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Abstract—Recent technological advances in high-throughput 
omics technologies and their applications in genomic medicine 
have opened up outstanding opportunities for individualized 
medicine. However, several challenges arise in the integrative 
analysis of such data including heterogeneity and high 
dimensionality of the omics data.  In this study, we present a 
novel multi-view feature selection algorithm based on the well-
known canonical correlation analysis (CCA) statistical method 
for jointly selecting discriminative features from multi-omics 
data sources (multi-views). Our results demonstrate that models 
for predicting kidney renal clear cell carcinoma (KIRC) survival 
using our proposed method for jointly selecting discriminative 
features from copy number alteration (CNA), gene expression 
RNA-Seq, and reverse-phase protein arrays (RPPA) views 
outperform models trained using single-view data as well as three 
integrated models developed using data fusion approaches 
including CCA-based feature fusion.  

Keywords—canonical correlation analysis, multi-view feature 
selection, multi-omics data integration, cancer survival 

I. INTRODUCTION  
Translational bioinformatics, an emerging field in the study 

of health informatics, has become a key component in 
biomedical research and an important discipline in the era of 
precision medicine [1]. Advances in high-throughput omics 
technologies (genomics, transcriptomics, proteomics, and 
metabolomics) have provided new opportunities for integrated 
and data-intensive analyses of omics data to deciphering 
genotype-phenotype interactions in complex diseases such as 
cancer [2].  

A major challenge in translational bioinformatics is 
developing models for predicting clinical outcome using multi-
omics data for improved diagnostics, prognostics, and further 
therapeutics [3]. Amongst different clinical outcome prediction 
tasks, predicting cancer survival using omics profiles is a major 
challenge in translational bioinformatics [4].  In general, 
existing approaches for developing cancer survival models 
from multi-omics data can be categorized as either data fusion 
approaches, where multiple data sources are combined to form 
a single dataset, or model fusion approaches, where models 
trained using independent omics data sources are combined 
into a single consensus or meta-model. Alternatively, an 
emerging machine learning research direction, called multi-
view learning [5], attempts to develop models that learn (or 
select features) jointly from multiple data sources (i.e., multiple 
views) and thus improve the generalization performance of the 
learned models. 

Multi-view learning algorithms attempt to learn one model 
from each view while jointly optimizing these view-specific 
models to improve the generalization performance. Recently, 
several supervised and unsupervised multi-view learning 
algorithms have been proposed including multi-view support 
vector machines [6], multi-view boosting [7], multi-view k-
means [8], and clustering via canonical correlation analysis [9]. 
Besides supervised and unsupervised learning problems, 
several traditional single-view machine learning problems have 
been extended to the multi-view settings such as multi-view 
semi-supervised learning [10-12], multi-view transfer learning 
[13], multi-view feature extraction [14], and multi-view 
dimensionality reduction [15, 16]. A good representative 
example of the multi-view dimensionality reduction algorithms 
is the Canonical Correlation Analysis (CCA) algorithm [17] 
which is an early statistical method for reducing the 
dimensionality of a pair of datasets. CCA jointly learns a 
shared subspace between two datasets (i.e., views) and is, 
therefore, considered as one of the early multi-view learning 
algorithms. Several variants of CCA have been proposed for 
further extending the classical CCA to more than two views 
and to learn non-linear subspaces [18].  

Against this background, we believe that multi-view 
learning is a promising machine learning direction for tackling 
arising challenges in data integration. However, the vast 
majority of existing multi-view learning algorithms are not 
designed to effectively learn intrinsic relationships across high-
dimensional views [14]. To address this limitation, we utilize 
multi-view feature selection for the integration of high-
dimensional multi-omics data. Specifically, we present a novel 
multi-view feature selection algorithm that uses the CCA 
learned projective transformation to score and rank input 
features from multiple views (i.e., omics data sources). We 
compare our approach against two baseline data fusion 
approaches as well as against an approach for serial feature 
fusion [13] applied to sets of features in the CCA reduced 
dimensionality space [19]. Experimental results on predicting 
kidney renal clear cell carcinoma (KIRC) survival [20, 21] 
(using copy number alteration (CNA), gene expression RNA-
Seq, and reverse-phase protein arrays (RPPA)  as three input 
views) demonstrate superior performance of our proposed 
method.  

