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ABSTRACT

DNA metabarcoding is now widely used to study prokaryotic and eukaryotic 

microbial diversity. Technological constraints have limited most studies to 

marker lengths of ca. 300-600 bp. Longer sequencing reads of several 

thousand bp are now possible with third-generation sequencing. The increased 

marker lengths provide greater taxonomic resolution and enable the use of 

phylogenetic methods of classifcation, but longer reads may be subject to 

higher rates of sequencing error and chimera formation. In addition, most well-

established bioinformatics tools for DNA metabarcoding were originally 

designed for short reads and are therefore not suitable. Here we used Pacifc 

Biosciences circular consensus sequencing (CCS) to DNA-metabarcode 

environmental samples using a ca. 4,500 bp marker that included most of the 

 

5

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/283127doi: bioRxiv preprint 

https://doi.org/10.1101/283127


2

eukaryote ribosomal SSU and LSU rRNA genes and the ITS spacer region. We 

developed a long-read analysis pipeline that reduced error rates to levels 

comparable to short-read platforms. Validation using fungal isolates and a 

mock community indicated that our pipeline detected 98% of chimeras de 

novo i.e., even in the absence of reference sequences. We recovered 947 OTUs

from water and sediment samples in a natural lake, 848 of which could be 

classifed to phylum, 486 to family, 397 to genus and 330 to species. By 

allowing for the simultaneous use of three global databases (Unite, SILVA, RDP 

LSU), long-read DNA metabarcoding provided better taxonomic resolution than 

any single marker. We foresee the use of long reads enabling the cross-

validation of reference sequences and the synthesis of ribosomal rRNA gene 

databases. The universal nature of the rRNA operon and our recovery of >100 

non-fungal OTUs indicate that long-read DNA metabarcoding holds promise for 

the study of eukaryotic diversity more broadly.

INTRODUCTION

DNA-metabarcoding is widely used in the study of microbial communities from 

all three major domains of life (Wurzbacher 2017), whereby one or more 

marker regions in the genome are PCR-amplifed and sequenced using a next-

generation sequencing (NGS) platform. Reads are quality-fltered and 

sequences are clustered according to sequence similarity into putative taxa 

(Operational Taxonomic Units = OTUs). OTUs are then classifed using marker-

specifc, and sometimes taxon-specifc databases. DNA metabarcoding has 

become a commonly used tool because it provides an estimate of biodiversity, 

including that of taxa that cannot be cultured, and identifcation relies on 

relatively stable genetic information rather than often variable and subtle 

phenotypic characters. Limitations of the method include the fact that marker 

regions and PCR primers must be selected a priori to detect the taxa of 

interest, and that the variability of the marker region, and how well the taxa 

are represented within a given reference database, determine how well the 

members of an assemblage can be identifed (Nilsson 2018). 

There is a fundamental trade-of between using a marker that is conserved 

enough to be amplifed across a broad range of taxa, but variable enough to 

distinguish among closely related species. Marker length also has 
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consequences for how many OTUs can be identifed, and to what taxonomic 

resolution (Porras-Alfaro 2014). Shorter markers within a given locus may 

include less genetic variation than longer markers, reducing the ability to 

distinguish closely related species (Singer 2016). One consequence is that 

highly variable regions are often used as DNA metabarcoding markers. While 

variable regions may increase taxonomic resolution in groups for which 

reference sequences are available, sequence homology can be difcult or 

impossible to establish. This precludes phylogeny-based analyses and can 

result in the complete failure of classifying OTUs at any taxonomic level 

(Lindahl 2013).

More recent (i.e. third-generation sequencing) technologies can provide much 

longer (several kbp) sequencing reads (Goodwin 2016); however, their use in 

studies of environmental samples remains limited. The few existing studies, 

using full-length (~1.5 kbp) bacterial 16S (Franzén 2015, Schloss 2016, Singer 

2016) and parts of the eukaryotic rRNA operon including ITS (up to 2.6 kbp) 

(Tedersoo 2017, Schlaeppi 2016), have reported increased taxonomic 

resolution. The Pacifc Biosciences (PacBio) RSII platform generates reads of 

>50 kbp by Single Molecule Real Time (SMRT) Sequencing. Single pass error 

rates of 13-15% (Goodwin 2016) limit their value in DNA metabarcoding 

because species identifcation is unreliable at those levels of uncertainty. 

However, the circular consensus sequencing (CSS) version of SMRT sequencing

greatly reduces the error rate. In CSS, double stranded DNA amplicon 

molecules are circularized by the ligation of hairpin adapters. The sequencing 

polymerase is then able to pass around the molecule and read the same insert 

multiple times (Travers 2010). The repeated reads of the same amplicon 

molecule, together with the random nature of sequencing error, can then be 

used to reduce the fnal error rate to <1% (Goodwin 2016) by generating 

consensus sequences. 

Beside the higher per base cost a primary reason why long-read approaches 

have not been applied to DNA metabarcoding is the fact that most of the 

existing bioinformatic tools have been optimized for the analysis of data from 

short-read technologies (e.g., Illumina). It is thus unclear how well they will 

perform on PacBio CCS reads. Longer sequences have more errors because 
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even high-quality reads with low error rates will accumulate more total errors 

as a function of length. The types of errors in PacBio reads also difer from that 

of short-read technologies, with CCS reads tending to have more insertions and

deletions, compared to substitutions more common in short-read data. Schloss 

et al. (2016) explored the error profle and steps that can be taken when 

targeting the 16S for a bacterial mock community, and environmental samples.

They found that the error rate of CSS reads of their longest amplicon (V1-V9) 

was only 0.68% and could be further reduced to 0.027% by pre-clustering at 

99% similarity. Chimera formation rate may also be increased in longer 

markers since longer amplicons may sufer premature elongation terminations,

leading to more possibilities for the resulting incomplete amplicons to act as 

primers in the next PCR cycle and thus more chimeras to be formed (see also 

Laver at al. 2016). Existing algorithms commonly used to detect chimeras are 

not optimized for long reads and may therefore fail to detect chimeras.

