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Summary and keywords  1 

• Little is known about the characteristics and function of reproductive phased, secondary, 2 

small interfering RNAs (phasiRNAs) in the Poaceae, despite the availability of 3 

significant genomic resources, experimental data, and a growing number of 4 

computational tools. We utilized machine-learning methods to identify sequence-based 5 

and structural features that distinguish phasiRNAs in rice and maize from other small 6 

RNAs (sRNAs).  7 

• We developed Random Forest classifiers that can distinguish reproductive phasiRNAs 8 

from other sRNAs in complex sets of sequencing data, utilizing sequence-based (k-mers) 9 

and features describing position-specific sequence biases.  10 

• The classification performance attained is >80% in accuracy, sensitivity, specificity, and 11 

positive predicted value. Feature selection identified important features in both ends of 12 

phasiRNAs. We demonstrated that phasiRNAs have strand specificity and position-13 

specific nucleotide biases potentially influencing AGO sorting; we also predicted targets 14 

to infer functions of phasiRNAs, and computationally-assessed their sequence 15 

characteristics relative to other sRNAs. 16 

• Our results demonstrate that machine-learning methods effectively identify phasiRNAs 17 

despite the lack of characteristic features typically present in precursor loci of other small 18 

RNAs, such as sequence conservation or structural motifs. The 5’-end features we 19 

identified provide insights into AGO-phasiRNA interactions; we describe a hypothetical 20 

model of competition for AGO loading between phasiRNAs of different nucleotide 21 

compositions. 22 

 23 

Keywords: machine learning, classification, feature selection, reproductive phasiRNAs, 24 

miRNAs, P4-siRNAs, heterochromatic siRNAs, plant small RNAs 25 

 26 

Introduction 27 

Molecular and genomic studies coupled with deep sequencing have identified roles of many 28 

endogenous non-coding RNAs (ncRNAs) and small RNAs (sRNAs) at numerous developmental 29 

stages in many organisms (Tisseur et al., 2011; Guttman & Rinn, 2012; Axtell, 2013; Kung et 30 

al., 2013; Borges & Martienssen, 2015). Flowering plants have three major classes of sRNAs, all 31 
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derived from ncRNAs: microRNAs (miRNAs), heterochromatic or Pol IV-dependent small 32 

interfering RNAs (P4-siRNAs), and phased, secondary, small interfering RNAs (phasiRNAs). 33 

This latter class has grown considerably with the discovery of germline-enriched, reproductive 34 

phasiRNAs most well described in the Poaceae, namely maize and rice (Johnson et al., 2009; 35 

Komiya et al., 2014; Zhai et al., 2015b). Two classes of reproductive phasiRNAs are known: 21-36 

nt pre-meiotic phasiRNAs that peak in abundance during somatic cell specification in maize (one 37 

week after anther initiation), and 24-nt meiotic phasiRNAs that peak during meiosis and are 38 

detectable until pollen maturation (one to two weeks after pre-meiotic phasiRNAs peak) (Zhai et 39 

al., 2015b). The timing, localization, and narrow developmental time window of accumulation of 40 

the 21- and 24-nt phasiRNAs is conserved in rice and maize (Fei et al., 2016). While the 41 

biogenesis and spatiotemporal patterns of accumulation of these reproductive phasiRNAs are 42 

now well described, our understanding of their function is still limited. 43 

 44 

An analogy can be drawn between phasiRNAs of grass anthers and the PIWI-interacting RNAs 45 

(piRNAs) of animals, in aspects such as their biogenesis, developmental timing, and enrichment 46 

in reproductive organs. piRNAs play crucial roles in transposable element (TE) silencing and 47 

germline development from flies to fish to mammals (Meister, 2013). Yet, plants have a highly 48 

elaborate RNA-directed DNA methylation pathway (RdDM) that effectively silences most TEs 49 

(Matzke & Mosher, 2014), thus their need for yet another TE-silencing pathway is debatable. 50 

Emerging evidence implicates plant reproductive phasiRNAs in development; for example, 51 

MEL1, a rice Argonaute (AGO), is required for normal anther development (Nonomura et al., 52 

2007), and this AGO binds to 21-nt reproductive phasiRNAs (Komiya et al., 2014). The 53 

functions and targets are yet to be determined for both 21- and 24-nt reproductive phasiRNAs, 54 

and it is not known whether they function in cis or trans (Song et al., 2012a; Zhai et al., 2015b). 55 

In fact, it is possible that they are merely decay products of more functionally relevant long 56 

ncRNA precursors. Understanding the role of phasiRNAs requires more detailed molecular and 57 

computational analyses that could also serve to direct future experiments. For example, 58 

identifying characteristic features or motifs that differentiate reproductive phasiRNAs from other 59 

sRNAs (miRNAs, P4-siRNAs, etc.) may provide clues as to their AGO loading or targets.  60 

 61 
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Work on animal piRNAs has used sequence-based characteristics to demonstrate their unique 62 

properties; significant insights have resulted from so-called alignment-free approaches. These 63 

methods use short nucleotide sequences, k-mers, and other features to distinguish between 64 

different types of sRNA sequences, and classify them into distinct groups. For example, Zhang et 65 

al., 2011 developed a classifier that can distinguish piRNAs from non-piRNAs (miRNAs, 66 

snoRNAs, tRNAs, and lncRNAs) with precision over 90% and a recall over 60%, within a five-67 

fold cross-validation. This work utilized data from five species including mice, humans, rats, 68 

fruit flies, and nematodes, effectively discriminating piRNAs. In a test of the validity of their 69 

classifier, Zhang et al. (2011) detected >87,000 of ~130,000 piRNAs, in a total set of >600,000 70 

sRNAs. Brayet et al. (2014) used a similar approach to identify piRNAs from sequences of 71 

several types (miRNAs, tRNAs, and 25-33 nt sequences from protein coding genes) in human 72 

and fruit flies with precision over 85% and a recall over 88%. As such, these alignment-free 73 

approaches are quite promising for characterizing subsets of sRNAs within large and complex 74 

pools of un-sorted sequences.  75 

 76 

Our aim was to start with a set of known reproductive phasiRNAs (21- or 24-nt), develop and 77 

optimize a classification pipeline, and ultimately use this to sort previously unknown sequences 78 

from plants to find reproductive phasiRNAs from among other types of small RNAs. An 79 

additional product of this work was the sequence-based characteristics that comprise the output 80 

of the classifier, as these might identify novel aspects of reproductive phasiRNAs. In this work, 81 

we implemented machine-learning approaches to examine plant 21-nt pre-meiotic and 24-nt 82 

meiotic reproductive phasiRNAs, and to build a classifier that can automatically distinguish them 83 

from other sRNAs (i.e., miRNAs and P4-siRNAs). Our results provide insights into phasiRNA 84 

sequence composition profiles and biases, sequence-based and positional features, aspects of 85 

their biogenesis, features that may influence AGO sorting, predicted targets and possible 86 

functions.  87 

 88 

Methods 89 

Classification via machine learning 90 

We use the Random Forest (“RF”) (Breiman, 2001) classification method, which is based on 91 

