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1 Abstract

A recent stream of alarmist publications has questioned the validity of published
neuroimaging findings. As a consequence, fMRI teams worldwide have been en-
couraged to increase their sample sizes to reach higher power and thus increase
the positive predictive value of their findings. However, an often-overlooked
factor influencing power is the experimental design: by choosing the appro-
priate experimental design, the statistical power of a study can be increased
within subjects. By optimizing the order and timing of the stimuli, power can
be gained at no extra cost. To facilitate design optimization, we created a
python package and web-based tool called Neurodesign to maximize the detec-
tion power or estimation efficiency within subjects, while controlling for psycho-
logical factors such as the predictability of the design. We implemented both
a simulation-based optimisation, as well as an optimisation using the genetic
algorithm, introduced by Wager and Nichols (2003) and further improved by
Kao et al. (2009), to optimize the experimental design. The toolbox Neurode-
sign allows more complex experimental setups than existing toolboxes, while
the GUI provides a more user-friendly experience. The toolbox is accessible
online at www.neuropowertools.org.

2 Introduction

A recent stream of alarmist publications has questioned the validity of published
neuroimaging findings (Eklund et al., 2016; Ioannidis, 2005; Open Science Col-
laboration, 2015). At the core of the reproducibility crisis is the lack of power
typically observed in neuroimaging (Button et al., 2013), and more specifically,
fMRI studies (Durnez et al., 2014). The signal measured in fMRI is known to be
very noisy, while the hypothesised effects are small, such that a push for larger
sample sizes promises a more powerful future for neuroimaging. Different power
analysis strategies offer a way to optimise the sample size for a specific power
level (Durnez et al., 2014; Mumford and Nichols, 2008; Hayasaka et al., 2007;
Durnez et al., 2016). However, fIMRI data are typically acquired and aggregated
on two levels: within and between subjects. As such, increasing the power of
an fMRI experiment can be achieved by increasing the number of subjects, but
also via the within-subjects experimental design. This is especially true for
smaller and more subtle effects, where the power curve is characterised by a
slower increase, and thus the resulting power is more affected by the number
of subjects and the number of time points. In addition to the duration of the
experiment for each subject, the order and timing of different conditions within
the experiment also influence the power of the resulting analyses.

The goal in task fMRI experiments is often one of two: detection or esti-
mation. Detection refers to detecting the difference in brain activation between
conditions or groups, while estimation relates to estimating the exact shape of
the evoked fMRI response (called the haemodynamic response function, HRF).
Ideally, the design of an fMRI experiment changes according to the specific re-
search question asked. An optimal design with respect to these two distinct
research questions are said to maximize the detection power or the estimation
efficiency respectively. It is often argued that those two goals are opposite and
an increase in detection power inevitably leads to a decrease of estimation ef-
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ficiency. For example, when two trials of the same condition follow each other
closely, the signal tends to accumulate linearly (Dale, 1999), which makes it
easier to detect. Therefore, the experiments often consist of blocks of the same
condition. This type of design is called a blocked design. On the contrary, the
accumulation (and saturation) of the measured signal conceals the shape of the
HRF. To estimate the HRF, scientists often opt for an event-related design,
where both the timing and order of conditions are randomised. However, Kao
et al. (2009) show that the necessary trade-off between detection and estimation
can be improved using certain optimisation algorithms.