Fungi are ecologically important eukaryotes, having diverse roles in carbon and

nutrient cycling, occupying a range of niches, including as decomposers, 

parasites and endophytes, and are ubiquitous in terrestrial and aquatic habitats

alike (e.g. Tedersoo 2014, Wurzbacher 2016). Microbial fungal communities are

increasingly studied with DNA metabarcoding (e.g., Roy 2017), taking 

advantage of the increased detection of taxa without the need to culture and 

the reduced cost of sequencing that has permitted ever deeper read depth The

broad phylogenetic diversity of fungi has the consequence that fungal DNA 

metabarcoding studies typically use markers that vary depending on the 

taxonomic group of interest and the resolution desired. Diferent regions of the 

eukaryotic rRNA operon have been widely utilized for barcoding fungi due to its

universality, and the fact that short stretches have been able to provide 

reasonable power for fungal identifcation. Within this region, the most 

commonly applied barcode is the internal transcribed spacer (ITS) (Schoch 

2012). This comprises the ITS1, the 5.8S rRNA gene and the ITS2, and 

depending on the lineage, varies from 300 to 1,200 bp in length. In fungal DNA 

metabarcoding, the ITS2 region is widely used to assess fungal diversity in 

environmental samples (Blaalid 2013, Kõljalg 2013); however, it is not as 

successful in identifying taxa as the full length ITS (Tederso 2017). For early 

diverging fungal lineages, such as those found in many aquatic habitats 
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(Monchy 2011, Wurzbacher 2016, Rojas-Jimenez 2017), sequences from the 

small subunit (SSU) rRNA gene (18S) can provide afliation of higher taxonomic

ranks, but are often not variable enough to distinguish among species (Cole 

2014). The LSU region has higher variability, and therefore resolution, than the 

SSU, and is often used for identifcation of specifc fungal groups (e.g. 

Glomeromycota and Chytridiomycota) lacking ITS reference sequences. 

Databases have been established for all three diferent markers, e.g. UNITE for 

ITS (Kõljalg 2013), SILVA for SSU (Quast 2013), and RDP for LSU (Cole 2014). 

Nevertheless, database coverage remains poor for several fungal lineages, for 

example Glomeromycota (Ohsowski 2014), Chytridridiomycota (Frenken 2017),

and Cryptomycota, and for species from less-studied habitats such as aquatic, 

indoor, and marine environments.

We examined fungal diversity of feld-collected samples from a temperate lake 

using SMRT CCS of a long (ca. 4,500 bp) DNA metabarcode that included the 

three major regions of the eukaryotic rRNA operon (SSU, ITS, LSU) in a single 

sequencing read. We frst sequenced cultured isolates comprising a broad 

phylogenetic range and a mock community to derive rates of sequencing error 

and chimera formation. We then developed a new bioinformatics pipeline 

designed for full length rRNA operon amplicons. We found error rates to be 

comparable to short-read approaches after fltering with our pipeline, and 

chimera-formation rates to be comparable to those found in studies with 

shorter amplicons. We identifed 947 OTUs from environmental samples, 848 of

which could be classifed to phylum, 486 to family, 397 to genus and 330 to 

species. By allowing for the simultaneous use of three databases, long-read 

DNA metabarcoding provided much better taxonomic resolution than possible 

with a single-marker, single-database approach. The universal nature of the 

rRNA operon and our recovery of >100 non-fungal OTUs indicate that long-read

DNA metabarcoding holds promise for future studies of eukaryotic diversity in 

general.
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METHODS

Isolates, Mock community, and Environmental samples

Isolates of sixteen fungal species (Table 1) were combined to form a mock 

community. This community was used to test PCR and library preparation 

protocols that were later applied to environmental samples, and to quantify the

efciency of de novo and reference-based chimera detection in our long-read 

bioinformatics pipeline described below. Environmental samples were collected

from Lake Stechlin, an oligo-mesotrophic lake in North-East Germany (53.143° 

N 13.027° E) in October 2014. Littoral water samples (30 L total) were collected

and pooled from surface water in the shallow zone along three 10 m transects, 

located within 5 m of the lake shore or reed belt. Pelagic water samples (30 L 

total) were collected from the deeper zone of the lake by pooling samples 

taken at multiple depths (0-65 m) at one point, using a Niskin-bottle (Hydro-

Bios, Kiel, Germany). A subsample (2 L) of each (littoral and pelagic) was 

fltered through 0.22-µmm Sterivex flters (Merck Millipore, Darmstadt, Germany)

using a peristaltic pump (GT-EL2 Easy Load II, UGT, Müncheberg, Germany). 

Excess water was expelled using a sterile syringe and paraflm used to seal the

ends. Sediment samples were collected from four locations in each zone 

(littoral, pelagic) using a PVC sediment corer (63 mm diameter) on a telescopic 

bar (Uwitec, Mondsee, Austria). The uppermost 2 cm from each sediment core 

were pooled in the feld and divided into 2 ml subsamples for storage. Sterivex 

flters and sediment subsamples were frozen in liquid Nitrogen in the feld and 

returned to the laboratory for long-term storage at -80°C.

DNA extraction 

Genomic DNA was extracted from fungal isolates using three diferent methods

(Table 1, see also Supp. Info 1). Environmental DNA was extracted from water 

and sediment samples using a modifed phenol-chloroform method (after 

Nercessian 2005). Frozen Sterivex cartridges were broken open and sterilized 

forceps were used to transfer half of the fragmented flter into each of two 2-ml

tubes. Sediment samples were thawed and aliquoted into two 2-ml tubes, each 

containing 200 mg. Beads (0.1 and 1.0 mm zirconium, and 3x 2.5mm glass 

beads, Biospec, Bartlesville, USA) were added to 0.3 volume of the tube. For 

cell lysis and extraction, the following reagents were added: 0.6 ml CTAB 

 

150

155

160

165

170

175

180

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/283127doi: bioRxiv preprint 

https://doi.org/10.1101/283127


7

extraction bufer (5% CTAB-120 mM phosphate bufer), 60 µml 10% sodium 

dodecyl sulfate, 60 µml 10% N-lauroyl sarcosine, followed by 0.6 ml of 

phenol:chloroform-isoamyl alcohol (25:24:1). Samples were vortexed 

immediately to homogenise and then ground for 1.5 min at 30 Hz (Retsch mill, 

Retsch GmbH, Haan, Germany) with short breaks for cooling on ice. Samples 

were incubated for 1 hr at 65 °C, with occasional mixing, and then centrifuged 

at 17,000 g for 10 minutes. The upper aqueous phase was transferred to a new

tube and mixed with an equal volume of chloroform-isoamyl alcohol (24:1), 

centrifuged at 17,000 g for 10 min and the upper aqueous phase transferred to

a new tube. Nucleic acids were precipitated with 2 volumes of PEG/NaCl (30% 

PEG 6000 in 1.6 M NaCl) for 2 h. Samples were centrifuged at 16,000 g for 45 

min, and the supernatant discarded. The nucleic acid pellet was washed twice 

by the addition of 1 ml ice-cold 70% ethanol, centrifuged at 17,000 g for 15 

min, and the supernatant discarded and following removal of ethanol traces, 

eluted in 50 µml nuclease-free water. Subsamples were pooled to give 100 µml 

nucleic extract per sample. RNA was removed by the addition of 0.5 µml (5 µmg) 

RNase A (10 mg/ml DNase and protease free, ThermoFisher Scientifc, 

Waltham, US) to 80 µml of the pooled sample, incubated at 37 °C for 30 min, and

cleaned using the PowerClean Pro DNA Clean-Up kit (MoBio Laboratories, 

Carlsbad, USA). DNA was quantifed in triplicate using a Qubit HS dsDNA Assay 

(Invitrogen, Carlsbad, USA) and gel-checked for quality. 