building an ensemble of decision trees. This method has proven effective for addressing a variety 92 
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of classification problems in bioinformatics (Yang et al., 2010; Lertampaiporn et al., 2014). We 93 

employed the WEKA implementation of RF (Frank et al., 2016) to build the model for 94 

distinguishing phasiRNAs (to which we refer as the positive set) from non-phasiRNAs (the 95 

negative set). As we study two sets of reproductive phasiRNAs, characterized by two distinct 96 

lengths, namely 21- and 24-nt, for each set we have trained two distinct classifiers, one for each 97 

length. When training each of these classifiers, we have varied the composition of the negative 98 

sets of non-phasiRNAs to which the phasiRNAs were compared (more details are in the data set 99 

used for cross validation study, Method S1).   100 

 101 

To train and test the classifiers we developed, we have used the commonly used stratified five-102 

fold cross-validation (CV) framework (Kohavi, 1995). Under this framework, the dataset is 103 

partitioned into five subsets, where each subset has the same ratio of positive instances to 104 

negative instances as the whole dataset. Once the data is partitioned, five iterations of training 105 

and testing are performed, where in each iteration four parts of the data (80%) are used for 106 

training and the remaining part (20%) is used for testing. To ensure stability and reproducibility 107 

of the results, the whole five-fold CV experiment was repeated five times, each using a different 108 

five-way split (partition) of the dataset.  109 

 110 

Performance evaluation 111 

To assess classification performance we use the standard measures of accuracy (ACC), 112 

specificity (SP), sensitivity (SE), positive predictive value (PPV), and area under the receiver 113 

operating characteristic curve (AUC), whose formulae and descriptions are as follows:  114 

•  Sensitivity  �� �
|��|

|��|�|��|
  ;  115 

• Specificity  �� �
|��|

|��|�|��|
    ; 116 

• Accuracy   ��� �
|��|�|��|

|��|�|��|�|��|�|��|
  ;   117 

• Positive Predictive Value  ��	 �
|��|

|��|�|��|
  ; 118 

where True Positives (TP) denotes the set of correctly classified phasiRNAs, True 119 

Negatives (TN) denotes the set of correctly classified non-phasiRNAs, False Positives 120 

(FP) denotes the set of non-phasiRNA sequences that were classified as phasiRNAs, and 121 
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False Negatives (FN) denotes the set of phasiRNA sequences that were not classified as 122 

such by our classifier. The number of items in the sets TP, TN, FP, and FN is denoted by 123 

|TP|, |TN|, |FP|, and |FN|, respectively. 124 

• The Area Under the ROC Curve (AUC) is an effective and joint measure of sensitivity 125 

and specificity, which is calculated by the Receiver Operating Characteristic curve 126 

(ROC). AUC determines the relative performance of classifiers for correctly classifying 127 

phasiRNAs and non-phasiRNAs. Values of AUC are between 0 (worst performance) and 128 

1 (best performance). ROC illustrates the true positive rate (sensitivity) against the false-129 

positive rate (1 - specificity). 130 

 131 

Development of a machine learning classifier for plant small RNAs 132 

The classification pipeline we developed takes as input a set of plant small RNA sequences to 133 

assess for each sequence whether it has attributes or not of a reproductive phasiRNA, based on a 134 

training/test set, returning a “yes” or “no” response. Thus, for this decision, feature 135 

characterization is crucial. The pipeline used several sequence- and structural-based features. 136 

One known feature of reproductive phasiRNAs is a 5′-terminal cytosine, described for 21-nt 137 

phasiRNAs bound by MEL1, a rice Argonaute (Komiya et al., 2014). Another known 138 

characteristic of both 21- and 24-nt reproductive phasiRNAs is their origin from unique or low 139 

copy regions in the genome (Johnson et al., 2009; Zhai et al., 2015b). Beyond these features, 140 

little was known about their sequence composition, true even for other classes of plant small 141 

RNAs.  142 

 143 

Thus, to build a classifier, we utilized an alignment-free approach based on k-mers. These k-mer 144 

motifs (more details in Method S2), together with the GC content and Shannon entropy of the 145 

small RNA, comprised the sequence-based features of the classifier. The other major component 146 

of the classifier was a set of positional features, calculated for each sequence to determine the 147 

presence or absence of a given nucleotide in a determined sequence position. These two sets of 148 

attributes for each sequence comprised 1498 features, most of which were short k-mers or words 149 

that we could use to classify plant small RNAs. Before each classification, feature selection of 150 

the top 250 most informative features (of the 1498) was performed as a step to better understand 151 

which features play key roles in classifying phasiRNAs; this allowed us to reduce the feature 152 
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dimensionality comprising classification without compromising or negatively impacting the 153 

classifier’s performance (more details in Method S2).  We have also experimented with different 154 

number of trees and of features used. Consequently, to estimate the performance of the classifier, 155 

RF was applied using 100 trees, five out of 250 features assessed (five randomly sampled 156 

features selected as candidates at each split) at each split, and five complete runs of the 5-fold 157 

CV. 158 

 159 

The scripts used for this work are available on GitHub 160 

(https://github.com/pupatel/phasiRNAClassifier). 161 

 162 

Results 163 

Cross validation results distinguishes reproductive phasiRNAs from other sRNAs 164 

We sought to identify unique attributes of rice and maize reproductive phasiRNAs relative to 165 

other, better-described small RNA classes. To do this, we developed a machine learning-based 166 

workflow focused on sequence-based and structural features of plant small RNAs (Fig. 1). To 167 

train the classifier, we used as positive examples known reproductive phasiRNAs from rice and 168 

maize, including both 21-nt and 24-nt phasiRNAs, while the negative sets consisted of P4-169 

siRNAs, miRNAs, tRNAs, and rRNAs (see Method S1). We built and evaluated classifiers by 170 

utilizing different negative sets; the performance measurements were achieved via five-fold 171 

cross-validation (CV), and this 5-fold CV was completed five times on our datasets (see Methods 172 

for a more complete explanation). As noted above, the classification results were in terms of 173 

ACC, SE, SP, PPV, and AUC. 174 

 175 

The results obtained from our classification pipeline using different negative sets, are shown in 176 

Table 1.  The results, according to all performance measures, exceed 0.8 (with one exception, see 177 

below), for both 21- and 24-nt phasiRNAs. We first examined 21-nt phasiRNAs, and we 178 

compared phasiRNAs to a mixture of sRNAs that include selected miRNAs, P4-siRNA, tRNAs, 179 

and rRNAs; these latter four cases represent the four major negative sets (i.e. not phasiRNAs) 180 

found in a typical plant sRNA dataset (Table 1). In an initial comparison, the negative sets 181 

included miRNAs, tRNAs, and rRNAs of different lengths (randomly selected endogenous 182 

sequences); all P4-siRNAs were 24-nt. The classifier identified the combined negative set as 183 
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quite distinct relative to 21-nt phasiRNAs (Table 1). In addition, we computed the area under the 184 