Another important aspect in an fMRI design is the psychological experience
of the subject in the scanner. With a blocked design, the design becomes very
predictable for subjects which can potentially bias the psychological function
under investigation. To minimise predictability, Buracas and Boynton (2002)
propose the use of m-sequences. However, the length of m-sequence is restricted
ton = (Q1)" — 1 with Q + 1 a prime, @ the total number of stimulus types,
and [ a positive nonzero integer. Recently Lin et al. (2007) proposed the use
of a circulant (almost-)orthogonal array to expand the range of possible fMRI
designs while ensuring complete independence between a trial and its successor.
Very often, the best design is a combination of a maximal signal with low pre-
dictability. Therefore, Wager and Nichols (2003) suggest the use of a genetic
algorithm to find an optimisation between estimation efficiency, detection power
and predictability. This algorithm optimises a weighted average of different cri-
teria, with the weights depending on the hypothesis and the expected outcome
of the experiment. Subsequent work has further fine-tuned the algorithm and
compared it with other approaches (Kao et al., 2009). However, in some cases
the design requires more control than is offered in the genetic algorithm, in
which case a simulation-based optimisation is the only considerable option. In
this paper, we present Neurodesign for fMRI design optimisation with different
optimisation algorithms, which is both available as a python module as well as
a GUI web tool, available at www.neuropowertools.org. The paper is structured
as follows: we start with a general description of the methodology in section 2.
We show how designs can be compared and optimised using our python module
in section 3. An overview of the GUI is given in section 4. We compare our
toolbox with other existing software in section 5 and compare the designs from
different optimisers in section 6. Finally, we conclude and discuss the results in
section 7 and 8.

3 Design optimisation using the genetic algorithm

3.1 Statistical measures of design optimality

The signal measured using fMRI is the blood oxygen level dependent (BOLD)
signal, which is a assumed to be related to the neural signal via convolution
with a hemodynamic response function (HRF). We consider the general linear
model as the underlying model for the statistical objective as in Equation 1.

Y=XB+¢ee~N(0,0) (1)

We denote Y as the measured signal. X represents the design matrix, g is
the response amplitude for each column/condition in X and € the error.
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There are two types of design matrices: the convolved model and the finite
impulse response (FIR) model where both are transformations of the matrix
Xbase, & m X t matrix, where m is the number of stimuli and ¢ the number
of measured timepoints. The values in X}a5 are 1 or 0: 1 when stimulus M
is shown on time point 7. The two transformations of X are The two possi-
ble transformations are shown in Figure 1. In the first model, the regressor
Xbase 1s convolved with the hemodynamic resonse function (Figure 1, panel 2)
to represent the expected signal for a brain region related to the stimulus. The
second model aims to estimate the exact shape of the HRF, by including re-
gressors identical to the stimulus presentation, but each regressor with a certain
temporal lag (Figure 1, panel 3).

Often, researchers are interested in specific hypotheses concerning particular
combinations of parameters. The parameter of interest 5 can be estimated using
the least squares estimator in Equation 2 and its variance in Equation 3.

fe=c (XTX)TXTY (2)

Var(8,) = oc?e(XTX) teT (3)

with ¢ the contrast vector of interest. To account for the specific charac-
ter of fMRI data, we alter the model slightly. Because fMRI timeseries data
exhibit substantial temporal autocorrelation, the errors in equation 1 are not
independent, € V', where off-diagonal values represent the correlation between
measurements at different time points. Furthermore a regressor, S, representing
low-frequency noise components is added to the model (see Kao et al. (2009)
for detailed derivations). The resulting variance of the estimator in defined in
Equation 4.

Var(Be) = c?e(X TWX) et (4)

with W =V —VST(SVST)~1SV. An optimal experimental design with re-
spect to the estimator minimises the variance of the estimator. We will therefore
quantify the optimality of the design as the inverse of ¢(X TWX)~'cT. Most of-
ten, an fMRI experiment has multiple contrasts of interest, thus ¢(X T W X)~tc
becomes a square matrix. With r. the number of contrasts, there are two com-
mon ways to quantify the optimality of the design as defined in Equation 5.

F =r./trace(C(X TWX)~1CT) for A optimality (5)
F =det(C(XTWX)~tCT)~" for D optimality

We denote F, as the estimation efficiency if X is a FIR, and Fj; as the
detection power if X is a convolved design matrix.