PCR and chimera formation tests

Approximately 4,500 bp of the eukaryotic rRNA operon (Fig 1), including SSU, 

ITS1, 5.8S, ITS2, and LSU (partial) regions, was PCR-amplifed using the primers

NS1_short and RCA95m (C. Wurzbacher, unpublished). NS1_short (5’- 

CAGTAGTCATATGCTTGTC-3’) was modifed from White et al. (1990) by 

shortening to remove several major mismatches to fungal groups. RCA95m (5’-

ACCTATGTTTTAATTAGACAGTCAG-3’) was modifed from R78 (Wurzbacher 

2014). Symmetric (reverse complement) 16-mer barcodes (Supplemental Table

1) were added to the 5’ ends of primers following the PacBio manufacturer's 

guidelines on multiplexing SMRT sequencing.

We aimed to minimize chimera formation by minimizing the number of PCR 

cycles performed per sample. Cycle numbers were chosen after amplifying all 

samples with a variable number of cycles (13-30) and identifying the 

 

185

190

195

200

205

210

215

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/283127doi: bioRxiv preprint 

https://doi.org/10.1101/283127


8

exponential phase of PCR (Lindahl 2013) according to band visibility on an 

agarose gel. Based on these results, we used 15-20 cycles to amplify isolates 

(3-8 ng template DNA), 13-30 cycles for mock community samples (2-20 ng), 

and 22-26 cycles for environmental samples (10 ng). Barcodes were allocated 

to the diferent PCR conditions tested as shown in supplemental Tables 2 and 

3. All standard PCRs were conducted in 25 µml reactions using 0.5 µml Herculase II

Fusion enzyme (Agilent Technologies, Cedar Creek, USA), 5 µml of 5x PCR bufer,

0.62 µml each primer (10 uM), 0.25 µml dNTPs (250 mM each), 0.3 µml BSA 

(20mg/ml BSA, ThermoFisher Scientifc, Waltham, US) on a SensoQuest 

labcycler (SensoQuest Gmbh, Göttingen, Germany) with 2 min denaturation at 

95 °C, 13-30 cycles (see above) of 94 °C for 30 sec, 55 °C for 30 sec and 70 °C 

for 4 min, and a fnal elongation at 70 °C for 10 min. Multiple PCR reactions (up 

to 50) were required for each environmental sample to ensure sufcient 

product for library preparation (1 µmg purifed PCR product). We also included a 

two-step emulsion PCR (emPCR) of the mock community in order to test 

whether emPCR could reduce chimera formation rate by the physical isolation 

of DNA template molecules (Boers 2015). The Micellula DNA Emulsion kit 

(Roboklon GmbH, Berlin) was used for a two-step PCR: a frst amplifcation of 

25 cycles, with 2µml of the cleaned template used in a second 25 cycle PCR. For 

further details see supplemental info 2. 

Library preparation and Sequencing 

Replicate PCRs were pooled back to sample level, and products were cleaned 

with 0.45 x CleanPCR SPRI beads (CleanNa, Waddinxveen, Netherlands), pre-

cleaned according to PacBio specifcations (C. Koenig, pers. comm.), quantifed 

twice using a Qubit HS dsDNA Assay, and quality-checked on an Agilent® 2100

Bioanalyzer System (Agilent Technologies, Santa Clara, USA). Samples were 

then pooled into libraries (as described in supplemental Table 3) before being 

quality-checked on an Agilent® 2100 Bioanalyzer following PacBio guidelines 

(Pacifc Biosciences, Inc., Menlo Park, CA, USA) for amplicon template library 

preparation and sequencing. 

SMRTbell™ template libraries were prepared according to the manufacturer’s 

instructions following the Procedure & Checklist – Amplicon Template 

Preparation and Sequencing (Pacifc Biosciences). Brieey, amplicons were end-

repaired and ligated overnight to hairpin adapters applying components from 
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the DNA/Polymerase Binding Kit P6 (Pacifc Biosciences). We included enough 

DNA from each sample to obtain the required library concentration (37 ng µml-1) 

for end-repair. Reactions were carried out according to the manufacturer´s 

instructions. Conditions for annealing of sequencing primers and binding of 

polymerase to purifed SMRTbell™ template were assessed with the Calculator 

in RS Remote (Pacifc Biosciences). SMRT sequencing was carried out on the 

PacBio RSII (Pacifc Biosciences) taking one 240-minutes movie. 

In total, we ran 8 libraries and 27 SMRT cells. Three of the isolates 

(Trichoderma reesei, Clonostachys rosea, and a species belonging to the 

phylum Chytridiomycota) were sequenced on one SMRT cell to test the protocol

for CCS. The remaining 13 isolates and one of the mock community conditions 

(30 PCR cycles) were prepared as part of the libraries containing the 

environmental samples (Supplemental Table 3), which were each run on three 

SMRT cells. Mock community samples and the emPCR sample were pooled in 

equimolar ratio and sequenced using two SMRT cells.

Demultiplexing and extraction of subreads from SMRT cell data was performed 

applying the RS_ReadsOfInsert.1 protocol included in SMRTPortal 2.3.0 with 

minimum 2 full passes and minimum predicted accuracy of 90%. Barcodes 

were provided as FASTA fles and barcode extraction was performed in a 

symmetric manner with a minimum barcode score of 23 within the same 

protocol. Mean amplicon lengths of 3800 – 4500 kbp were confrmed. 

Demultiplexed reads were downloaded from the SMRT Portal as fastq fles for 

further analysis. 

Long-read metabarcoding pipeline

We developed an analysis pipeline for PacBio CCS reads using the python 

workeow engine snakemake (version 3.5.5, Köster & Rahmann 2012). Our 

pipeline combines steps directly implemented in python with steps that use 

external tools. The implementation is available on github (https://github.com/f-

heeger/long_read_metabarcoding) and parameters used for the external tools 

can be found in the supplemental methods (supplemental info 3). 

Read Processing stage – Reads longer than 6,500 bp were excluded to remove 

chimeric reads formed during adapter ligation and reads containing double-
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inserts due to failed adapter recognition during the CCS generation. Reads 

shorter than 3,000 bp were removed to exclude incompletely amplifed 

sequences and other artifacts. Reads were then fltered by a maximum mean 

predicted error rate of 0.004 that was computed from the Phred scores. Reads 

with local areas of low quality were removed if predicted mean error rate was 

> 0.1 in any sliding window of 8 bp. cutadapt (version 1.9.1, Martin 2011) was 

used to remove forward and reverse amplifcation primers and discard 

sequences in which primers could not be detected. Random errors were 

reduced by pre-clustering reads from each sample at 99% similarity using the 

cluster_smallmem command in vsearch (version 2.4.3, Rognes 2016). Reads 

were sorted by decreasing mean quality prior to clustering to ensure that high 

quality reads were used as cluster seeds. vsearch was confgured to produce a 

consensus sequence for each cluster.