ROC curve (AUC) (Fig. S1c), demonstrating the performance of the above-mentioned classifier 185 

with an averaged AUC of 0.97. Next, we combined untrimmed miRNAs and 24-nt P4-siRNAs 186 

and still achieved high classification performance (Table 1). This classification result could 187 

indicate that length is a primary factor in classification, and thus we used trimmed negative sets 188 

to assess this possibility.  189 

 190 

We classified 21-nt phasiRNAs relative to 24-nt P4-siRNAs with 3 nt trimmed from the 3’ end 191 

(see Method S1); the classifier performed reasonably well (>0.8 for all measurements, ACC, SP, 192 

SE, PPV, and AUC). We also trimmed P4-siRNAs 3 nt from the 5’ end or from the internal 11th, 193 

12th, and 13th positions, observing no substantial changes in classification. We concluded that 21-194 

nt reproductive phasiRNAs are compositionally distinct from P4-siRNAs. Finally, we related 21-195 

nt phasiRNAs to 21-nt miRNAs (some trimmed, see Method S1), and found similar ACC, higher 196 

SE, but slightly lower SP and PPV; the lower SP may be attributed to fewer miRNAs (756 vs 197 

2000 21-nt phasiRNAs in the positive set). This imbalance possibly misclassified some miRNAs, 198 

hence low specificity and a high number of false positives (lower PPV). We followed the same 199 

procedure in classifying the 24-nt phasiRNAs, first with 24-nt P4-siRNAs and next with the 200 

combined negative set. In both cases, the classification of the negative set against 24-nt 201 

phasiRNAs, resulted in strong scores for all four performance measurements (Table 1), again 202 

indicative that the 24-nt phasiRNAs are also compositionally distinctive. In addition, we 203 

observed an averaged AUC of 0.93 when classifying 24-nt phasiRNAs with the combined 204 

negative set (Fig. S1d). We concluded that our classification pipeline successfully classified 205 

reproductive phasiRNAs relative to other endogenous plant sRNAs with high values for ACC, 206 

SE, SP, PPV, and AUC.  207 

 208 

Next, we investigated the predictive sensitivity of our pipeline, asking whether it can correctly 209 

classify previously unutilized members of a larger positive set of reproductive phasiRNAs. In 210 

other words, these new sequences were different from the 2000 used in the positive set during 211 

cross validation study. The classifier was given, first, 27500 21-nt phasiRNA sequences and, 212 

next, 7750 24-nt phasiRNA sequences (rice and maize combined, in each case). The 213 

classification pipeline based on models that combined each of the negative sets (miRNAs + P4-214 
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siRNAs + tRNAs + rRNAs) predicted 26208 21-nt phasiRNAs (SE > 0.96) and 7093 24-nt 215 

phasiRNAs (SE > 0.90), achieving high sensitivity in the two genomes from which we 216 

developed the models (Table 2a).  217 

 218 

As additional test, we aimed to test the trained model in a different genome. To do so, we 219 

generated new small RNA data from panicles of the model grass Setaria viridis (see Method S3 220 

and Table S1). We then applied the aforementioned classification models developed from rice 221 

and maize to assess reproductive phasiRNAs in these S. viridis data, to evaluate the potential of 222 

this approach across species. In S. viridis, a dataset and genome that we had not previously 223 

analyzed, the models predicted 1868 21-nt phasiRNAs and 1723 24-nt phasiRNAs with a 224 

sensitivity (SE) of > 0.93 and > 0.86, respectively (Table 2b).  We concluded that the machine-225 

learning method is effective for de novo classification of plant small RNAs. 226 

 227 

Position-specific biases in phasiRNAs relative to other small RNAs 228 

Next, knowing that reproductive phasiRNAs are distinct from other classes of small RNAs, we 229 

sought to characterize these differences in greater detail, at the single nucleotide level. We 230 

computed single-nucleotide sequence profiles for the most abundant 1000 reproductive 231 

phasiRNAs (for 21-nt or 24-nt, rice and maize data combined), miRNAs, and 24-nt P4-siRNAs, 232 

determining the frequencies of each nucleotide (A, C, G, and U) at each position (Fig. 2). We 233 

then compared the position-specific base usage between the reproductive phasiRNAs and either 234 

miRNAs or 24-P4-sRNAs by conducting a two-tailed, rank sum test (P = 1e-5) to identify 235 

positions with statistically significant base usage that would distinguish phasiRNAs from either 236 

miRNAs or P4-siRNAs (Fig. 2).  237 

 238 

At a significance level of 10-5, comparing the 21-nt phasiRNAs and miRNAs, we found that the 239 

usage of bases at eight positions differed significantly (positions 1, 2, 8, 19, and 21; Fig. 2a). 240 

Next, we repeated the calculation, comparing 21-nt reproductive phasiRNAs and 24-nt P4-241 

siRNAs (Fig. 2b), demonstrating significant differences at positions 1, 14, 19, 20, and 21. 242 

Combining these results, we made several observations: (i) in these abundant 21-phasiRNAs, 243 

there was a 5’ nucleotide preference for C, consistent with a recent report (Komiya et al., 2014), 244 

but a strong depletion of G. (ii) We noticed a peak of U at the 14th position in the phasiRNAs 245 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2018. ; https://doi.org/10.1101/242727doi: bioRxiv preprint 

https://doi.org/10.1101/242727
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

(relative to P4-siRNAs), unusual as there were no other biased positions between 3 and 19; the 246 

only other internal position showing bias was a G at position 8 in the miRNAs (Fig. 2a). (iii) In 247 

the 3’ end of the 21-nt phasiRNAs, we observed a peak of G at the 19th position (with a 248 

depletion of A), and U at the 21st position (G strongly disfavored). This representation of G at the 249 

19th position was investigated in more detail below. 250 

 251 

We conducted a similar analysis comparing the position-specific base usage between the 24-nt 252 

reproductive phasiRNAs and P4-siRNAs. We found that positions 1, 10, 20, 21, 22, and 23 were 253 

statistically different (Fig. 2c); in other words, the 24-nt phasiRNAs and P4-siRNAs differed 254 

substantially in their base usage over the full length of the molecules.  All of the over-255 

represented nucleotides in 24-nt phasiRNAs were either A or U (Fig. 2c); the 5’- and 3’ -ends 256 

showed differences in the two classes of molecules, and internal positions 10 and 11 were 257 

overrepresented for U in the 24-phasiRNAs. These correspond to the same two internal positions 258 

critical for directing cleavage by AGO proteins in the case of miRNAs (Carrington & Ambros, 259 

2003), so we noted this for subsequent phasiRNA target analysis (see below). The 3’-end 260 

difference was most striking - in the P4-siRNAs, there was a high frequency of G from the 20th 261 

to 24th positions and a coincident depletion of U (Fig. 2c), whereas 24-nt phasiRNAs had an 262 

overrepresented A at the 22nd position and U at the 3’ end. Therefore, we identified several 263 

notable sequence-based features of both classes of reproductive phasiRNAs, observed at both the 264 

5’- and 3’-ends and a small number of internal positions; the 24-nt phasiRNAs also displayed an 265 

overall nucleotide composition distinct from that of P4-siRNAs. These differences likely have 266 

implications for AGO loading and phasiRNA-target interactions, while also potentially 267 

explaining the non-stoichiometric abundances of individual phasiRNAs at each PHAS locus. 268 