II. MATERIALS AND METHODS 

A. Datasets 
Clinical data as well as normalized and preprocessed copy 

number alteration (CNA), gene expression RNA-Seq, and 
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reverse-phase protein arrays (RPPA) data of the kidney renal 
clear cell carcinoma (KIRC) TCGA cohort were downloaded 
from UCSC Xena functional genomics browser [22]. Table I 
overviews the KIRC dataset. Since CCA is applicable to only 
complete views, only patients with CNA, RNA-Seq, RPPA, 
and survival information were kept. Instances corresponding to 
patients with survival time ≥  3 years were labeled as long-
term survivors (positive instances) while patients with survival 
time < 3 years and vital status of 0 were labeled as short-term 
survivors (negative instances). Thus, the final dataset contains 
256 and 103 positive and negative samples, respectively. Each 
final data source was then pre-filtered and normalized as 
follows: i) feature values in each sample were re-scaled to lie 
in the interval [0,1]; ii) features with variance less than 0.02 
were removed. 

B. Canonical Correlation Analysis (CCA) 
We start with convenient notations that will be used 

throughout the present work (See Table II). 

Canonical correlation analysis [17] is a commonly used 
statistical method for finding correlation relationships between 
two sets of features (i.e., two views or representations of the 
same set of observations). Given two zero-mean unlabeled 
datasets 𝑋! ∈ 𝑅!×!!  and 𝑋! ∈ 𝑅!×!! , CCA determines two 
projective transforms 𝑊! ∈ 𝑅!!×!  and 𝑊! ∈ 𝑅!!×!  that 
maximize the linear correlation between the projections of the 
two datasets in the d-dimensional space. For more details about 
the derivation and solution of CCA, please see [23]. 

In this work, we used a recently developed Python library 
for Regularized Kernel Canonical Correlation Analysis 
(Pyrcca) [18]. Unlike other existing CCA implementations, 
Pyrcca provides support for L2 regularization as well as 
kernalized CCA. Moreover, Pyrcca implements an extension of 
the generalized eigenvalue problem [24] to support the 
applicability of CCA to more than two datasets. 

C. CCA-based Feature Fusion (CCAFF) 
Sun et al. [19] presented a CCA-based feature fusion 

method for mapping two labeled views into a single labeled 
dataset in 2d-dimentional space. Here, we generalize their 
method to more than two views. 

Given a labeled multi-view dataset 
L =< (X!, X!, . . . , X!), y >, our implementation of the CCA-
based feature fusion (CCAFF) applies Pyrcca to the unlabeled 
multi-view data < (X!, X!, . . . , X!) > to obtain the projective 
transformations W!,W!, . . . ,W!  corresponding to d 
generalized eigenvalues. Then, the serial feature fusion strategy 
[13] is applied to fuse the input labeled multi-view data into a 
labeled single-view dataset < X!"#$%, y >  in vd-dimensional 
space where the linear correlation between projected views is 
maximized and X!"#$%  is the concatenation of 
W! !X!, W! !X!, . . ., and W! !X!. 

D. CCA-based Multi-view Feature Selection (CCAFS) 
Assuming there is a good common 𝑑-dimensional space 

among all views in an unlabeled multi-view data 
< (X!, X!, . . . , X!) > that could be obtained using the CCA 
method, we propose to use the learned  projective 
transformation matrices to score and rank the input features in 

each view and to use the concatenation of top selected features 
from each view as an integrated representation of the input 
views. This approach could be viewed as a multi-view feature 
selection approach since the features are jointly selected from 
the multiple views based on CCA determined projective 
transformations. 

In Artificial Neural Network (ANN) literature, there are 
different methods for quantifying the contributions of input 
variables in ANN models (see [25] for an interesting 
comparison of such methods). In this work, we adapted the 
weights method [25] to determine the contribution of each 
input feature using the CCA projective transformation matrix. 
Specifically, given the ith projective transformation matrix 
𝑊𝑖 = {𝑤1

𝑖 ,𝑤2
𝑖 , . . . ,𝑤𝑑

𝑖 } ∈ 𝑅𝑛𝑖×𝑑 , the score of each input 
feature 𝑗 for 𝑗 =  1, . . . , 𝑛! was computed as follows: 

1) Compute normalized weights matrix, 𝑄!, for the ith view by 
normalizing the absolute value of each element 𝑊!"!  by the 
sum of the absolute values of the tth column, i.e. 
 
for t = 1 to d 
    for  j = 1 to 𝑛𝑖 

 𝑄!"! =
|!!"