3.2 Psychological measures of design optimality

Apart from the statistical concept of design efficiency, it is important to account
for psychological factors that might render the experimental design invalid. The
most important factor is predictability. For example in experiments addressing
cognitive control, such as a stop-signal task, it is of the utmost importance that
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Figure 1: An experimental fMRI design with one stimulus type and two com-
mon models used in the GLM when modeling the resulting BOLD signal. The
first panel shows the timeseries of the stimulus onsets. The second panel shows
the stimulus onsets convolved with the double-gamma HRF, which can be in-
terpreted as the expected BOLD signal if the measurement is related to the
task. The parameter 8 in equation 1 with this model represents the amplitude
of the signal related to the task.The third panel shows the FIR model, with
each regressor a shifted version of the stimulus onsets. The S-parameters repre-
sent the amplitude of the HRF at specific time points following stimulus onset.
Units on the x-axis are seconds. Units on the y-axis are removed, as these are
meaningless and often rescaled to have unit height.
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the trial type on any given trial cannot be easily predicted from the trial type
on the previous trial, to avoid psychological confounding of the experiment. We
quantify the optimality of the design in terms of confounding in Equation 6.

Fo=>) 4 Zn;fj —(n—1)P,P (6)

where n7; is the number of trials of type i at timepoint ¢ preceding a trial of
type j at timepoint t+r. The variable P; is the proportion that trial should occur
in the experiment. If F,, = 0, there are no unforeseen contingencies between trial
types. The final optimality criterion controls the desired trial type frequencies:
Fr= 2?:1 |n; — nP;|, with n; the number of trials of type i.

3.3 Multi-objective criterion

To ensure comparability across different optimality criteria, we first rescale the
different optimality criterion to a scale of 0 to 1 as in Kao et al. (2009). To find
the maximum Fy and F. possible, we first run an optimisation with weights 1
for respectively Fj; and F, and weights O for the other optimality criteria. In the
multi-objective criterion, the Fy and F, scores are divided by their respective
maximum to ensure scores between 0 and 1. For Fy and F, the score for the
worst possible design (a design with only the least probable stimulus) is taken
as the maximum score. Second, whereas larger F, and F, represent better
design, the opposite is true for F,, and F;. Therefore the scores for F;, and Fy
are subtracted from 1. As such, the resulting optimality criteria is obtained in

Equation 7.
F
Fr=———_i=de;
F;
=1 — Tt i f
rnaX(FZ-)’Z &/

As no design can ensure optimality in all four optimality criteria, the goal
of any design optimisation depends on the researcher’s goal of the experiment.
Given prespecified weights w; with i = ¢, d,e, f,>°, w; = 1,w; > 0, we define
the weighted optimality criterion in Equation 8.

F*:wch+wdFd+weFe+waf (8)

3.4 Optimisation algorithms
3.4.1 Genetic algorithm

A genetic algorithm is a method for solving optimisation problems inspired by
natural selection in biological evolution. Contrary to classical optimisation algo-
rithms, a genetic algorithm generates a population of points at each iteration. A
graphic representation of the genetic algorithm with an fMRI example is shown
in Figure 2. The steps of the genetic algorithm are.

1. Create G initial random designs.
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The genetic algorithm

1. Generate designs 2. Cross-over 3. Mutation e
Bacace 5. Compute 6. Selectg

BACACB BCCBBA

BCCBBA '
BACBBA
BCCACE

' 10000 x I

BCCACB BACBBA best designs
Seckcs) optimisation

BCCBCB CABBCA +— scores

Figure 2: Graphical representation of the genetic algorithm. The examples in
each step are pieces of experimental designs with 3 different trial types (A, B,
C). In the example, the inter-trial interval is ignored.

Crossover. Pair the best G/2 designs with each other.

Mutation. Randomly switch q% of all trials by random trial types.
Immigration. Add new random designs to the population.

Natural selection. Compute optimality scores and select G best designs
Repeat step 2-5 until a stopping rule is met.

A e

A crucial part of the algorithm is drawing random designs from the popu-
lation of designs (in step 1 and step 4). This could for example be achieved by
using m-sequences to decide the order of the stimuli, the stimuli evenly spaced in
time. We show in section 3.4 how to sample random designs using neurodesign.