 269 

As observed for animal miRNAs (Chatterjee et al., 2011; Tamim et al., 2018), it’s possible that 270 

the non-stoichiometric abundances at a PHAS locus results from AGO loading and subsequent 271 

stabilization of functional siRNAs. We next computed the sequence profile of ‘present’ or 272 

‘absent’ reproductive phasiRNAs in rice and maize; in other words, at a given PHAS locus, some 273 

phasiRNAs are never observed in the sequenced sRNAs, but we could extract these 274 

computationally and assess their sequence composition biases relative to those we detected 275 

experimentally. In a comparison to those phasiRNAs detected in the sequencing data, we 276 
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observed a substantial, overall sequence composition difference for 21-nt phasiRNAs (Fig. 2 a,c 277 

versus Fig. S2a, left). The differences for present versus absent 24-nt phasiRNAs were less 278 

pronounced and mainly towards the 3’-end (Fig. 2c, left, versus Fig. S2a, right). To ensure that 279 

the profiles for detected phasiRNAs were not unduly biased by the selected use of only the top 280 

1000 sequences, we also plotted sequence profile of all sequenced 21-nt phasiRNAs (Fig. S2b, 281 

left) and the 24-nt phasiRNAs (Fig. S2b, right) from the positive set (see Method S2).  We 282 

observed no noticeable changes in the sequence profile relative to the abundance-selected subset 283 

(i.e. Fig. 2 a,c), except a slightly higher representation of 5’U compared to 5’C in the 21-nt 284 

phasiRNAs. The comparison of present versus absent reproductive phasiRNAs demonstrated 285 

significant differences in nucleotide composition, consistent with relative stabilization of those 286 

detected reproductive phasiRNAs after biogenesis; this may reflect AGO loading, target 287 

interactions, or other sequence-specific functions of these phasiRNAs. 288 

 289 

The duplex nature of phasiRNA biogenesis impacts nucleotide composition 290 

The observed nucleotide biases at the 19th position in the 21-nt phasiRNAs and at the 22nd 291 

position in the 24-nt phasiRNAs were the next subject of our investigation. Dicer cleavage of 292 

dsRNA typically yields a 2-nt 3′ overhang (Macrae et al., 2006), and thus derived from a long, 293 

dsRNA precursor, each sRNA duplex overlaps by two complementary nucleotides at each end, 294 

with the neighboring phasiRNAs. In a schematic integrating position-specific biases (Fig. 3a,b), 295 

the influence of the most-frequent nucleotides in the “top” strand (the strand generated by RNA 296 

polymerase II, which is also targeted by the miRNA trigger) on the composition of the “bottom” 297 

strand (the strand generated by RNA DEPENDENT RNA POLYMERASE 6, RDR6) is 298 

highlighted for the first and last three nucleotide positions; for example, the 19th position G 299 

corresponds to a 5’ C (1st position) for the duplex phasiRNA. Thus, there is a potential co-bias 300 

between the 1st and 19th positions, such that if both strands of a 21-nt phasiRNA duplex require a 301 

specific 5’ nucleotide to ensure proper AGO loading (like a 5’ C), the 19th position will co-vary 302 

with the 1st position. Alternatively, if only one strand of the duplex is loaded (due to a requisite 303 

5’ nucleotide, the primary biogenesis strand, or other reasons) and the duplex partner is 304 

dispensable, then the 19th position of the loaded strand is under no selective constraints. For 305 

example, in 21-nt phasiRNAs, the 5’ position was predominantly C (40.1%) at the 1st position, 306 

and the most prevalent 19th nucleotide was G (35.7%) (Fig. 4a, upper chart). This is consistent 307 
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with a co-bias for the paired positions in the duplex, yielding duplexes with 5’ C at each end 308 

(Fig. 3a). We can infer that 21-nt phasiRNAs may have no strand specificity and either strand is 309 

likely to be loaded into the AGO protein as long as there is a 5’ C. Similarly, among the 21-nt 310 

phasiRNAs, the 19A and to a lesser extent 19U classes were underrepresented (Fig. 4a, lower), 311 

corresponding to bottom-strand 1U and 1A phasiRNAs in a duplex; since 1U phasiRNAs were 312 

common among the sequenced phasiRNAs (Fig. 4a, upper), we could infer a bias against 1U 313 

phasiRNAs in the complement to phasiRNAs abundant in our libraries. 314 

 315 

To assess positional covariance, we analyzed 21- and 24-nt phasiRNAs versus P4-siRNAs, 316 

comparing the 5’ nucleotide to the position complementary to the bottom-strand 5’ position (19 317 

in 21-nt siRNAs, and 22 in 24-nt siRNAs). We used these results to make inferences (see the 318 

discussion section) about strand specificity in the biogenesis of plant reproductive phasiRNAs. 319 

First, we compared the nucleotide composition at the 19th position of 21-nt phasiRNAs for a 320 

given 1st nucleotide and we performed the same analysis for the 1st position composition with the 321 

19th position fixed (Fig. 4b).  The 1U phasiRNAs (i.e. 5’ U) had an almost uniform distribution 322 

of nucleotides at the 19th position, which was striking relative to the 1C, 1A, and 1G phasiRNAs, 323 

which were depleted for 19A phasiRNAs (and 19U, to a lesser extent). Another noticeable bias 324 

was for 1C phasiRNAs, which were predominantly 19C or 19G, yielding a phasiRNA duplex of 325 

either 1C/1G or 1C/1C (top strand/bottom strand). 19G was prevalent for 1A, 1U, and 1G 326 

phasiRNAs, which in each case would yield a 1C bottom-strand phasiRNA. Next, we analyzed 327 

the 5’ nucleotide composition for 21-nt phasiRNAs after fixing the 19th position (Fig. 4b, lower 328 

panel).  Among 19G phasiRNAs (the predominant group based on Fig. 4a), 1C was most 329 

common, corresponding to a 1C/1C duplex. For 19C phasiRNAs (1G on the complement), a 330 

strong bias of 1C was observed; since 1C 21-nt phasiRNAs are most commonly loaded to MEL1 331 

(Komiya et al., 2014), this was perhaps an indication of strand specificity (i.e. 1C/1G duplexes, 332 

so only the 1C strand loaded). Therefore, among 21-nt phasiRNAs, there is a co-bias of the 1st 333 

and 19th positions, perhaps reflective of strand specificity in AGO loading.  334 

 335 

Next, we performed similar analyses for 24-nt phasiRNAs, focused on the 1st and 22nd positions 336 

(Fig. 3b).  The 1st position was less biased than 21-nt phasiRNAs, although 1G was also 337 

underrepresented (Fig. 4c, upper); at the 22nd position, there was less bias than for the 19th 338 
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position of the 21-mers (Fig. 4c, lower), with an increase of A representation, particularly 339 

relative to other nucleotide positions (Fig. 2c, left). 22A corresponds to 1U in the complement, 340 

and since 1U 24-nt phasiRNAs were common in our dataset (Fig. 4c, upper), both phasiRNAs in 341 

such a duplex are favored in our data, consistent with a lack of strand specificity. Lower levels of 342 