! |

|!!"
! |

!!
!!!

 

    end 
end  
 
2) Determine the importance score of the jth feature in the ith 
view using Eq. 1 

𝑠𝑐𝑜𝑟𝑒!! =
!!"
!!

!!!

!!"
!!!

!!!
!
!!!

                                            (1) 

 

Algorithm 1 summarizes our proposed CCA-based feature 
selection (CCAFS) algorithm. The inputs to the algorithm are: 
labeled multi-view dataset, 𝐿 ; number of components, d; 
number of features to select, 𝑘 ; value of regularization 
parameter for CCA method, 𝜆; a weight vector controlling how 
many features to be selected from each view, 𝑤. 

 

Algorithm 1. CCAFS 
Requires: L =< (X!,X!, . . . ,X!), y >, d, k, 𝜆,𝑤 = [𝑤!, . . . ,𝑤!] 
1: num! = 𝑤!𝑘   for 𝑖 = 1,2, . . . , 𝑣 
2: W!,W!, . . . ,W!  Pyrcca([X!, X!, . . . , X!],𝑑, 𝜆)  
3: Compute the normalized weights matrices, 𝑄! 's 
4: Compute features importance scores using Eq. 1  
5: Return the indices of top num! features for 𝑖 = 1,2, . . . , 𝑣 

 
 

TABLE I.  OVERVIEW OF KIRC DATASET 

Data source Number of samples Number of features 
CNA 528 24,777 
RNA-Seq 606 20,531 
RPPA 478 274 
Phenotypes 945 121 
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TABLE II.  NOTATIONS 

Symbol Definition and Description  
L =< (X!,X!, . . . ,X!), y >  Labeled multi-view dataset where X! ∈ R!×!!  is a matrix of m samples and n! features, and 

y! ∈ Y = {c!, . . , c!}! is the label of the jth sample 
X!!  The jth sample in the ith view 
w!
! ∈ R!!   The jth projective vector of X! 

W! = {w!
! ,w!

! , . . . ,w!
! } ∈ R!!×!  The projective transform of X! 

𝑑  Number of CCA components 
𝑘  Number of class labels 
𝑚  Number of samples in each view 
𝑣	 Number	of	views	

 

E. Experimental Settings 
We experimented with three broadly used machine learning 

algorithms: Random Forest (RF) [26], eXtreme Gradient 
Boosting (XGB) [27], and Logistic Regression (LR) [28]. 
These three algorithms are implemented in sklearn machine 
learning library [29]. Unless stated otherwise, we used the 
default parameters of these algorithms except for the number of 
estimators (i.e., number of tree classifiers for RF and XGB 
models) where we set it to 500. 

For feature selection methods applied to single-view 
datasets, we used an embedded filter [30] based on an RF 
classifier trained using 500 trees. We also experimented with a 
Two-Stage (TS) filter selection method by applying the RF-
based filter twice in order to select 𝑘 ≤  100 features such that 
the first filter selects 100 features from the input features while 
the second filter selects  𝑘  features from the 100 features 
selected in the first stage. 

For data integration methods, we applied the Two-Stage 
data fusion strategy summarized in Fig. 1. Briefly, at the first 
stage, RF-based filters were used to select top 100 features 
from each individual view. The second stage represents the 
data fusion step where either CCAFF or CCAFS filter was 
used to integrate the 100 features from each view 
into integrated/fused features. If a RF-based filter was used in 
the second stage, this filter would be applied to the 
concatenation of Stage II inputs.  

In the case of CCAFF and CCAFS methods, we set the 
Pyrcca regularization parameter to 0.1 and experimented with 
𝑑 =  10, 20, . . . , 50 canonical componenets. For CCAFS, we 
set the weights to 0.4, 0.3, and 0.3 for RNA-Seq, RPPA, and 
CNA views, respectively. Our choice of these weights was 
based on the performance of view-specific models (see Section 
III.A). 

