformable
objects

Motion information influences material perception in different ways. For example, specular motion facilitates 3D shape estimation

(Dövencioğlu, Ben-Shahar, Barla, & Doerschner, 2017), frame-by-frame optical flow is indicative of viscosity of liquids (Kawabe et

al., 2015), motion pattern arising from contour and optical deformation is important for judging elasticity of jelly-like objects (Kawabe

& Nishida, 2016), head motion affects perception of glossiness (Sakano & Ando, 2010), etc. In this paper, we reveal the effect of

multi-frame motion information on estimating cloth stiffness. Our study is the first to explicitly test the hypothesis that multi-frame

temporal correlation is important in perception of mechanical properties. We believe that the current study is an important extension of

the previous findings, as well as a new framework to test how motion information takes effect.

Although more experimental evidence is needed, motion appears to affect the estimation of both mechanical and optical properties.

Specifically, relative motions between observers and objects seem to be critical in judging optical properties, such as glossiness (Sakano

& Ando, 2010; Doerschner et al., 2011; Tani et al., 2013). The movements of the objects, either in the form of frame-by-frame

motion, or multi-frame motion trajectory, or how the shape outline changes overtime, are important in judging mechanical properties

(Kawabe et al., 2015; Kawabe & Nishida, 2016; Schmidt et al., 2017). As to the estimation of cloth properties, optical properties

seem to dominate categorical judgments (Aliaga et al., 2015), whereas motion information might be important in estimating mechanical

properties. Recently, in the field of computer vision, increasing attention has been paid to recognizing cloth properties from videos.

Bouman et al. (2013) developed an algorithm for predicting mechanical properties of a cloth from videos. They excluded the surface

information, such as textures and colors, from the input for the model training. However, it is unknown whether their algorithm can be

generalized to new dynamic scenes and whether multi-frame motion information is included. Most recently, Yang et al. (2017) utilized

the appearance changes of the moving cloth to categorize the fabrics. They combined the image signal feature extraction method,

characterized as the Convolutional Neural Network (CNN), with the temporal sequence learning method, characterized as the Long

Short Term Memory (LSTM), to learn the mapping from visual input to the material categorization. However, they did not explicitly
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test whether the model could be related to human perception. Though these studies provide additional evidence for the importance of

dynamic information in understanding material properties, they did not specifically test the role of multi-frame motion information in

predicting human perception of mechanical properties.

In this paper, we provided direct perceptual and computational evidence toward the important role of multi-frame motion in esti-

mating mechanical properties by comparing performances in original and scrambled videos. It might be argued that not only multi-frame

motion, but also 2-frame motion information, is removed in scrambled videos. To make our findings more convincing, we used the same

training method as in Experiment 2 to train another regression model on motion descriptors extracted from 2-frame dense motion trajec-

tories (i.e., a 2-frame regression model). The number of parameters in the 2-frame model and the 15-frame model are the same. This is

due to the fact that the dimension of the Fisher Vectors is determined by the number of Gaussian distributions in the Gaussian Mixture

model and we assigned the same number of Gaussian distributions (256) to capture the data in both the 2-frame and the 15-frame model.

Table 2 summarizes the datasets for this validation test and the results are shown in Table 3 (Validation2). Figure 10 shows that when

compared to the model that trained with motion information extracted from 15 consecutive frames (Figure 10A), the model that trained

with 2-frame motion information (Figure 10B) not only did much worse in predicting human perceptual scale (15-frame: R2 = 0.81;

2-frame: R2 = 0.12), but also yielded significantly larger predicting errors (15-frame: M=0.11, SD=0.09; 2-frame: M=0.25, SD=0.24),

t(65) = 4.52, p < .0001. This result shows that 2-frame motion information is not sufficient for predicting stiffness of cloth, thereby

demonstrating the important role of long-range motion information. However, trajectories longer than 15 frames does not guarantee

to improve the performance. Specifically, we find that the performance of the machine learning model increases as a function of the

number of sampled frames up to L=16 frames (i.e. 2, 4, 8, 16). But trajectories longer than 16 frames (e.g. 32) will decrease the

performance. This is consist with the findings in the original dense trajectory paper (Wang et al., 2011). As discussed by the authors,

this might because longer frames will lead to a higher chance to drift from the initial position during the tracking process or to cross

shot boundaries.

We have showed the limitation of motion features computed from two consecutive frames. To illustrate the importance of tracking

"multiple frames" from videos in the dense trajectory, we did another test where we simply increased the interval of sampling frames.