1st/22nd position covariation were observed in 24-nt than 21-nt phasiRNAs (Fig. 4d), and there 343 

was an overall A-U enrichment (Fig. 2c), demonstrating more relaxed sequence constraints.  344 

 345 

For comparison to the 24-nt phasiRNAs, we measured the position-specific nucleotide biases for 346 

P4-siRNAs. Their precursors have been described (Fig. 3d; summarized from Blevins et al., 347 

2015; Zhai et al., 2015a), although the nature of RDR2-derived bottom strands is as-yet 348 

incompletely understood (i.e. how they initiate and terminate relative to the ends of the P4 349 

precursor). Unlike phasiRNAs, however, there is no expectation of P4-siRNA “duplexes” 350 

whereby either strand could be loaded, and data from Zhai et al. (2015a) indicate that the P4 351 

strand is preferably loaded over the RDR2 strand (Fig. 3c). Apart from the strong overall 1A bias 352 

mentioned above, no notable co-variation biases were observed (Fig. 4e,f); i.e. the proportional 353 

representation in the 22nd position was essentially invariant, regardless of the 1st position 354 

nucleotide, G>C>A>U, consistent with a strong overall bias to the GGGGC motif in the 3’ end 355 

(Fig. 2c).  356 

 357 

Combining the compositional analyses described above, we applied these same approaches to an 358 

unusual group of siRNAs, a set of 22-nt, putative heterochromatic siRNAs that are RDR2-359 

independent, thus far found only in maize (Nobuta et al., 2008). We were interested to analyze 360 

these “22-nt hc-siRNAs” because they are poorly characterized and their relationship to P4-361 

siRNAs is not known (see Method S4 for extracting 22-nt siRNAs).  The most significant 362 

difference between 22-nt hc-siRNAs and 24-nt P4-siRNAs was at 5’ end positions 1, 3 and 4 363 

(Fig. S3 a,b), but the level of A in 22-nt hc-siRNAs was significantly lower from position 12 to 364 

the 3’ end, compared to the 24-nt P4-siRNAs. There were apparent 3’ differences as well, but 365 

this was from the comparison performed by counting nucleotides from the 5’ end. We reassessed 366 

differences by aligning the 3’ ends and measuring positions starting from the 3’ end (i.e. 367 

comparing up to five positions at the 3’ end minus N nucleotides), in case AGO binding occurs 368 

in some cases from the 3’ end. Measured this way, we observed only one 3’ difference, at the 3’ 369 
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end – 1 position, at which the G-U composition varied significantly (Fig. S3c).  We next looked 370 

at covariation between the 20th and 1st nucleotides in the 22-nt hc-siRNAs; as with P4-siRNAs, 371 

the 20th nucleotide representation was more or less the same for all 5’ nucleotides, and even for 372 

the major class of 5’ U siRNAs, 20th position G or C nucleotides were equally represented (Fig. 373 

S3d). This lack of bias would yield many bottom strand 5’ G sRNAs which are disfavored, 374 

consistent with strand specificity for the 22-nt hc-siRNAs (Fig. S3e).  Thus, these RDR2-375 

independent 22-nt siRNAs may be produced by the activity of other RDRs such as RDR1 or 376 

RDR6; although the RNA polymerase generating their primary strand precursor remains to be 377 

determined, the 5’ difference of 22-nt hc-siRNAs compared to P4-siRNAs suggests an 378 

alternative production pathway and/or function. 379 

 380 

The results of analysis of the nucleotide and co-variation biases across different classes of 381 

siRNAs at the 5’ and 3’-proximal ends are consistent with evidence of strand specificity for both 382 

21- and 24-nt phasiRNA duplexes. There is stronger support for strand selection of 21-nt 383 

reproductive phasiRNAs, perhaps reflective of selection by the AGO protein of one strand over 384 

the other.  385 

 386 

Predicted targets of reproductive phasiRNAs as a means to infer function 387 

As little is known about the targets and the functions of the reproductive phasiRNAs, we 388 

attempted to predict targets for the 500 most abundant pre-meiotic (21-nt) and meiotic (24-nt) 389 

phasiRNAs in rice. Using standard criteria (i.e. modeled on known miRNA-target interactions), 390 

prior reports have failed to find targets of reproductive phasiRNAs, while reporting few details 391 

of these analyses due to the negative result (Song et al., 2012b; Zhai et al., 2015b). We revisited 392 

this topic because new, more powerful, faster and flexible target prediction methods are 393 

available; prior work used a “seed-based” sRNA-target interaction pipeline, which is derived 394 

from models of animal miRNAs and does not accurately capture the target similarity of most 395 

plant miRNAs (Kakrana et al., 2014). We used sPARTA (Kakrana et al., 2014) based on a 396 

“seed-free” approach and allows greater flexibility in pairing parameters. To gain insights about 397 

phasiRNA targeting, we conducted a comparative analysis, measuring class-by-class how 398 

predicted targets of these abundant phasiRNAs compared to those of other known sRNAs, such 399 

as miRNAs and P4-siRNAs. 400 
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 401 

21-nt phasiRNAs 402 

First, we compared in rice the distribution of predicted target scores (TS) of 21-nt phasiRNAs 403 

with a selected set of known, conserved miRNAs (Fig. 5a). We selected plant miRNAs with 404 

numbers lower than miR1000 (i.e. osa-miR162) (n=288), as these are generally abundant, 405 

conserved, and better characterized than any more recently-described miRNAs. For each class, 406 

miRNAs versus 21-nt phasiRNAs, targets were predicted using sPARTA (Kakrana et al., 2014). 407 

We retained two sets of results, either all targets or only the “best” targets (those with a lowest 408 

target penalty score, meaning a high degree of complementarity). Each sRNA would also have at 409 

least one perfect match in the genome, a target score of 0, potentially the result of targeting in 410 

cis. For 21-nt phasiRNAs, the TS distribution showed a peak in the number of best targets at 3.5 411 

(Fig. 5a, left), compared to ~1 for miRNAs (Fig. 5a, right). The relative paucity of TS matches in 412 

the range of 0.5 to 1.5 for 21-nt phasiRNAs was striking, particularly since many miRNAs have 413 

predicted targets in this range. We inferred based on this pattern of sequence complementarity 414 

that 21-nt phasiRNAs, unlike miRNAs, either may function largely in cis via perfect matches or 415 

have been selected to avoid closely-matched targets.  416 

 417 

To dissect these predicted sRNA-target interactions in rice, we recorded position-specific 418 

matches for both 21-nt phasiRNA-target interactions and 21-nt miRNA-target interactions (Fig. 419 

5b). This represented the putative binding pattern as a percentage of each position of predicted 420 

matches, gaps, wobbles, and mismatches. We selected only predicted targets (for both 421 

phasiRNAs and miRNAs) with a TS between 0.5 and 3.5, omitting self-targeting interactions. 422 