We used the 5-fold cross-validation procedure to evaluate 
our classifiers and we assessed their predictive performance 
using the following widely used threshold-dependent and 
threshold-independent metrics [31]: Accuracy (ACC), 
Sensitivity (Sn), Specificity (Sp), Matthews Correlation 
Coefficient (MCC), and Area Under ROC Curve (AUC). It 
should be noted that feature selection methods were applied at 
each iteration in the 5-fold cross-validation procedure such that 
selected features are determined using training data only. 

III. RESULTS AND DISCUSSION 

A. Performance Comparisons of View-specific Models 
Our first set of experiments was conducted to determine 

which individual data source (view) could be used to build 
good prediction models of KIRC survival. Fig. 2 shows the 
AUC of different classifiers evaluated using 5-fold cross-
validation and the top k = {10, 20, 30,..., 100} features selected 
using the feature importance scores inferred from a RF 
classifier trained using training data at each fold. Interestingly, 
classifiers developed using CNA seem to have poor 
classification performance with the highest observed AUC 
equals 0.59. On the other hand, the vast majority of the 
classifiers developed using RNA-Seq data have substantially 
better performance (e.g., AUC close to 0.70). The best 
performing RNA-Seq based classifier is RF trained and tested 
using only top 10 selected features. Finally, classifiers using 
RPPA data have AUC centered around 0.65 and the highest 
AUC of 0.69 is obtained using LR and top 20 selected features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Overview of the Two-Stage framework for integrating KIRC 

multi-omics data.  
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Unsurprisingly, our results indicate that both the best 
machine learning algorithm and the optimal number of features 
for predicting KIRC survival are view-specific. For CNA and 
RNA-Seq views, RF models consistently outperformed XGB 
and LR models for the vast majority of choices of the number 
of features, while for RPPA view, RF models were 
outperformed by either XGB or LR models for all choices of k 
except for k = 30. 

Our choice of embedded feature selection method using a 
RF classifier was based on exploratory analysis and evaluation 
of several feature selection methods including RF feature 
importance [26]; Lasso [32]; ElasticNet [33]; and Recursive 
Feature Elimination (RFE) [34] (data not shown). Results of 
this analysis also suggested that a Two-Stage  (TS) feature 
selection approach is better than a Single-Stage (SS) feature 
selection. In this Two-Stage feature selection approach, an 
embedded feature selection method using RF classifier was 
used to select the top 100 features and then a second RF-based 
filter was used to select the top k features out of the top 100 
features. Table III compares the top performing view-specific 
classifiers obtained using SS and TS feature selection methods. 
For CNA data, the best RF classifier using top 10 TS features 
has 0.03 improvement in AUC compared to the best RF 

classifier using top 100 SS features. The improvement is 
substantial when we compare RF classifiers trained using SS 
and TS selected features. Using SS selected features, the best 
performing RF classifier uses 100 features and has an AUC of 
0.54 whereas using TS selected features, a higher AUC of 0.61 
is observed using only 10 selected features. For RNA-Seq data, 
the best performing classifier using TS feature selection 
method has 0.01 improvement in AUC compared to the best 
performing classifier using SS feature selection method. 
Surprisingly, for RPPA dataset, slightly better AUC is 
observed using SS feature selection method. One possible 
justification is that the RPPA dataset has only 274 features and 
Single-Stage feature selection is sufficient. Based on these 
results, our data fusion models, reported in the following 
subsections, used the Two-Stage feature selection framework 
in Fig. 1.  

B. Performance Comparisons of Baseline Data Fusion 
Models 
We report the results of two baseline data fusion 

approaches (both were applied to the top 100 features selected 
from each view using RF-based embedded filter). The first 
approach, called Concatenation of Input Features (CIF), 
concatenates the 100 input features from each view into a 
single combined view and then uses a second stage RF-based 
embedded filter for selecting the top k features. The major 
limitation of this basic approach is that it does not keep track of 
the source  (i.e. view) of each feature. The second basic 
approach is called Concatenation of Selected Features (CSF). 
Briefly, CSF uses a second stage RF-based embedded filter for 
selecting the top 𝑘/𝑣  features out of the 100 input features 
selected at first stage from each view, where v is the number of 
views. The major limitation of CSF is that each view is treated 
independently from other views and thus it ignores 
complementary relationships between features in different 
views.    