First, we sampled every three frames (0, 3rd, 6th, 9th, etc) for the 2-frame dense trajectory features and used these to train the model

(long-interval 2-frame dense trajectory model). Figure 11A compared the results of this model with the consecutive 2-frame dense

trajectory model that shown in Figure 10B. We found that the predictions from sampling every three frames for the 2-frame model

became worse (R2= 0.05 vs 0.12). Second, to address the question whether the dense sampling over an extended number of frames

was informative we sampled over a 15-frame period but only every three frames (0, 3rd, 6th, 9th, etc), i.e. effectively sampling over

a 43-frame period but less densely. We then compared the predictions of this model to those of the original 15-frame dense trajectory

model that shown in Figure 10A. Figure 11B showed that the predictions from sampling every three frames for 15-frame also became

worse than the 15 frames dense sampling (R2= 0.45 vs 0.81). This finding indicated that merely providing information on longer

spatiotemporal scales is insufficient but that the dense sampling of frames over longer periods improves the performance.

5.2 The importance of individual motion features

To understand the importance of each of the dense trajectory descriptors (i.e., Trajectory Shape, HOF, HOG, MBH), we trained

additional models with an individual descriptor and calculated the R2 of the predicted scale by each model with the human perceptual

scale. We find that Trajectory Shape (R2 = 0.50) and HOF (R2 = 0.57) are of equal importance, each accounting for more than 50 %

of the variance in the human perceptual scale. By contrast, both HOG (R2 = 0.35) and MBH (R2 = 0.35) are poor predictors of human

perceptual scales. This is also true when the model predicts new stiffness values that it did not see during the training. HOF yielded

the lowest predicting error (M=0.22, SD=0.16), which was slightly better than Trajectory Shape (M=0.25, SD=0.05). In contrast, the

predicting errors of both HOG (M=0.31, SD=0.05) and MBH (M=0.32, SD=0.24) were much higher. Together, these analyses reveal

that Trajectory Shape and HOF are considerably more important than HOG and MBH in estimating cloth stiffness.
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Figure 10: Comparison of performance of the model that trained with 15-frame motion information (A) against the one that trained

with 2-frame motion information (B). In both plots, the black line indicates the perceptual scale that obtained from human observers.

The model predicted scale is plotted by the cyan line for the 15-frame regression model (A) and purple line for the 2-frame regression

model (B). Each dot in the plots represents a single test video clip.
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Figure 11: Comparison between the long-interval DT model (orange line) and the consecutive DT model (cyan line). The DT features

of the long-interval model are sampled every three frames (0, 3rd, 6th, 9th, etc.). The model is evaluated by computing the correlation

between the model predictions (colored lines) and the ground-truth (black line). A) The track length is 2 frames. The long-interval

model (R2 = 0.05) performs worse than the consecutive model (R2 = 0.12). B) The tack length is 15 frames. Similarly, the long-interval

model (R2 = 0.45) performs worse than the consecutive model (R2 = 0.81).

These results are in line with our main findings because among the four dense trajectory descriptors, Trajectory Shape and HOF

are the main descriptors of the local motion information while HOG mostly captures the appearance. Even though, HOF is also affected

by spatial information since it is restricted by how the interest points are sampled. The contribution of MBH might be underestimated

in the current study. This is due to the fact the MBH mainly encodes the effect of camera motion, and the camera position is fixed in

our videos. We believe camera motion would be inevitable when estimating cloth properties from real videos (e.g., video record of a

fashion show); thus, future studies that include camera motions might find the MBH feature to be more relevant.
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5.3 Influence of optical properties on perception of mechanical properties

There have been a few recent works addressing the influence of optical properties on material perception, such as viscosity of

liquids and classification of cloth (Aliaga et al., 2015; Paulun et al., 2015; Xiao, Bi, Jia, Wei, & Adelson, 2016; Assen & Fleming,

2016). Our goal was to evaluate the role of multi-frame motion in the perception of mechanical properties, but this does not exclude the

role of appearance. In fact, dense trajectories encode both motion and appearance information (e.g., the HOG feature). In addition, our

rendered cloth samples only contain two types of appearance: silk (shiny, smooth, and thin) and cotton (matte, rough, and thick). Our

data showed a small but significant effect of appearance on the average values of the perceptual scale, indicating on average, observers

perceive the silk cloth to be more flexible than the cotton (Figure 4). We believe the optical properties still dominate cloth categorization,

but motion plays an equal, if not more important, role in estimating mechanical properties. Hence, our results are largely consistent with

previous work on the influence of optical properties on material perception.