OTU clustering and classifcation stage – Chimeras were detected and removed

with the uchime_denovo command in vsearch. Based on tests using mock 

community samples (see below), we determined this was a suitable method of 

chimera detection following the read processing stage (above). Only sequences

that were classifed as non-chimeric were used for further analysis. The rRNA 

genes (SSU, LSU, 5.8S) and internal transcribed spacers (ITS1, ITS2) in each 

read were detected using ITSx (version 1.0.11, Bengtsson-Palme 2013). To 

generate OTUs, the ITS region (ITS1, 5.8S, ITS2) was clustered using vsearch at

97% similarity. SSU and LSU sequences were then placed into clusters 

according to how their corresponding ITS was clustered. OTUs were 

taxonomically classifed using the most complete available database for each 

marker. For the ITS we used the general FASTA release of the UNITE database 

(version 7.1, 20.11.2016, only including singletons set as RefS, Kõljalg 2013); 

for the SSU we used the truncated SSU release of the SILVA database (version 

128, Quast 2013), excluding database sequences with quality scores below 85 

or Pintail chimera quality below 50; and for the LSU we used the RDP LSU data 

set (version 11.5, Cole 2014). The ITS, SSU and LSU regions of the 

representative sequence of each OTU were locally aligned to the database 

using lambda (version 1.9.2, Hauswedell 2014). For LSU and SSU the alignment

parameters had to be modifed to allow for longer alignments (see 

supplemental info 3). From the alignment results, a classifcation was 
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determined by fltering the best matches and generating a lowest common 

ancestor (LCA) from their classifcations as follows. For each query sequence, 

matches were fltered by a maximum e-value (10-6), a minimum identity (80%) 

and a minimum coverage of the shorter of the query or database sequence 

(85%). For the SSU and LSU, non-overlapping matches between each query 

and database sequence were combined. For each query sequence, a cutof for 

the bit score was established representing 95% of the value for the best match,

above which all matches for that given sequence were considered. For the SSU 

and LSU, bit scores were normalized by the minimum length of query and 

database sequences to account for the varying lengths of database sequences.

To determine the LCA from the remaining matches, their classifcations were 

compared at all levels of the taxonomic hierarchy starting at kingdom (highest)

and ending at species (lowest) level. For each OTU, the classifcations of all 

matches at a given taxonomic rank were compared and if >90% of them were 

the same then this was accepted. If <90% were the same then the OTU 

remained unclassifed at this and all lower ranks.

Error rates based on isolate sequences

Isolate sequences were processed using the Read Processing stage of the 

pipeline (described above) in order to generate error-corrected consensus 

sequences from pre-clusters. The consensus sequences of the largest pre-

cluster for each isolate were > 99 % identical to the Sanger sequencing data 

obtained from the same isolate (not shown), with most diferences found in 

bases that were of low quality in the Sanger sequence data. We therefore used 

the consensus sequence of the largest cluster for each isolate as a reference 

for that species in all further analysis. CSS reads from each isolate were then 

aligned with the respective consensus sequence using blasr (github comit 

16b158d, Chaisson & Tesler 2012) to estimate error rates of CCS reads. 

Sequences after fltering steps were also compared in order to estimate 

remaining errors.
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Evaluating chimera detection 

De novo and reference-based chimera classifcations were compared as a way 

of estimating the reliability of de novo chimera calls. The CCS reads from the 

mock community samples were tested for chimeras with vsearch once in de 

novo mode (uchime_denovo) and once with a reference-based approach 

(uchime_ref). For the de novo approach, reads were processed with the Read 

Processing stage of the pipeline (above) to generate error-corrected sequences

from pre-clusters. Cluster sizes resulting from the pre-clustering step were 

used as sequence abundances. For the reference-based approach, a reference 

fle was created from the consensus sequence of the largest cluster for each 

isolate sample. A random subset of reads (100 sequences, 1.3% of the data) 

was generated from the mock community sample with the highest chimera 

rate and the most reads (30 PCR cycles). The subset of reads was aligned to 

the consensus sequences from the isolate samples and visually inspected for 

chimeras in Geneious (version 7.1.9, Kearse et al. 2012). These “manual” 

chimera calls were then used to verify reference-based chimera classifcations 

for these reads. Chimeras identifed by the reference-based approach were 

used to compute the chimera formation rate under diferent PCR conditions. 

Mock community classifcation

We tested classifcation with the DNA metabarcoding pipeline using the mock 

community sample with the most reads (30 PCR cycles). In the pipeline, 

chimeras were classifed de novo and OTU classifcation was performed using 

the public databases. We manually classifed the same OTUs using consensus 

sequences from our isolate samples as reference. For each read, chimeras 

were detected with a reference-based approach using vsearch and the 

classifcation of the read was determined by mapping reads to the isolate 

sample sequences with blasr. To better understand the resolution that can be 

expected from the diferent regions of the rRNA operon, each region (SSU, 

ITS1, 5.8S, ITS2, LSU) was clustered independently. Chimeras were frst 

removed using the reference-based approach with our isolate sequences as 

references. The diferent regions in each read were separated with ITSx, 

dereplicated and clustered at 97%. 

 

350

355

360

365

370

375

380

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/283127doi: bioRxiv preprint 

https://doi.org/10.1101/283127


13

Environmental community classifcation

Sequences from the environmental samples from Lake Stechlin were processed

with the full rRNA metabarcoding pipeline described above. Chimeras were 

detected using the de novo approach, which we conclude provides a very good 

diagnosis of chimeras based on our validation using the mock community to 

compare de novo and reference-based approaches (see Results). The resulting 

classifcations obtained with SSU, ITS, and LSU markers were then compared at

each taxonomic level. OTUs with only one read (singletons) were excluded from

this comparison.

RESULTS

Sequencing resulted in a total number of 235,827 CCS reads, which were 

submitted to the NCBI Sequence Read Archive (SRR6825218 - SRR6825222). 

218,032 of these reads were within the targeted size range of 3,000 – 6,500 bp

(Table 2). After stringent fltering using average- and window- quality criteria, 

70,308 reads remained that contained an identifable amplifcation primer 

sequence (Table 2). Pre-clustering of isolate samples with the metabarcoding 

pipeline resulted in one large (> 80 reads) pre-cluster for each sample. Besides

these big clusters, six samples had additional very small (< 3 reads) clusters. 