Fig. 3 shows the AUC scores for different classifiers 
constructed using CIF and CSF data fusion approaches for 
integrating CNA, RNA-Seq, and RPPA views.  For models 
evaluated using the CIF data fusion approach, XGB classifiers 
outperform RF and LR classifiers for 𝑘 ≥  50 and the highest 
observed AUC is 0.74 for k = 60 or 70. For models evaluated 
using the CSF approach, RF classifiers have the highest AUC 
score for all values of k considered in our experiments except 
for k = 20 and 30 where LR classifiers have the highest AUC 
scores of 0.71 and 0.74, respectively.  

So far, the best performing models for predicting KIRC 
survival were obtained using LR algorithm and either top 10 
RNA-Seq features (AUC = 0.73) or top 30 integrated features 
selected using the CSF method (AUC =0.74). Next, we report 
the predictive performance of multi-view models based on 
CCA feature fusion [19] and our proposed CCA feature 
selection algorithm. 

C. Multi-view Models Outperform View-specific and Baseline 
Data Fusion Models   
We evaluated CCA feature selection (CCAFS) and CCA 

feature fusion (CCAFF) models for integrating CNA, RNA-
Seq, and RPPA views by projecting the top 100 features  

 
Figure 2. AUC scores for view-specific models evaluated using a) CNA, 

b) RNA-Seq, and c) RPPA views of the KIRC dataset.  
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TABLE III.  PERFORMANCE COMPARISON OF TOP PERFORMING VIEW-SPECIFIC MODELS USING SINGLE-STAGE (SS) AND TWO-STAGE(TS) FEATURE SELECTION. 

Method View Classifier No of features ACC Sn Sp MCC AUC 
SS CNA RF 100 0.71 0.91 0.20 0.16 0.59 
SS RNA-Seq RF 10 0.74 0.88 0.39 0.30 0.72 
SS RPPA LR 20 0.62 0.69 0.45 0.15 0.69 
TS CNA RF 10 0.71 0.92 0.19 0.17 0.62 
TS RNA-Seq LR 10 0.71 0.82 0.41 0.27 0.73 
TS RPPA RF 20 0.74 0.92 0.29 0.28 0.68 

 

 

selected from each view into a common d-dimensional space 
where d = 10, 20,..., 50 using the CCA algorithm. Due to space 
limitation, we report only the best results obtained using d =50.  

Fig. 4 reports the AUC scores for different classifiers 
evaluated using the top k features selected jointly from the 
three views using our proposed CCAFS method. We note that 
the XGB classifier outperforms RF and LR classifiers for 
k ≥  30  and the highest reachable AUC score of 0.76 is 
reported using k = 100. This XGB classifier outperforms the 
best view-specific model (AUC = 0.73) as well as the best CIF 
and CSF models (AUC = 0.74). Moreover, this XGB classifier 
has 0.05 increase in AUC when compared to the best view-
specific XGB classifier (see Fig. 2).   

Table IV compares the top performing RF, XGB, and LR 
classifiers built using CCAFS and CCAFF multi-view features. 
Better performance metrics are noted for RF and XGB models 
trained using CCAFS based integrated views while for LR 
classifiers, better performance measures are observed using the 
CCAFF approach. A major limitation of CCAFF models is that 
these models are hard to interpret since the input to the 
classifier is the projected views. Fortunately, CCAFS based 
models are trained using features selected jointly from the 
multiple views and, therefore, enables the examination of the 
learned models for getting insights and for identifying key 
features (e.g., biomarkers for KIRC survival).  

It is worth noting that all the models summarized in Table 
IV have low specificity. Fortunately, higher specificities could 
be obtained by increasing the threshold for converting 
predicted probabilities into binary labels. For estimating 
threshold-dependent metrics in Table IV, we used an arbitrary 
threshold of 0.5 such that instances with predicted probabilities 
greater than 0.5 were assigned positive labels. To examine the 
trade-off between sensitivity and specificity, we report the 
average ROC curves for classifiers in Table IV (see Fig. 5). 
Fig. 5 shows that the ROC curve for the XGB classifier trained 
using CCAFS integrated view, CCAFS_XGB, almost 
dominates all other ROC curves. In other words, for any choice 
of specificity between 0.95 and 0.4, CCAFS_XGB has a 
corresponding better sensitivity than the rest of the classifiers 
considered in this experiment.   