3.4.2 Simulation-based optimisation

While the genetic algorithm has been shown to be a powerful algorithm for
experimental design optimisation (Kao et al., 2009), there are certain instances
where more strict control of the design is desired. For example, in cognitive
control, the occurence of one condition versus another is sometimes varied be-
tween subjects. In those instances, it is crucial that there is strict control of
the proportion of trial types that are shown. The genetic algorithm punishes
deviance from the proportions measured by F'y, but strict control cannot be en-
sured. Therefore, we included a random design generator. The implementation
is identical to the Genetic algorithm, with the Crossover- and Mutation-steps
are removed and only the Immigration-step is performed.

4 Neurodesign, python module

4.1 Installation

NeuroDesign is available on PyPi and can be installed as:

pip install neurodesign

Next, we will give an introduction to the python module. For all function-
ality, please refer to the manual.

4.2 Specifying the characteristics of the experiment

In a first step, the experiment should be described in the class called experi-
ment. This contains general information, such as the number of stimuli and
the duration of the experiment, but also more specific information, such as the
model with which the inter trial intervals (ITT) are sampled. This function will
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Figure 3: The basic layout of an experimental trial.

generate the assumed covariance matrix, the drift function and the whitening
matrix. All parameters are described in Table 1, while a graphical representa-
tion of components of an experiment are described in Figure 3. We define a
simple experimental setup with 20 trials and 3 conditions, which we will use to
exemplify the next functions:

import neurodesign

EXP = neurodesign.experiment (
TR=1.2,
n_trials=20,
P = [0.3,0.3,0.4],

¢ = [[1,-1,0],[0,1,-11],
n_stimuli = 3,

rho = 0.3,
stim_duration=1,
ITImodel = ’uniform’,
ITImin = 2,

ITImax=4

)

4.3 Generating a design matrix

Within the defined experimental setup, we can now define a design matrix,
develop the design matrix and compute the optimality scores using the class
design. We use equal weights for the different optimality criteria for the weighted
average optimality attribute. The only input required is the stimulus order, the
ITT’s and an object of class neurodesign.experiment:

import neurodesign

DES1 = neurodesign.design(

order = [0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1],

ITI = [2]*20,

experiment=EXP

)

DES1.designmatrix(); DES1.FCalc(weights=[0.25,0.25,0.25,0.25])


https://doi.org/10.1101/119594
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/119594; this version posted March 18, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

argument
TR
n_stimuli

P

C

rho
n_trials

duration

resolution (default = 0.1)
t_pre (default = 0)

stim_duration
t_post (default = 0)
maxrep (default = None)

hardprob (default = False)
restnum (default = 0)
restdur (default = 0)
ITImodel

ITImin

ITImean

ITImax

confoundorder (default = 3)

description

The repetition time of the scanner.

The number of different stimulus types or conditions.

The probabilities of each stimulus type.

The contrast matrix.

The assumed autocorrelation coefficient

The number of trials in the experiment. Either specify n_trials or
duration

The total duration (seconds) of the experiment. Either specify
duration or n_trials

The resolution of the design matrix

Duration (seconds) of the trial before the stimulus presentation
(eg. fixation cross)

The duration (seconds) of the stimulus.

Duration (seconds) of the trial after the stimulus presentation.
The maximum number of times a stimulus is repeated consecu-
tively.

True if the probabilities should be exactly the same as in P.