Overall, consistent with higher scores, 21-nt phasiRNAs showed lower match rates across all 423 

positions than miRNAs (Fig. 5b); a few substantial position-specific differences were observed, 424 

including higher match rates for phasiRNAs at the 1st and 21st positions, and a higher (yet 425 

unexplainable) rate of gaps at the 15th position (Fig. 5b). We concluded that unless 21-nt 426 

reproductive phasiRNAs target primarily in cis, they must have lower levels of complementarity 427 

to their targets than miRNAs. 428 

 429 

24-nt phasiRNAs 430 
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Next, we extended our analysis to attempt to find the targets of the reproductive 24-nt 431 

phasiRNAs, again focusing on rice. We performed similar analyses as above and compared the 432 

TS distribution of 24-nt phasiRNAs (Fig. 5c, left) with the top 500 most abundant 24-nt P4-433 

siRNAs (Fig. 5c, right). For the 24-mers, we omitted the higher penalty for a mismatch at the 434 

10th and 11th positions in the target alignment; that penalty is relevant for 21/22-nt sRNAs that 435 

direct cleavage at those positions, whereas pairing requirements for individual 24-nt siRNAs 436 

have not been described or tested. For the 24-nt phasiRNAs, we observed a peak in the number 437 

of best targets at 4.5 (Fig. 5c, left); while score of 4.5 to 5 was also the peak for P4-siRNAs 438 

(excluding perfect, or ‘cis’ matches at 0), P4-siRNAs had a much more even distribution of 439 

scores. There was a striking gap in the distribution of target scores from 0 to ~2 for the 24-nt 440 

phasiRNAs, indicating that these lack highly homologous trans targets (Fig. 5c, left). In other 441 

words, the 24-nt phasiRNAs are largely quite distinct from most other genome sequences, 442 

relative to P4-siRNAs, which find many highly homologous potential target sites.  443 

 444 

Again, as for the 21-nt phasiRNAs, we predicted and recorded position-specific matches for both 445 

24-nt phasiRNA-target interactions and P4-siRNA-target interactions (Fig. 5d). This represented 446 

the putative binding pattern as a percentage of each position of predicted matches, gaps, 447 

wobbles, and mismatches. In this case, given the different score distribution relative to 21-mers, 448 

we selected only predicted targets (for both phasiRNAs and P4-siRNAs) with a TS between 0.5 449 

and 5, omitting self-targeting interactions. Overall, consistent with higher TS scores, 24-nt 450 

phasiRNAs showed much lower match rates across all positions than P4-siRNAs (Fig. 5d left 451 

versus right), i.e. an average of 15 to 20% mismatches compared to fewer than 15% mismatches 452 

for 24-nt P4-siRNAs. 453 

 454 

Classes of predicted reproductive phasiRNA targets 455 

As a final step in analyzing the possible targets of reproductive phasiRNAs in rice, we classified 456 

the predicted target loci. This analysis used all predicted targets described in the sections above, 457 

including both cis and trans targets. In rice, the top 500 21-nt phasiRNAs were predicted to 458 

target 7766 loci (Table S2). These putative targets included 1400 (18.02 percent) loci classified 459 

by RepeatMasker as related to the transposable elements (TEs). The top 500 24-nt phasiRNAs 460 

were predicted to target 5631 loci, of which 836 (14.84 percent) are related to TEs (Table S3). 461 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2018. ; https://doi.org/10.1101/242727doi: bioRxiv preprint 

https://doi.org/10.1101/242727
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

To assess whether these predicted matches to TEs represent an enrichment or depletion 462 

compared to random chance, we randomly selected 7800 and 5600 genes from the 35,000+ 463 

annotated genes in rice; among these, ~30 to 31% are TE-like. Therefore, the predicted targets of 464 

reproductive phasiRNAs are relatively depleted for TE-like targets. Overall, our more detailed 465 

results are consistent with earlier statements that classes of potential targets are not evident for 466 

reproductive phasiRNAs, and thus the characterization of their functions will require molecular 467 

and biochemical investigation.  468 

 469 

Discussion 470 

Our machine learning-based workflow focused on sequenced-based and structural features of 471 

plant sRNAs, with an emphasis on the poorly characterized set of reproductive phasiRNAs. We 472 

demonstrate that this approach can successfully classify reproductive phasiRNAs relative to 473 

other endogenous plant sRNAs, with high values for ACC, SE, SP, PPV, and AUC. Feature 474 

selection demonstrated the importance of the 5’- and 3’- ends, k-mer features, GC content, and 475 

structural features including the MFE. We observed characteristics that may reflect specificity in 476 

AGO loading of reproductive phasiRNAs, the key to the function of all sRNAs. Examination of 477 

spatiotemporal expression data for AGOs in rice and maize shows a high correlation between 478 

peaks of abundance of reproductive phasiRNAs and AGO genes, suggesting that there might be a 479 

functional connection. From rice and maize data, this includes OsAGO1d, ZmAGO18b, 480 

OsAGO18, OsAGO2b (Zhai et al., 2015b; Fei et al., 2016), and OsAGO5c (MEL1) which loads 481 

21-nt phasiRNAs in rice. In Arabidopsis, AGO3, close to OsAGO2b (Zhang et al., 2015), 482 

recruits 24-nt sRNAs with 5’A and effects epigenetic silencing, consistent with the hypothesis 483 

that 5’A 24-nt phasiRNAs might be loaded into AGO2b in grasses. Moreover, ZmAGO18b, a 484 

grass specific AGO, binds both 21-nt phasiRNAs with 5�U and 24-nt phasiRNAs with 5�A to 485 

function in inflorescence meristem and tassel development (Sun et al., 2017). Our classification 486 

data lay the groundwork for better definition of AGO-phasiRNA interactions. 487 

 488 

One unique aspect of working with the reproductive phasiRNAs is that their production from 489 

long, double-stranded RNA precursors from hundreds or thousands of loci yields a rich dataset 490 

for which comparable analyses of tasiRNAs or miRNAs are not possible due to their more 491 

limited representation. This allowed the large-scale assessment of biases in representation in the 492 
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libraries, from which we observed significant biases in the representation of specific nucleotides 493 

at the 1st and 19th positions among the 21-mers. One possible interpretation of these biases is a 494 

model of competition for loading between the two strands of a duplex, whereby one strand is 495 

preferentially loaded over the other, typically understood to be driven by the 5’ nucleotide 496 

(Schwarz et al., 2003), which is a preferred C in the case of 21-nt reproductive phasiRNAs 497 

(Komiya et al., 2014). Yet, 1U phasiRNAs are quite abundant, begging the question of whether 498 

these are competing with 1C phasiRNAs for loading into MEL1; among sequenced MEL1-499 

associated phasiRNAs, 1U phasiRNAs were less than 10% of the total (Komiya et al., 2014). 500 

Perhaps the higher proportion in the sequenced phasiRNAs reflects (1) stability in the absence of 501 

loading, or (2) perhaps 1U phasiRNAs are loaded into a different AGO than the 1C phasiRNAs – 502 

maybe AGO1, known to have an affinity for 1U 21-nt sRNAs (Zhao et al., 2016). Assuming the 503 

latter, for the sake of argument, the difference in the 19th position for a given 1st position 504 

nucleotide for the 21-nt reproductive phasiRNAs could be explained by AGO affinity: 1U 505 

phasiRNAs may be loaded as well or better than 1C phasiRNAs, but into this different AGO.  An 506 

additional influence on these terminal or near-terminal positions may be strand selection during 507 