Next, we provide an analysis of the top multi-view features 
used by the best performing model with AUC equals 0.76.  

D. Analysis of Top Selected Multi-view Features 
To get a robust estimate of feature importance, we 

evaluated the best model (XGB classifier using top 100 
features selected using CCAFS with 50 CCA components) 100 
times using different random partitioning of the data into 80% 
for training and 20% for test. In each run, the top 100 selected 

 
Figure 3. AUC scores for different classifiers developed using two 
baseline data fusion methods: a) Concatenation of Input Features 

(CIF), b) Concatenation of Selected Features (CSF). 

 
Figure 4. AUC scores of three classifiers evaluated using CCA-

based Feature Selection (CCAFS) 
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TABLE IV.  PERFORMANCE COMPARISON OF CCAFS AND CCAFF MODELS USING THREE CLASSIFIERS FOR PREDICTING KIRC SURVIVAL USING THREE MULTI-
OMICS VIEWS. 

Method Classifier No of features ACC Sn Sp MCC AUC 
CCAFS RF 100 0.76 0.92 0.35 0.34 0.73 
CCAFS XGB 100 0.74 0.88 0.42 0.32 0.76 
CCAFS LR 40 0.70 0.84 0.36 0.25 0.68 
CCAFF RF NA 0.72 0.95 0.13 0.15 0.66 
CCAFF XGB NA 0.73 0.91 0.28 0.26 0.68 
CCAFF LR NA 0.70 0.77 0.54 0.29 0.71 

 

TABLE V.  TOP 20 FEATURES SELECTED FROM EACH VIEW AND THEIR IMPORTANCE SCORES. REPORTED SCORES ARE AVERAGED OVER 100 RUNS OF CCAFS 
METHOD EVALUATED USING 80% OF THE DATA FOR TRAINING AND THE REMAINING SAMPLES FOR TEST. 

Rank RNA-Seq Score RPPA Score CNV Score 
1 OLIG1 0.58 PYGL-R-E 0.46 MIR3136 0.19 
2 PCK1 0.57 GYS_pS641-R-V 0.46 C3orf49 0.17 
3 XIST 0.51 YAP_pS127-R-C 0.46 EBF1 0.14 
4 C4orf31 0.51 beta-Catenin-R-V 0.42 EIF4E1B 0.14 
5 SAA1 0.50 LDHB-M-E 0.42 RGS14 0.14 
6 ST8SIA6 0.48 EPPK1-M-C 0.38 FAM170A 0.14 
7 APOB 0.48 GYS-R-V 0.37 LINC00698 0.13 
8 GBA3 0.45 TFRC-R-V 0.37 RN7SL294P 0.12 
9 PKP3 0.44 PKC-alpha_pS657-R-V 0.36 ABHD6 0.12 
10 SAA2 0.44 HIF-1_alpha-M-E 0.35 FAM19A1 0.12 
11 PTPRH 0.43 Collagen_VI-R-V 0.35 RN7SKP150 0.12 
12 SLC17A4 0.42 p62-LCK-ligand-M-E 0.35 GPR98 0.11 
13 LPPR5 0.40 Cyclin_B1-R-V 0.34 C5orf45 0.11 
14 SLC10A2 0.39 B-Raf_pS445-R-V 0.34 RNA5SP135 0.11 
15 SPTBN2 0.39 SHP-2_pY542-R-C 0.34 SLC25A26 0.10 
16 COL11A1 0.39 PKM2-R-C 0.34 RAD18 0.10 
17 TNNT1 0.38 Fibronectin-R-C 0.33 snoU13|ENSG00000238568.1 0.10 
18 PAEP 0.38 Src-M-V 0.33 ADAMTS2 0.10 
19 TRHDE 0.38 CA9-M-E 0.33 NOP16 0.10 
20 TBC1D3G 0.38 PYGB-R-V 0.32 ARRDC3 0.10 

Avg. 
 