The number of trials between rest blocks

The duration (seconds) of a rest block

Which ITI model to sample from. Possibilities: ‘fixed’, ‘uniform’
or ‘exponential’

The minimum ITT (used with ‘uniform’ or ‘exponential’ ITTmodel)
The mean ITT (used with ‘fixed’ or ‘exponential’ ITImodel)

The max ITT (used with ‘uniform’ or ‘exponential’ ITImodel)
The order to which confounding is controlled

Table 1: The arguments for object of class neurodesign.experiment
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Now using matplotlib, we can plot the convolved design matrix:

import matplotlib.pyplot as plt
plt.plot (DES1.Xconv)

\includegraphics[scale=0.35]{figures/Figure4.pdf}

We can now define a new design and compare both designs:

DES2 = neurodesign.design(
order = [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1],
ITI = [2]%20,
experiment=EXP
)
DES2.designmatrix(); DES2.FCalc(weights=[0.25,0.25,0.25,0.25])
print ("Ff of Design 1: "+str(DES1.Ff))
print ("Ff of Design "+str(DES2.Ff))
print("Fd of Design "+str (DES1.Fd))
print("Fd of Design "+str(DES2.Fd))

N = N =

0.8571428571428572
0.4285714285714286
0.0879554751884
0.266229261071

Ff of Design
Ff of Design
Fd of Design
Fd of Design

N = N =

As the second design ignores the presence of the third condition, the fre-
quency optimality (Fy) is much worse. However, the blocked character of the
design largely improves the detection power. The principles of the genetic algo-
rithm, such as crossover, can be applied to the designs:

DES3,DES4 = DES1.crossover(DES2,seed=2000)
DES3.order

o, 1, 2,0,12,0,1,1,1,0,0,0,0,0,1,1,1,1, 1]

DES4.order

o, o, 0, 0,0, 1,1,1,2,0,1,2,0,1,2,0,1, 2,0, 1]

4.4 Generating a random design

The package contains functions to generate random designs. We can generate
a random order of stimuli using the function neurodesign.generate.order. Be-
low, we gerate a random order of stimuli, which is done by sampling from a
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multinomial distribution. Below, the resulting probabilities for each trialtype
are shown.

order = neurodesign.generate.order(
nstim = 4,
ntrials = 100,
probabilities = [0.25,0.25,0.25,0.25],
ordertype = ’random’,
seed=1234
)
print (order[:10])
from collections import Counter
Counter (order)

[3’ O’ 0, 2’ O, 0’ 2’ 2, 2) O]
Counter ({0: 36, 1: 22, 2: 22, 3: 203})

Similarly, we can generate ITT’s from 3 different distributions: fixed (all ITI’s
equal), uniform or from a truncated exponential distribution. Below we show
the use of the neurodesign.generate.iti function and evaluate its output.

iti,lam = neurodesign.generate.iti(
ntrials = 40,
model = ’exponential’,
min = 2,
mean = 3,
max = 8,
resolution = 0.1,
seed=2134
)
print(iti[:10])
print("mean ITI: %s \n\
min ITI: %s \n\
max ITI: %s"%(
round(sum(iti)/len(iti),2),
round (min(iti),2),
round (max(iti),2)))

[0. 2. 2.1 2. 2. 2. 5.42. 2.45.1]
mean ITI: 2.93

min ITI: 0.0

max ITI: 6.9

10
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argument
experiment

G (default = 20)
R (default = [0.4,0.4,0.2])

q (default = 0.01)
weights

I (default = 4)
preruncycles

cycles

seed

Aoptimality (default = True)
convergence (default = 1000)
folder

outdes (default = 3)
optimisation (default = 'GA’)

description

The experimental setup of the fMRI experiment (of class neurode-
sign.experiment)

The size of each generation

The rate with which the orders are generated from (a) blocked
designs, (b) random designs and (c¢) m-sequences

The percentage of mutations in each generation

The weights attached to [F., Fy, Fy, F]

The number of immigrants in each generation

The number of pre-run cycles to find the maximum value of F,
and Fy

The number of cycles in the optimisation

The random seed for the optimisation

Optimises A-optimality if true, else D-optimality

After how many stable iterations is there convergence

The local folder to save the output

The number of designs to be saved

The optimiser of choice ("GA’ or ’simulation’)

Table 2: The arguments for object of class neurodesign.optimisation

4.5 Optimising the design

To optimise the design, we use the neurodesign.optimisation class. All parame-

ters are described in Table 2.