AGO loading of the duplex, which is influenced by factors including the thermodynamic stability 508 

of the two ends of each phasiRNA duplex (Schwarz et al., 2003). 509 

 510 

Based on the observation of abundant 1U and 1C 21-nt phasiRNAs, we hypothesized an AGO 511 

competition model (Fig. S4). We inferred/hypothesized this because of the data in Fig. 4B (upper 512 

panel) that the sequenced 1V (V = A or C or G, using the IUPAC code) phasiRNAs are depleted 513 

for 19A phasiRNAs, which would be 1U on the bottom strand; perhaps this is because in a 514 

duplex with a 1U phasiRNA, the 1U phasiRNA is loaded. But sequenced 1U phasiRNAs showed 515 

no bias in the 19th position, because they are preferred over the opposite strand, and thus are the 516 

“winners” in the competition (Fig. S4a).  In contrast, the 1R/19G (R = A or G) phasiRNAs are 517 

paired with 1C phasiRNAs, which is AGO loaded (Fig. S4b). The 1V/19C phasiRNAs are 518 

abundant because these are paired with 1G phasiRNAs, which are not AGO loaded and thus are 519 

always “losers” in the competition with their duplex pairs. The 1C phasiRNAs are an interesting 520 

case because based on frequency, 1C/19C > 1C/19G > 1C/19W (W = A or U) (Fig. 4b, upper 521 

panel). The 1C/19G phasiRNAs are paired with 1C phasiRNAs, which compete well, and thus 522 

either strand may be loaded and stabilized (Fig. S4c). The 1C/19U phasiRNAs are less frequent 523 
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because they are paired with 1A phasiRNAs that are not particularly stabilized or loaded.  In 524 

other cases (Fig. S4d), the frequency of 1D/19G phasiRNA is higher than 1D/19C (D = A or G 525 

or U) (Fig. 4b, upper panel); one interpretation of the high frequency of 1D/19G is that since the 526 

1D/19G phasiRNAs are paired with a 1C/19H phasiRNA (H = A or C or T), thus 1C/19H 527 

phasiRNA is preferentially loaded and stabilized. Thus, phasiRNAs from a 1D/19G duplex are 528 

more abundant than those from a 1D/19C duplex because in the latter, the 1G/19H phasiRNA on 529 

the bottom strand is likely not loaded or stabilized. With as rich a dataset as reproductive 530 

phasiRNAs provide, we can start to resolve the sequence-based characteristics that influence 531 

representation in sequencing data, and infer the mechanistic basis for these differences. For 532 

example, we identified novel position-specific biases, like the 14th position in the 21-nt 533 

phasiRNAs (Fig. 2a, left, and Fig. S2b, left). These internal positions may be important for AGO 534 

loading, or phasing function/targeting, and thus future functional or structural studies should 535 

investigate these in greater detail. 536 
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Tables 655 

Table 1. Results of classification to distinguishing phasiRNAs of lengths 21-nt (top) and 24-nt 656 

(bottom) from other small RNA types.   657 

Classification Performance Evaluation Measure 
Positive set Negative set ACC (±SD) SP (±SD) SE (±SD) PPV (±SD) AUC (±SD) 

21-nt 
phasiRNA 

miRNAs* + P4-siRNA + 
tRNA* + rRNA* 

0.93 (±0.01) 0.91 (±0.00) 0.92 (± 0.01) 0.93 (± 0.01) 0.97 (± 0.00) 

miRNAs* + P4-siRNA 0.93 (±0.01) 0.90 (±0.00) 0.94 (±0.01) 0.87 (±0.02) 0.97 (± 0.00) 
P4-siRNAs, 3’ trimmed 0.83 (±0.02) 0.84 (±0.01) 0.83 (±0.02) 0.83 (±0.01) 0.92 (± 0.00) 
miRNAs, 3’ trimmed 0.81 (±0.01) 0.77 (±0.01) 0.85 (± 0.03) 0.78 (± 0.02) 0.90 (± 0.01) 

24-nt 
phasiRNA 

P4-siRNA 0.84 (±0.01) 0.82 (±0.00) 0.84 (± 0.01) 0.83 (±0.01) 0.91 (± 0.01) 

miRNAs* + P4-siRNA + 
tRNA* + rRNA* 

0.87 (±0.01) 0.82 (±0.00) 0.91 (± 0.01) 0.84 (±0.01) 0.93 (± 0.01) 

Note: ACC, accuracy; SP, specificity; SE, sensitivity; PPV, positive predictive value. See 658 

methods for further detail. An asterisk (*) next to a negative subset indicates no size selection or 659 

trimming of the sequences. Results are averaged over the five-fold cross-validation. The size of 660 

positive and negative sets are as follows: 21-nt phasiRNAs (n=2000), 24-nt phasiRNAs 661 

(n=2000), miRNA (n=756), P4-siRNAs (n=2000), tRNAs (n=500), and rRNAs (n=500). 662 

 663 

Table 2. Predictive performance of classification models of 21-and 24-nt phasiRNAs. 664 

 665 

Note: TP, true positive prediction; SE, sensitivity. 666 

 667 

a. Predictive sensitivity on rice and maize 

Predictive sensitivity  
Classification Model  

(positive set vs negative set) 

Performance Evaluation 
Measure 

TP SE 

21-nt phasiRNAs 21-nt phasiRNA vs. miRNA + P4-siRNA + tRNA + rRNA 26458/27500 0.962 

24-nt phasiRNAs 24-nt phasiRNA vs. miRNA + P4-siRNA + tRNA + rRNA 7017/7750 0.905 

b. Cross-species predictive sensitivity in Setaria viridis 

21-nt phasiRNAs 21-nt phasiRNA vs. miRNA + P4-siRNA + tRNA + rRNA 1868/2000 0.934 