0.45 
 

0.37 
 

0.12 
 

 

 

features were recorded and the feature importance scores of 
these features were incremented by 1.  Table V summarizes the 
top 20 features selected from each view. We note that the 
average scores for top selected RNA-Seq, RPPA, and CNV are 
0.45, 0.37, and 0.12, respectively. Interestingly, ranking the 
three views by their average feature importance scores is in 
agreement with ranking them by the highest AUC that could be 
reached using view-specific models (See Fig. 2). 

Similarly, we examined the best view-specific model (LR 
classifier using top 10 features selected using Two-Stage RF-
based embedded filter). Table VI summarizes the top 10 
selected RNA-Seq features. Surprisingly, only 5 features 
(highlighted in bold in Table VI) out of the 10 RNA-Seq 
features are shared with the top 20 RNA-Seq features selected 
using CCAFS method. This observation suggests that selecting 
features jointly from the three views is more likely to yield a 
set of features that are different from those selected 
independently from each single view. 

Lastly, we applied gene-set enrichment analysis to identify 
overrepresented gene ontology (GO) terms in the two sets of 
RNA-Seq genes in Tables V and VI. Specifically, we used the 
gene-batch tool in GOEAST (Gene Ontology Enrichment 
Analysis Software Toolkit) [35] to identify significantly 
overrepresented Biological Processes GO terms for the two 
sets of RNA-Seq genes. We also used the Multi-GOEAST tool 

 
Figure 5. Average ROC curves for top performing CCAFF and 
CCAFS based models for predicting KIRC survival using three 

multi-omics views. 
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TABLE VI.  TOP 10 RNA-SEQ FEATURES SELECTED USING 100 RUNS OF 
TWO-STAGE RF-BASED EMBEDDED FILTER. BOLD TEXT HIGHLIGHTS FEATURES 

OVERLAPPING WITH THOSE SELECTED USING CCAFS METHOD. 

Rank RNA-Seq Score 
1 CHST9 0.99 
2 XIST 0.80 
3 OLIG1 0.62 
4 LPPR5 0.61 
5 C4orf31 0.59 
6 PRAP1 0.47 
7 PCK1 0.39 
8 AKR1B10 0.39 
9 DNAJB13 0.38 
10 HABP2 0.38 

 
to compare the results of the enrichment analysis of these two 
sets. We noted that the set of 20 RNA-Seq genes identified by 
our multi-view feature selection method was enriched with 
only 9 GO terms while the smaller set of 10 RNA-Seq genes 
determined using single-view feature selection method was 
enriched with 20 GO terms. Four statistically significant (p-
value less than 0.0003) overrepresented GO terms related to 
carbohydrate biosynthetic process were in common between 
the two sets. The remaining GO terms enriched in the set of 10 
genes belong to carbohydrate metabolic process, small 
molecule metabolic process, and single-organism biosynthetic 
process. Interestingly, two statistically significant 
overrepresented GO terms (acute inflammatory response, p-
value = 1.15e-5) and (acute phase response, p-value = 1.45e-6) 
were found to be enriched only in the set of the 20 genes. An 
acute inflammatory response is known to be beneficial in 
response and tissue damage and could have a role in tumor 
suppression [36]. 

IV. CONCLUSION 
Integrative analysis of heterogeneous high-dimensional 

multi-omics data, such as somatic mutation, copy number 
alteration (CNA), DNA methylation, RNA-Seq gene 
expression, and protein expression, is a major challenge in 
translational bioinformatics. Multi-view feature selection is a 
promising approach for integrating multi-omics data in a 
manner that takes into consideration interactions within and/or 
between different omics data sources. In this work, we 
presented a novel multi-view feature selection algorithm based 
on the well-known canonical correlation analysis (CCA) 
statistical method. We demonstrated the effectiveness of our 
proposed method in developing integrated models for the 
challenging task of predicting kidney renal clear cell carcinoma 
(KIRC) survival.  

A major limitation of CCA-based feature fusion/selection 
methods described in this study is that feature fusion/selection 
was performed using unsupervised CCA. We conjecture that 
incorporating the labels of training data could lead to learning a 
better common subspace. Our ongoing work aims at 
incorporating supervised variants of CCA method (e.g., [37, 
38]) into our framework. Our future work will examine the 
utility of kernalized CCA methods for capturing nonlinear 
relationships among the views.  
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