For isolates sequenced on two diferent SMRT-cells, consensus sequences of 

the large pre-clusters were identical across cells except for Saccharomyces 

cerevisiae where a T homopolymer in the ITS2 was 6 bases long in one 

consensus and 7 in the other. Consensus sequences of large clusters were used

as reference for further analysis and submitted to gene bank (MH047187 - 

MH047202). The mean sequencing error rate of quality-fltered CCS reads, 

based on comparison to the consensus sequences of the large clusters (taken 

to be our reference for each isolate), was 0.223% (SD 1.558%). Deletions were 

by far the most common error (0.179%), with insertions and substitutions much

lower (Table 3).

Chimera formation and detection

Using reference-based chimera detection in the mock community, chimera 

formation rate (i.e. sequences classifed as chimeras or as unsure) rose from 

3% of sequences at 13-18 PCR cycles to 16% at 30 cycles (Fig. 2). The emPCR 

(25 cycles) resulted in 4% of sequences classifed as chimeric (Fig. 2), 
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compared to 14% for 25 cycles under standard PCR conditions. Template DNA 

amounts played no measurable role in chimera formation rate, with 2, 8 and 20

ng of DNA all resulting in <2% chimeric sequences (18 cycles). Manual 

inspection of 100 randomly chosen isolate sequences classifed 16 of these as 

chimeras. Reference-based detection identifed 15 of these as chimeric and 

one as “suspicious”. Of the 84 confrmed as non-chimeric by manual 

inspection, the reference-based algorithm classifed 82 (97.6%) as non-

chimeric and 2 as “suspicious”. De novo chimera detection (i.e., in the absence

of a reference) classifed 98.5% of the reads in the sample in the same way as 

using the reference-based approach.

Mock community classifcation

The fve marker regions (SSU, ITS1, 5.8S, ITS2, LSU) clearly distinguished 8 of 

the 14 isolates we could recover within the mock community, but revealed 

cases of intra-specifc variation as well as overlap among recognized species 

(Fig. 3). Seven species were clearly distinguished at all fve markers, i.e. 

formed a single cluster for each region (Fig. 3). Metschnikowia reukaufi 

produced multiple clusters for ITS1 and ITS2, as expected based on previous 

reports of extraordinarily high rRNA operon variation in this genus (Sipiczki 

2013, Lachance 2003). Clavariopsis aquatica and Phoma sp. were separated by

all regions except SSU. Trichoderma reesei and Clonostachys rosea were 

separated by ITS1, ITS2, and LSU but not with SSU and 5.8S genes. 

Cladosporium herbarum and Cladosporium sp. were diferentiated only with the

ITS2, although one of the two clusters was mixed (Fig. 3). OTU clustering 

resulted in 16 non-singleton OTUs. Twelve OTUs consisted of sequences from 

one species as well as a few chimeric sequences, one contained sequences 

from Cladosporium herbarum and the other Cladosporium sp., and three 

smaller OTUs were entirely made up of chimeric sequences (Table 4). 

Mortierella elongata and Cystobasidium laryngis did not appear in any OTUs, 

although we did observe low read abundance (<10 reads) of these species 

prior to quality fltering.

OTUs were classifed to varying taxonomic ranks by the three diferent genetic 

markers (Table 4). The SSU gene provided mainly order- and family-level 

classifcations, the ITS region provided family- to species-level classifcations, 

and the LSU gene provided genus-level classifcations in some cases and 
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higher level classifcations in others. The Metschnikowia reukaufi OTU was 

classifed to diferent species by ITS (M. cibodasensis) and LSU (M. bicuspidata).

Diferent genus-level classifcations by ITS and LSU for the Chytrid species were

the result of diferent taxonomies used in the UNITE and the RDP databases. 

The best match in both databases was Globomyces pollinis-pini, but the higher 

classifcation at higher ranks difers among the databases. Similar 

discrepancies caused by diferences in database taxonomy also occurred for 

some of the other species. Other than that classifcations by all three markers 

were consistent with each other and with the manual classifcation.

Environmental community classifcation

OTU clustering of the environmental samples produced 947 non-singleton OTUs

(supplemental table 4), of which 799 (84%) were classifed as fungi by at least 

one of the three markers (SSU, ITS, LSU). The SSU database also allowed 

identifcation of non-fungal sequences, and 112 OTUs were assigned to 

Metazoa, 10 to Discicristoidea, 2 to Stramenopiles, 2 to Alveolata and 1 to 

Chloroplastida. The 200 most abundant fungal OTUs (91% of fungal reads; 61%

of total reads) were consistently classifed to phylum level by all three markers 

except for 9 cases in which SSU and LSU gave diferent classifcations for the 

same OTU (Fig. 4). There were no coneicts between SSU and ITS, although the 

SILVA and UNITE databases use diferent names for the phylum 

Cryptomycota/Rozellomycota (Fig. 4). Classifcation at the phylum level was 

most successful with SSU (188 reads, i.e., 94% of the 200 most abundant 

fungal OTUs). Fewer OTUs were classifed to phylum with LSU (126, 63%) and 

ITS regions (36, 18%). Classifcation to the species level was most successful 

with LSU (55, 27.5%) and less successful for ITS (20, 10%) and SSU (13, 6.5%) 

(Fig. 4). 

Extended to all 947 OTUs, the results were similar. SSU provided the most 

classifcations, especially for higher taxonomic ranks, and ca. 20% of these 

were classifed the same using the ITS (Fig. 5A) and ca. 66% were classifed the

same by LSU (Fig. 5B). ITS classifcations matched those of SSU (Fig. 5C) and 

LSU (Fig. 5D) at ranks from kingdom to class. At family, genus and species 

rank, most OTUs that were classifed by ITS were not classifed by SSU (Fig. 5C)

and many were classifed diferently by LSU (Fig. 5D). At higher taxonomic rank

(kingdom to class), OTUs classifed by LSU were classifed the same way as by 

 

450

455

460

465

470

475

480

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/283127doi: bioRxiv preprint 

https://doi.org/10.1101/283127


16

SSU. But more than 50% were either not assigned to any taxon or were 

classifed diferently by SSU at lower ranks (order to species; Fig. 5E). Most 

OTUs classifed by the LSU were not classifed by ITS at kingdom to class ranks 

(> 60%), although those that were, were classifed the same. At the order to 

species rank, OTUs classifed by both LSU and ITS were rare and diferences 

between the markers were more common (Fig. 5F).