POP = neurodesign.optimisation(

experiment=EXP,

weights=[0,0.5,0.25,0.25],

preruncycles = 10000,
cycles = 10000,

folder = "./",
seed=100,
optimisation=’GA’
)

POP.optimise()

5 Neurodesign: the GUI

To make the methods more publicly available, we have created a graphical
user interface running in a web-application. The back-end of the application is
written in python and uses the python module neurodesign described above, the
front-end is generated using django, and the application is deployed through a
multi-container docker environment on Amazon Web Services.

There are 5 crucial windows of the GUI: main input, contrasts and prob-
abilities, review, console, and settings. The main input window has fields for
most parameters from Table 1. Only the parameters P and C are asked in the

11
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second window (‘Contrasts and probabilities’). The review window shows all
parameters and also prints out the default settings for the genetic algorithm.
These parameters, presented in Table 2, can be adjusted in the settings window.
The console allows for the optimizations to be started, stopped and followed.
When a design optimization is started, the user receives an email with a link to
the console where the optimization can be followed (Figure 4). Once the opti-
mization is finished, a zip file can be downloaded containing a chosen number
of designs. Each design contains the onsets for each stimulus, a report with
design diagnostics (such as collinearity among regressors, see Figure 5), and
a script. The script can be used for future reference, or for regenerating the
designs locally.

6 Comparison with other software

There are a few alternative design optimisation programs available:

6.0.1 mseq

This script, available at http://gru.stanford.edu/svn/matlab/buracas.m
was distributed with Buracas and Boynton (2002) and can be used to generate
m-sequences using matlab.

6.0.2 fmri GLM efficiency

This is a tool provided by Henson (2006) to compute the efficiency of experimen-
tal designs for fMRI in matlab and is available online at https://github.com/MRC-CBU/riksneurotools.

6.0.3 mttfmri toolbox

The Multiple Trial Type fMRI MATLAB Toolbox (mttfmri) can generate m-
sequences, random designs and blocked designs, as well as compute their effi-
ciency. The toolbox is distributed alongside Liu (2004a) and Liu (2004b). Using
the toolbox, a theoretical trade-off between efficiency and power can be calcu-
lated. The toolbox assumes a fixed inter-trial interval. The toolbox can be
obtained from http://fmriserver.ucsd.edu/tliu/mttfmri _toolbox.html.

6.0.4 Optseq

Optseq?2 is part of the Freesurfer suite (Dale, 1999) and is a C toolbox for au-
tomatically scheduling events for rapid-presentation event-related experiments.
It is available in command line, and it is a simulation-based optimisation. With
the toolbox, the order of the stimuli is optimised to be first-order counter-
balanced, and random amounts of NULL stimulus are inserted in the design to
jitter ITT’s. The total duration and the minimum and maximum NULL time
can be specified. Three cost functions can be optimised:

e eff: the efficiency: 1/trace(C(XTX)~!1CT)
e vrfavg: the average variance reduction factor (VRF): Avg(1/C(XTX)~1CT)

e vrfstd: a weighted combination of the average and the standard deviation
of the VRF’s.
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NeuroPowerTools  NeuroPower -  NeuroDesign -

OVERVIEW MAIN INPUT CONTRASTS AND PROBABILITIES REVIEW CONSOLE m SETTINGS

Current load Control panel
CPU load: 05 Running design optimisation.
Queued processes: 0
Your optimisation: RUNNING

Please be aware that the number of iterations for the optimisation is low. These values are perfect for
trying out the application but the results will be sub-optimal. For a good optimisation, go to the settings
and change the number of runs and preruns and the resolution. Some reasonable values are: 10,000
preruns, 10,000 runs and a resolution of 0.1s.

In this panel, you can control your design optimisation.

Upon starting the design optimisation, you'll receive an email with a link that will take you back to this page. You'll
be able to follow the optimisation process. Once the optimisation is done, you'll get another notification.

You can still go to other tabs to see your settings. While your design optimisation is in the queue, you can still
change settings. As soon as the design optimisation started, your changes will not affect the ongoing process.