5.4 Humans can use different cues under different contexts

Humans are able to estimate mechanical properties of objects under variation of shape, size, optical appearance, and the external

forces (Bi, Xiao, Jain, Joerg, et al., 2016; Schmidt et al., 2017). Here, we provide additional evidence for this suggestion. In Experiment

1a and 1b, we found that all observers performed very well (R2 > 0.8) and there was little individual difference (Figure 4, A, B, D, E;

Figure 5B), indicating they could successfully use the motion information for the estimation. In Experiment 1b, when observers made

judgments from scrambled videos, there were some individual differences in their performance (Figure 5A). This could be due to the

fact that different observers used different cues when the motion information was absent.

The above observations were supported by comparing the model predictions with human perceptual scales under the scrambled

video condition. When multi-frame motion was removed, the regression model performed no better than chance level (Figure 8C versus

Figure 8B). By contrast, although the observers’ performance dropped dramatically, they could still distinguish the most stiff fabric from

the most flexible one (Figure 5A), suggesting that observers potentially use other cues such as shape outline or appearance for judgment.

In addition to the availability of the image cues, the choice of tasks might also affect the cues that human use for the purpose of

material perception. For example, previous work indicates that the observers predominately use optical cues (e.g., textures, glossiness,

colorfulness, etc.) for material categorization tasks (Fleming, Wiebel, & Gegenfurtner, 2013; Aliaga et al., 2015). In addition to the

current paper, other studies have also found that motion information is more important for estimation of mechanical properties (Bi et al.,

2016; Kawabe & Nishida, 2016; Yang et al., 2017). Future studies should evaluate the interactions between the task and the image cues

for material perception.

5.5 Intuitive physics and multi-frame motion information

Recent research has proposed that people reason about complex environments using approximate and probabilistic mental simu-

lations of physical dynamics (J. Hamrick, Battaglia, & Tenenbaum, 2011; Battaglia, Hamrick, & Tenenbaum, 2013; J. B. Hamrick et

al., 2016; J. Kubricht et al., 2016; J. R. Kubricht, Holyoak, & Lu, 2017). Even though we did not explicitly test the model of intuitive

physics, we found evidence that the viewers could use multi-frame motion to infer mechanical properties of cloth. In addition, we

find such inference is robust across different scene setups and different wind forces. It is possible that the multi-frame motion cues

are diagnostic of the causal relation between the object’s shape deformation and the applied force. During our experiments, observers

could combine the low-level image statistics through learning and exposure (learning based) and their prior belief of the noisy gener-

ative physics (knowledge based) to make inference of cloth mechanical properties. Future experiments and models are needed to test

whether it is possible for humans to reason about the outcome of deformable objects in dynamic scenes they have not seen before using

a probabilistic simulation model, and whether such a model is affected by different temporal parameters (e.g., the length of the video).
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5.6 Using computer vision methods to human perception

It is extremely difficult to create psychophysical stimuli that isolate motion information for cloth perception. Kawabe et al. (2015)

used the noise videos simulated by optical flow fields to isolate the motion information for liquids. This method might not be suitable

for creating cloth stimuli, however, because the fine folds and creases would not be revealed in such noise simulations and thus the

stimuli will appear unnatural to observers. In the current paper, we used machine learning method as an alternative approach to examine

the influence of multi-frame motion information. The regression model was trained with only the dense trajectory descriptors, which

can capture the motion information in the videos efficiently and outperform the state-of-the-art approaches, at least in action recognition

(see Wang et al., 2011 Section 5.2 for the evaluations). Results showed that our model does well at predicting the human perceptual

scales, and moreover, it can also predict the situations when human failed such as when the video frames were scrambled.

Our results demonstrate that combining machine learning and human perception is a promising method to understand which image

features humans utilize across variations of scene setups in the estimation of material properties. The recent advances in using deep

neural networks trained to learn physical properties from videos suggest that it is possible to visualize features in different layers of the

neural networks for a variety of tasks (Zeiler & Fergus, 2014). Recent work has addressed the robustness of the two-stream ConvNet

for action recognition (Simonyan & Zisserman, 2014; Feichtenhofer, Pinz, & Zisserman, 2016), where one stream processes spatial

information while the other deals motion information. These studies show that motion provides critical additional information for visual

recognition. Future studies can benefit from these methods to understand the contribution of optical properties and dynamics in material

perception.

6. Conclusion

This paper reveals that human could recover the scale of bending stiffness of cloth from dynamic videos. We also find that optical

appearance (e.g. textures, thickness, and roughness) and types of external forces do not influence observers’ sensitivity to the differences

in stiffness. Most importantly, this paper is the first to directly demonstrate that multi-frame motion information is important for both

humans and machines to estimate the cloth stiffness. The methods of combining human perceptual studies and machine learning used

here provide a successful paradigm of evaluating image cues on material perception.
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