DISCUSSION

Long sequencing reads have the potential to provide many benefts for DNA 

metabarcoding. These include taxonomic assignment of OTUs at lower 

taxonomic levels (Porter & Golding 2011, Franzén 2015), the use of homology-

based classifcation and phylogenetic reconstruction (e.g., Tedersoo 2017), and

higher sequencing quality for standard-length DNA barcodes in reference 

databases (Hebert 2017). Disadvantages of long reads include lower sequence 

quality (Glenn 2011, D’Amore and Ijaz 2016), a possible increase in the rate of 

chimera formation, and the fact that most bioinformatics tools are optimized 

for shorter reads. Here we produced DNA metabarcodes nearly twice as long as

any used to date (ca. 4,500 bp), comprising the whole eukaryotic rRNA operon 

(SSU, ITS, LSU). We combined circular consensus sequencing with our newly 

developed bioinformatics pipeline and obtained error rates comparable to 

short-read Illumina sequencing (Glenn 2011, D’Amore and Ijaz 2016). The use 

of multiple markers allowed us to use the ITS region for OTU delineation 

(clustering) and automated species-level taxonomic classifcations for 

environmental OTUs with both ITS and LSU sequences. Finally, the inclusion of 

the SSU rRNA gene into the analyses allowed us to classify OTUs that were not 

represented in ITS and LSU databases, including many fungi that belong to 

basal lineages and are common in freshwater habitats (Rojas-Jimenez 2017, 

Wurzbacher 2016).

Challenges of long reads

A signifcant challenge in using longer reads for DNA-metabarcoding of mixed 

samples is the fact that most bioinformatics tools have been designed for the 

analysis of short sequences (typically 200-600 bp). Although we obtained very 
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high-quality CCS reads, the higher indel rate and accumulation of errors in long

reads requires analyses that difer from that of more commonly used 

sequencing platforms like Illumina. For example the clustering algorithm 

applied by swarm (Mahé 2015) relies on a low total number of errors per 

sequence (ideally 1 error). In long sequences, even with low error rates, the 

total number of errors are higher, makeing it unfeasible to use this algorithm. 

Other widely used clustering tools like uclust (Edgar 2012) or vsearch use 

heuristics to choose starting points for clustering. Reads are frst de-replicated 

and those with the most identical copies are used as cluster starting points. 

This could not be applied to our data set because the comparably high 

nucleotide deletion rate and the long read length made almost all reads 

unique. 

In the future it might be benefcial to develop specialized software for 

clustering and correcting PacBio long range amplicons. Here we used heuristic 

clustering starting with high quality reads and with a high similarity threshold 

(99%), and a consecutive consensus calling for correction of random 

sequencing errors. This also gave us clusters of highly similar sequences, that 

we could use for chimera detection and OTU clustering instead of the groups of

identical reads resulting from de-replication, that are normally used for these 

steps.

One of the problems in any study applying PCR to mixed samples is chimera 

formation. Our comparison of de novo and reference-based chimera detection 

found them to produce the same classifcations in > 98% of cases. This 

indicates that de novo chimera classifcation in our long-read pipeline provided 

a good estimate of chimera formation rate and is suitable for data sets where 

no complete reference database is available. We can therefore be confdent in 

our results for the environmental samples, even where no reference sequences

were available in databases. Interestingly, a manual inspection of coneicting 

read assignments in the independent clustering of the diferent regions (data 

not shown) found a few cases (9 of 6,585 reads in the one mock community 

sample) of chimeras that could not be detected. Neither reference-based nor 

de novo approaches detected these chimeras because 3’ and 5’ ends were 

both from the same species, and only the central section originated from a 

second species. Most chimera detection software, including vsearch, model 
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chimeras from two origins i.e., diferent 3' and 5' ends, but not more. These 

methods would then fail to identify chimeras if the 3' and 5' ends are from the 

same species and a second species is in the middle, as we observed. Although 

this was very rare in our data (0.1% of reads investigated), it created small 

OTUs made up almost entirely of these complex chimeras in our mock 

community (OTU 14, 16 and 17, see Table 4). As a general rule, chimeras are 

most likely to be found associated with the most frequent sequences in a PCR 

sample (e.g. Sommer 2013) and this is also true for the complex chimeras we 

observed here. In fact, all three chimeric OTUs found in our mock community 

involved the species with the most read abundance, Metschnikowia reukaufi. 

DECIPHER (Wright 2012) is one tool that may detect these chimeras, but 

requires a complete reference database of possible parent sequences and is 

therefore unsuitable for use with environmental samples (for which reference 

sequences are difcult to obtain) and long reads.

We also attempted to minimize chimera formation in the laboratory, by 

exploring the ineuence of reduced PCR cycle numbers, emulsion PCR, and 

template concentration. Although we were initially concerned that our ca. 

4,500 bp amplicon length would lead to higher chimera formation rates during 

PCR, the mock community sample that was amplifed with the highest cycle 

number (30) formed chimeras at a rate within the range reported by short-read

studies (ca. 4-36%; Qiu 2001, Ahn 2012). We observed reduced chimera 

formation with fewer cycles which is also consistent with short-read studies 

(Qiu 2001, Lahr and Katz 2009, D’Amore and Ijaz 2016). Unlike other studies 

(Lahr and Katz 2009, D’Amore and Ijaz 2016) we did not fnd a notable 

ineuence of DNA template concentration in our samples, possibly because at 

18 cycles all reactions were still in the exponential phase, before depletion of 

reagents (see below). Chimera formation rates in our mock community may 

underestimate rates in environmental samples because the lower species 

richness in the mock community may have led to reduced chimera formation 

(Fonseca 2012). However, the chimera rate detected by de novo chimera 

detection in our environmental data was < 1%, i.e., even lower than the de 

novo detection rate in the less diverse mock community samples. Chimera 

formation occurs primarily during the saturation phase of a PCR, when a large 

amount of PCR product has accumulated and the template:primer ratio 
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increases (Judo 1998). For a given cycle number, the amount of accumulated 

product may difer between the environmental and mock community samples, 

because although a similar amount of template DNA was used in mock 

community (8 ng) and environmental (10 ng) samples, the amount of template 

available for primer binding might be lower in the latter because they also 

contain non-fungal DNA. Environmental samples may also contain more PCR 

inhibitors (Schrader 2012), which would reduce PCR efciency and delay the 

saturation phase to a higher cycle number in environmental samples compared

to the mock community. Optimization of DNA extraction and amplifcation 

could make lower PCR cycle numbers feasible and thus further reduce the 

problem of chimera formation. Our emPCR results also indicate that this might 

be a promising way of reducing chimera formation when more PCR cycles are 

required.