24-nt phasiRNAs 24-nt phasiRNA vs. miRNA + P4-siRNA + tRNA + rRNA 1723/2000 0.861 
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Fig. 1 General workflow of our pipeline.
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Fig. 2 Reproductive phasiRNAs have characteristic position-specific nucleotide biases.
Single-nucleotide sequence profiles of position specific base usage comparing 21-nt phasiRNAs (left) and either 
miRNAs (at right in panel (a)), or 24-nt P4-siRNAs (at right in panel (b)). For all phasiRNA analyses in this 
figure, the top most abundant 1000 phasiRNAs from the rice and maize data were combined; in panel (a), 553 rice 
and 203 maize miRBase-annotated miRNAs were used (see Method S2). The frequencies of each of the four 
bases (A, C, G, and U) at each position are indicated as an open circle. Markers denoted as small square boxes 
represent positions at which a statistically significant (p = 1e-5) base usage distinguishes phasiRNAs and either 
miRNAs (panel (a)) or P4-siRNAs (panel (b)), determined by comparison of the data in the two plots. Dotted 
circles highlight positions in the sequences selected for further discussion in the main text. The gray boxes at right 
covering the 22nd, 23rd, and 24th positions to retain fair comparison with 21-nt phasiRNAs and the longer 
sequences, including that those additional position could be disregarded. (c) Single-nucleotide sequence profiles 
of position specific base usage comparing 24-nt phasiRNAs (at left) and 24-nt P4-siRNAs (at right). In panels 
(a,c), the blue boxes highlight positions that were analyzed in greater detail in Fig. 4 (positions #1 & 19 for 21-nt 
phasiRNAs, and positions #1 & 22 for 24-nt phasiRNAs).
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Fig. 3  Nucleotide biases indicate one of the two siRNA precursor duplex small RNAs is 
preferentially retained. 
Schematic duplex structures of different types of plant small RNAs; the 5’- and 3’- ends are annotated 
and highlighted to emphasize the influence that a nucleotide bias on one strand has on the other due to 
pairing. The first three and the last three nucleotide positions are indicated from the 5’- and 3’-end 
positions, respectively, as the analyses focused on sequence composition biases at these positions; red 
numbering indicates the base position within the small RNA. Within each position, the top two most 
frequent nucleotides are indicated, with the first representing the most common occurring nucleotide; 
the sequences analyzed are the same as Fig. 2.  (a) Position-specific nucleotide biases for abundant 
21-nt reproductive phasiRNAs in rice and maize. (b) Position-specific nucleotide biases for 24-nt 
reproductive phasiRNAs from rice and maize. (c) Position-specific nucleotide biases for P4-siRNAs 
from rice and maize; for P4-siRNAs, the RDR2-derived bottom strand may terminate at the 22nd

position, corresponding to the 5’ end of the ‘top’, Pol IV-derived strand, although this is as-yet poorly 
characterized (indicated by lighter shading of the 23rd and 24th positions). (d) For comparison to panel 
(c), prior work by Zhai et al. (2015) and Blevins et al. (2015) described the P4R2 (Pol IV and RDR2-
derived) precursors of 24-nt P4-siRNAs as ~26 to 42 nt RNAs; mapped onto the green Pol IV RNA 
are the biases observed here for P4-siRNAs. The 5’ and 3’ ends of the RDR2-derived strands are 
blurred because these ends have not yet been characterized.
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Fig. 4  5' ends in phasiRNA duplexes influence the composition of 3'-proximal nucleotides.
(a) The pie charts show the composition as a percent of all four nucleotides at the 1st (above) and at the 19th 
(below) positions in 21-nt reproductive phasiRNAs, combined from maize and rice. The predominant nucleotide 
is highlighted by separation from the other three. These data are the same as Fig. 2a (blue boxes in that figure), 
redrawn here for clarity.  (b) Above, nucleotide composition at the 19th position of the 21-nt phasiRNAs shown in 
panel (a) when the 1st position is selected or fixed, as indicated on the X-axis. Below, the same analysis for the 
1st position composition when the 19th position is selected or fixed. Significant differences are indicated 
(Student's t-test): ***, P ≤0.001. (c) Pie charts shows the composition as a percent of all four nucleotides at the 
1st and at the 22nd positions in 24-nt phasiRNAs, combined from maize and rice. These data are the same as Fig. 
2c, left panel (blue boxes in that figure), redrawn here for clarity. (d) Above, nucleotide composition at the 22nd 
position of the 24-nt phasiRNAs shown in panel (c) when the 1st position is selected or fixed, as indicated on the 
X-axis. Below, the same analysis for the 1st position composition when the 22nd position is selected or fixed. (e) 
Pie charts as above, for P4-siRNAs, combined from maize and rice. These data are the same as Fig. 2c, right 
panel, redrawn here for clarity. (f) Above, nucleotide composition at the 22nd position of the 24-nt P4-siRNAs 
shown in panel (e) when the 1st position is selected or fixed, as indicated on the X-axis. Below, the same analysis 
for the 1st position composition when the 22nd position is selected or fixed.
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Fig. 5 phasiRNA target prediction illustrates low binding affinity compared to other sRNAs to their targets 
due to sequence diversity.
Target prediction for top 500 most abundant 21- and 24-nt phasiRNAs in rice, rice 3-digit miRNAs (n=288), and 
top 500 most abundant P4-siRNAs in rice was performed using sPARTA. (a) The bar plots show target score 
distribution (as indicated on X-axis) for 21-nt phasiRNAs (at left) and 3-digit miRNAs (at right). Dark purple bars 
depict target score distribution of all targets of 21-nt phasiRNAs and 3-digit miRNAs. Orange bars depict target 
score distribution of only best targets (targets with a lowest target penalty score, meaning high degree of 
complementarity between phasiRNAs or miRNAs and their targets) of 21-nt phasiRNAs and 3-digit miRNAs. As 
indicated, Y-axis (number of targets) is transformed into log2 scale and red arrow indicates potential self-targeting 
or cis interactions (with target score of 0, meaning perfect match). (b) The bar charts record the 21-nt phasiRNA-
target interaction (at left) and 3-digit miRNA-target interaction (at right) for all targets with target score between 
0.5 and 3.5, capturing binding pattern as a percent (Y-axis) of match, gap, wobble, and mismatch. (c) Bar plots 
showing target score distribution as above panel (a), for 24-nt phasiRNAs (at left) and 24-nt P4-siRNAs (at right). 
(d) As above panel (b), the bar charts indicating the binding pattern as a percent (Y-axis) of match, gap, wobble, 
and mismatch for 24-nt phasiRNA-target interaction (at left) and 24-nt P4-siRNAs-target interaction (at right) for 
all targets with target score between 0.5 and 5.

(a)

(b)

(d)

10

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
u
m
b
e
r 
o
f 
ta
rg
e
ts

(L
o
g 2

sc
al
e
)

All targets
Best targets

0

2

4

6

10

12

21‐nt phasiRNA target score
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

3‐digit miRNA target score

0

2

4

6

8

10

P
e
rc
e
n
ta
ge

21‐nt 3‐digit miRNA position

0

100

80

60

40

20

0

100

80

60

40

20

Gap  
Mismatch

Wobble
Match

21‐nt phasiRNA position

P
e
rc
e
n
ta
ge

N
u
m
b
e
r 
o
f 
ta
rg
e
ts

(L
o
g 2

sc
al
e
)

0

2

4

6

8

All targets
Best targets

1.5 7.56.50.5 1 2 2.5 3 3.5 4 4.5 5 5.5 60 7

24‐nt phasiRNA target score 24‐nt P4‐siRNA target score

0

2

4

6

8

10

24‐nt phasiRNA position

0

100

80

60

40

20

24‐nt P4‐siRNA position

0

100

80

60

40

20

8

All targets
Best targets

1.5 7.56.50.5 1 2 2.5 3 3.5 4 4.5 5 5.5 60 7

P
e
rc
e
n
ta
ge

Gap  
Mismatch

Wobble
Match

P
e
rc
e
n
ta
ge

N
u
m
b
e
r 
o
f 
ta
rg
e
ts

(L
o
g 2

sc
al
e
)

N
u
m
b
e
r 
o
f 
ta
rg
e
ts

(L
o
g 2

sc
al
e
)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2018. ; https://doi.org/10.1101/242727doi: bioRxiv preprint 

https://doi.org/10.1101/242727
http://creativecommons.org/licenses/by-nc-nd/4.0/