You can only run 1 optimisation at a time. The stop-button will stop the optimisation, whether it is queued or
running.

Once the optimisation is finished, you can download here a zipfile. In the zipfile, there will be a text file with onsets
for each stimulus type.

oe

Optimisation progress

Expected signal for optimal design in this generation
DS P Rstonacoe Scroll down on the image to zoom in.

0.22
0.2

B Stimulus_1 M Stimulus_2 M Stimulus_3 M Stimulus_4

Figure 4: Screenshot of the console where the optimisation can be followed.
Every 10 generations, the design is updated with the latest score and the best
design.
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Selected designs

The following figure shows in the upper panel the optimisation score over the different generations. Below are the
expected signals of the three best designs from different families. Next to each design is the covariance matrix
between the regressors, and the diagonalmatrix with the eigenvalues of the design matrix.
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Figure 5: Screenshot of the report describing the optimisation and the best 3
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Optseq? by default optimises the design to use the FIR model, but can be
customised to optimise the design to use the convolved model.

6.0.5 Genetic Algorithm

Wager and Nichols (2003) proposed the use of the genetic algorithm for de-
sign optimisation, and published a matlab toolbox alongside, available online
at http://psych.colorado.edu/ tor/Software/genetic_algorithms.html.
The application implements a genetic algorithm to optimise experimental de-
signs similar to this implementation. The differences are discussed below.

6.0.6 ER-fMRI

ER-fMRI is software described in Kao (2009) and implements the genetic al-
gorithm described in Kao et al. (2009). The implementation is similar as the
implementation offered by Wager and Nichols (2003) with two key differences:
(1) To compute a weighted average F of the different optimisation scores, these
scores (Fe, Fd, Fec, Ff) need to be on a unit scale. While Wager and Nichols
(2003) rescale the scores for efficiency (Fe) and detection power (F'd) in each
iteration of the genetic algorithm, Kao et al. (2009) propose to perform a pre-
run in which only the F'e or F'd optimised, in order to povide an optimal score.
In other words, Wager and Nichols (2003) rescale the scores within populations,
while Kao et al. (2009) rescale the scores over populations. (2) the algorithm
starts not only with random designs, but also includes afforementioned the m-
sequences and blocked designs.

6.0.7 Main differences with neurodesign

Neurodesign includes all options of all the implementations above: the library
can (1) produce m-sequences, (2) calculate efficiency scores, (3) generate ran-
dom and blocked designs, (4) optimise the multi-objective criterion presented
in Wager and Nichols (2003) and Kao et al. (2009), as well as (5) optimise de-
signs using the genetic algorithm and a simulation-based optimiser. Whereas
the approach of neurodesign is very closely related to FR-fMRI, we implement
more elaborate control of the ITDI’s: in ER-fMRI and Genetic Algorithm, the
ITD’s are modeled simply by introducing null events at random places during
the experiment instead of experimental stimulation. This offers control of the
minimum and maximum ITI, but it does not control the distribution of ITT’s,
as is implemented here. Furthermore, contrary to the other packages, we do
not make a distinction between event-related responses and epoch responses.
Event-related responses are often seen as a stimulus that results in a direct and
short response, while an epoch response represents brain activation over a longer
time (for example 2 seconds). Assuming an event-related response in fact equals
assuming a response with duration equal to the resolution of the design. Since
neurodesign supports any stimulus duration, it implicitly covers event-related
responses and allows epoch responses. Neurodesign also comes with a GUI,
which increases the ease of use and accessibility of the application. At the same
time, reproducibility of results is ensured by allowing scripting (or downloading
scripts) that can be run in a containerised computing environment.
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Figure 6: Multi-objective criterion evolution over 1000 iterations for an experi-
mental design with 3 stimuli of 15 minutes.