Classifcation 

Although the ITS region has been proposed as a standard barcode for fungi 

(Schoch 2012) other regions of the rRNA operon remain popular choices as 

fungal barcodes (Stielow 2015, Roy 2017, Wurzbacher 2016). Compared to 

rRNA genes, ITS1 and ITS2 often exhibit higher interspecifc variability and thus

can provide greater species delineation power (i.e., more OTUs) than SSU and 

(in most fungal groups) LSU (Schoch 2012). Indeed we found that isolate 

species of the same genus (Cladosporium) and even from the same order 

(Hypocreales) and sub-division (Pezizomycotina) could not be separated by the 

SSU (Fig. 3), and that the use of ITS resulted more often in classifcation to 

species level than SSU and LSU in Dikarya (Fig. 4). At the same time, the often 

higher variability of ITS also means that for new species that are not 

represented in the database it can be more difcult to fnd comparable 

sequences and thus to identify them to any level. In these cases, longer 

sequencing reads that include more conserved regions with a stable 

evolutionary rate are likely to be helpful in making classifcations based on 

sequence similarity as we did here or, by phylogenetic methods (e.g., Tedersoo

2017). The phylum Chytridiomycota, which is often found in aquatic 

environments and was highly abundant in our environmental samples, is 

underrepresented in sequences databases (Frenken 2017). We observed many 

OTUs from this phylum that could not be classifed with the ITS at all, while the 
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SSU provided at least class or family rank classifcations and the LSU often 

even provided classifcations at species rank (Fig. 4).

For the classifcation of the mock community, the diferent degrees of 

taxonomic resolution provided by the diferent markers were clear. The mock 

community consisted of species that are represented in the reference 

databases with sequences that were identical or very similar to the sequence 

that we found. In these cases, ITS was a superior marker region, since its 

greater variability allowed for higher resolution classifcation. While almost all 

classifcations were correct, those obtained for ITS went down to at least family

rank in all cases, and even to species rank for a third of the OTUs. LSU and SSU

both provided far fewer specifc classifcations. Using the LSU marker, species 

levels classifcations could be obtained for some OTUs, but others were only 

classifed to higher taxonomic ranks (up to kingdom). Using the SSU marker, 

classifcation results were obtained between the ranks of order and family. In 

our environmental samples, the disadvantage of ITS becomes clear. If no 

closely related reference sequence was available, sequence similarity to any 

sequence in the database was too low to classify the sequence even to a 

higher taxonomic rank. In these cases, SSU and LSU markers provided at least 

classifcation at family or class level, while many OTUs stayed completely 

unclassifed with the ITS.

The independent clustering of the diferent regions (SSU, ITS1, 5.8S, ITS2 and 

LSU) of the rRNA operon (Fig. 2) also showed the higher resolution of ITS1 and 

ITS2, which were the only regions that separate almost all species from each 

other. On the other hand, for Metschnikowia reukaufi they formed multiple 

clusters for one species. This is most likely the result of high variability of rRNA 

operon copies in Metschnikowia (Sipiczki 2013, Lachance 2003) in combination 

with the short ITS1 and ITS2 sequences (70 bp and 75 bp, respectively) which 

mean that very few (3) diferences already constitute an identity diference of 

3%.

Classifcation conficts and synergies

The coneicts we observed between classifcations based on diferent marker 

regions and databases can provide insights into a number of interesting 

problems. In some cases, they may either represent uncertainty in 
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classifcation using at least one of the markers, or genuine chimeric reads. In 

other cases they may highlight incompatibility between the taxonomies used 

by the databases, or even errors in the databases (see also Nilsson 2006). 

Many coneicts resulted from diferences in naming convention and taxonomic 

placement in the diferent databases. Multiple OTUs were classifed with LSU 

and the RDP database to the more recently defned orders Rhizophydiales 

(Letcher 2006) and Lobulomycetales (Simmons 2009), but were classifed with 

SSU and the SILVA database as Chytridiales, the older classifcation for these 

new orders. A similar efect can be seen for the orders in the class 

Agaricomycetes. Three OTUs were assigned to the family Lachnocladiaceae 

which belongs to the order Russulales according to SILVA and to Polyporales 

according to RDP. Finally, one OTU was assigned to the genus Jahnoporus using

the LSU marker. According to the RDP database this genus belongs to the order

Russulales while in SILVA it belongs to the order Polyporales. Other coneicts 

showed that minor problems in the databases can lead to major diferences in 

classifcation. In our environmental data, several high (read) abundance OTUs 

were classifed as Chytridiomycota with SSU but as Blastocladiomycota with 

LSU. Closer inspection of the LSU alignments indicated that for many of these 

OTUs, only the second best hit was to a Blastocladiomycota, while the best 

match was, in fact, Rhizophlyctis rosea. The latter is a Chytridiomycota, but has

no classifcation beyond kingdom in the RDP database fle we used and was 

thus ignored for classifcation. In addition, the second best hit which was used 

for classifcation is to a sequence from the genus Catenomyces which belongs 

to the phylum Blastocladiomycota according to RDP, but according to SILVA 

belongs to the phylum of Chytridiomycota. Thus a minor error in the database 

fle, in combination with inconsistencies in the taxonomy used by diferent 

databases, can lead to completely diferent classifcations when using diferent 

markers.

These coneicts in classifcation clearly highlight problems with the databases, 

but classifcations using three diferent markers from the same molecule, as 

obtained from the full rRNA operon, can help us to evaluate how confdent we 

can be in our classifcation. A classifcation that is supported by three markers, 

with largely independent databases, can be considered more trustworthy than 

one that is only supported by one, or even shows coneicts when using diferent
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markers. In addition, long DNA barcodes could be used to create synergies 

between the databases and to support short read studies. For example, if a 

sequence was classifed to the same family by SSU (SILVA) and LSU (RDP), the 

ITS region could be added to the Unite database (even if it is not classifed to 

the species level) to help future studies that use ITS markers. The possibility to 

sequence SSU, ITS and LSU at the same time therefore ofers the opportunity 

to contribute to diferent databases in parallel, with the future potential to 

generate a new reference data set with nearly full-length rRNA operon 

sequences.

Conclusions

We used a DNA metabarcode nearly twice the length of any used to date and 

created a long-read (ca. 4,500 bp) bioinformatics pipeline that results in rates 

of sequencing error and chimera detection that are comparable to typical 

short-read analyses. The approach enabled the use of three diferent rRNA 

gene reference databases, thereby providing signifcant improvements in 

taxonomic classifcation over any single marker. While ITS is likely to remain a 

short-metabarcode region of choice for some time, a clear limitation of ITS is 

that its high variability, in combination with the incompleteness of databases, 

often lead to classifcation failing. In these cases, the other rRNA markers are 

benefcial. In particular, classifcation based on SSU or LSU were superior in 

more basal fungal groups. The universal nature of the rRNA operon and our 

recovery of >100 non-fungal OTUs indicate that the method could also be 

suitable for more general studies of eukaryotic biodiversity.
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FIGURES

 

Figure 1: Region of the eukaryotic rRNA operon covered by the primer pair 
used in this studied (a) compared to the primer pair SSU515Fngs-TW13 used 
by Tedersoo et al. 2017 (b), the widely used (e.g. Schoch 2012) primer pairs 
ITS5-ITS4 (c) and ITS3-ITS4 (d)

Figure 2: Chimera calls by vsearch with reference-based approach for different 
PCR conditions. Reads are classifed as “chimeric” (red), “non-chimeric“ (blue) 
or in edge cases as “unclear” (gray).
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Figure 3: Resolution of different regions of the rRNA operon for our mock 
community. Each node represents a cluster and each edge between two 
clusters represents shared reads between the clusters. Node height and edge 
thickness is proportional to read number. Nodes and edges with less than 3 
reads are not shown. Identifcation codes are given in Table 1. Components 
with multiple species are shown in detail on the right. Nodes are colored by 
species appearing in them. The graph was initially created with Cytoscape 
(version 3.2.1, Shannon 2003) and manually adapted for better readability.
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Figure 4: Classifcation specifcity of the 200 most abundant fungal OTUs for the three different regions (SSU, ITS, LSU). 
The three rows give classifcations by the three different regions. Each OTUs classifcation is given by a bar in each row.
The height of the bar represents level of classifcation. Bars are colored by phylum.
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Figure 5: Agreement of classifcations of all OTUs by the different regions. Each
panel represents a comparison between two regions. Each set of stacked bars 
shows numbers of agreeing (blue), disagreeing (red) and unknown (gray) OTU 
classifcations in the second region of the comparison compared to the frst at 
each taxonomic level.
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TABLES

Table 1. Isolates used and their contribution to the mock community.

Taxon Code Isolate DNA
pooled (ng)

% of mock
community

Clavariopsis aquatica CA DSM 29862a 60 7.6

Chytridiomycota CHY1 CHY1b 60 7.6

Cladosporium sp. Csp1 KR4b 20 2.5

Clonostachys rosea CR DSM 29765c 60 7.6

Cystobasidium laryngis CL CBML 151ac 5 0.6

Cladosporium herbarum* CH KR13b 20 2.5

Exobasidium vaccinii EV DSM 5498c 60 7.6

Leucosporidium scottii LS CBML 203c 60 7.6

Metschnikowia reukaufi MR DSM 29087c 60 7.6

Mortierella elongata ME CBML 271c 60 7.6

Penicillium 
brevicompactum

PB KR5b 80 10.2

Phanerochaete 
chrysosporium

PC DSM 1547c 60 7.6

Phoma sp. Psp1 KR1b 3 0.4

Saccharomyces 
cerevisiae 

SC DSM 70449c 60 7.6

Trichoderma reesei TR DSM 768a 60 7.6

Ustilago maydis UM DSM 14603a 60 7.6
* Davidiella tassiana originally
a extracted using Qiagen Dneasy Plant Mini Kit
b extracted using peqGOLD Tissue DNA Mini Kit
c extracted using MasterPure Yeast DNA Purifcation kit
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Table 2. Number of sequencing reads remaining after each step in the 
bioinformatics pipeline for each sample type.

Analysis step Isolates Mock
community

Environmental
samples

Total

Raw CCS 50,118 59,683 126,026 235,827

Length-fltered 47,766 52,871 117,395 218,032

Average quality-
fltered

20,009 15,686 48,778 84,473

Window quality-
fltered

17,675 10,927 43,385 71,987

Primer-fltered 17,380 10,559 42,369 70,308

Table 3. Error rates in CSS reads computed by mapping to consensus
sequences of isolates.

Analysis 
step

Substitutions
mean (SD)

Insertions
mean (SD)

Deletions
mean (SD)

Total 
mean (SD)

Raw CSS 0.0450%
(0.1291%)

0.3102%
(0.6076%)

0.8671%
(1.1980%)

1.2224%
(1.5577%)

Filtered 0.0076%
(0.0264%)

0.0364%
(0.0466%)

0.1790%
(0.1575%)

0.2230%
(0.1639%)

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/283127doi: bioRxiv preprint 

https://doi.org/10.1101/283127


35

Table 4. Mock-community OTU classifcation with our analytical pipeline. Manual classifcations were made by comparison to full-
length reference sequences. rRNA gene region classifcations were made based on reference sequences in SILVA (SSU), UNITE (ITS)
and RDP (LSU) databases. Size indicates the number of reads.

OTU Size Classifcation method

Manual SSU ITS LSU

11 6 Clavariopsis aquatica Pleosporales (Order) Clavariopsis aquatica Pleosporales (Order)

6 44 Chytridiomycota Chytridiomycetes (Class) Globomyces (Genus) Rhizophydium (Genus)

4 344 Cladosporium sp. + 
Cladosporium herbarum

Cladosporium (Genus) Cladosporium (Genus) Davidiella (Genus)

5 140 Clonostachys rosea Hypocreales (Order) Bionectriaceae (Family) Hypocreales (Order)

1 4165 Metschnikowia reukaufi Saccharomycetales (Order) Metschnikowia cibodasensis Metschnikowia bicuspidata

2 1096 Leucosporidium scottii Basidiomycota (Phylum) Leucosporidiaceae (Family) Leucosporidium (Genus)

3 719 Saccharomyces cerevisiae Saccharomycetaceae 
(Family)

Saccharomyces (Genus) Saccharomyces (Genus)

7 37 Penicillium brevicompactum Trichocomaceae (Family) Penicillium (Genus) Fungi (Kingdom)

8 34 Ustilago maydis Ustilaginaceae (Family) Ustilaginaceae (Family) Ustilago maydis

9 20 Exobasidium vaccinii Exobasidiales (Order) Exobasidium vaccinii Exobasidium (Genus)

10 21 Phanerochaete chrysosporium Agaricomycetes (Class) Phanerochaete sp. Agaricomycetes (Class)

12 5 Phoma sp. Pleosporales (Order) Pleosporales Incertae sedis (Family) Didymellaceae (Family)

13 5 Trichoderma reesei Hypocreaceae (Family) Trichoderma (Genus) Hypocreaceae (Family)

14 3 chimeric Saccharomycetales (Order) Nectriaceae (Family) Metschnikowia bicuspidata

16 3 chimeric Saccharomycetales (Order) Metschnikowia cibodasensis unknown

17 9 chimeric Saccharomycetales (Order) Metschnikowia cibodasensis Bionectria (Genus)

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/283127doi: bioRxiv preprint 

https://doi.org/10.1101/283127

	ABSTRACT
	INTRODUCTION
	METHODS
	Isolates, Mock community, and Environmental samples
	DNA extraction
	PCR and chimera formation tests
	Library preparation and Sequencing
	Long-read metabarcoding pipeline
	Error rates based on isolate sequences
	Evaluating chimera detection
	Mock community classification
	Environmental community classification

	RESULTS
	Chimera formation and detection
	Mock community classification
	Environmental community classification

	DISCUSSION
	Challenges of long reads
	Classification
	Classification conflicts and synergies
	Conclusions

	ACKNOWLEDGEMENTS
	REFERENCES
	FIGURES
	TABLES