7 Design optimisation and statistical power

7.0.8 Optimisation

To demonstrate the effect of optimising the experimental design, we performed
a simulation study. We compare 3 possible designs: a design optimised using
the genetic algorithm (GA), a design optimised using simulations (SIM), and a
random design (not optimised - RND). We generated 100 random designs, and
report the interval between the 5th and 95th percentile as a non-parametric
prediction interval. All designs are generated with neurodesign.

We are planning an fMRI study with 3 different stimuli with equal probabil-
ities. The TR is 2 seconds, and there are 450 trials of 1 second each. The ITI’s
are sampled from a truncated exponential distribution with (min,mean,max)-
values of (0.3,1,4) seconds. As such, the total duration of the experiment is
15 minutes, and there are 450 observations. We optimise for 4 different con-
trasts: [1,0,0],[0,1,0],[0,0,1],[1,0,—1]. We ran 1000 cycles (pre-run and op-
timisation). We choose the following values for the multi-objective criterion:
we = 0.25,wy = 0.25,wq = 0.5, since we are mainly interested in statistical
power, while keeping the predictability and frequency of the design under con-
trol. The evolution of the optimisation scores can bee seen in Figure 6. 90% of
the optimisation scores (FRNP) of the random design are in [0.61 — 0.70], while
the resulting scores for the optimised designs are F&A = 0.87 and F5™ = .80.
The three resulting designs can be seen in Figure 7.

7.0.9 Simulation

Based on the three obtained designs, we simulate fMRI data. We simulate data
according to equation 1, with X the design matrix obtained from the prevous
step, 8 = (0.5,0,—0.5)T and o = 1. For simplicity, we ignore the temporal
autocorrelation and analyse the data using a simple linear regression model.
Specifically, we look at the contrasts (1,0,0) and (1,0, —1), respectively corre-
sponding to absolute effect sizes of 0.5 and 1.0. The distribution of the resulting
T-statistics based on 1,000 simulations are shown in 8. We assume a single test,
thus performing statistical inference with o = 0.95. From the simulations, the
observed statistical power is calculated as the percentage a T-value exceeds the
threshold, #T > t,/10%. Table 3 shows the resulting observed statistical power.
We effectively show how using neurodesign significantly increases the statistical
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Figure 7: The resulting three designs after optimising using the genetic algo-
rithm, simulation based optimisation, or without optimising (median F).

Main effect Contrast effect

Figure 8: The distributions of T-statistics when simulating BOLD signal us-
ing the three designs obtained using (1) Genetic Algorithm optimisation, (2)
Simulation based optimisation, (3) Random draw (median F).

power, compared to a random design. Note that even though certain randomly
drawn designs result in higher power, these necessarily score lower in the other
metrics, such as predictability (F,) and stimulus frequencies (Fy), since none of
the random designs result in a higher score for the multi-objective criterion.

8 Discussion

8.1 Default settings

Both the initialisation of the experiment, represented by the class experiment
in the python module and the main input window in the GUI, and the genetic
algorithm, represented by the class population in the python module and the
settings window in the GUI, have some default settings. The default settings of
the python module, shown in Tables 1 and 2, are pre-set to ensure a good initial
optimisation, while the GUT’s default settings are pre-set for short optimisation
duration. While the default settings for the GUI can lead to a sub-optimal
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Contrast (1,0,0)

Contrast (1,0,-1)

Genetic Algorithm
Simulation-based
Random

0.45
0.40
0.26 [0.22 - 0.31]

0.73
0.75
0.54 [0.21 - 0.76]

Table 3: Observed statistical power from 10000 fMRI simulations with 3 dif-
ferent designs: (1) optimised using the genetic algorithm, (2) optimised using
simulations and (3) not optimised (median [P5 - P95]).

design, the user is warned (with a big red textblock at the top of the page)
that the settings should be changed if a good optimisation is required. We have
chosen these sub-optimal defaults for the GUI to provide a fast run through for
first time users, as well as to avoid memory and CPU overload on the server end.
For the experiment, we assume a priori that there are no rest blocks and that
the trial only consists of stimulation (no fixation cross etc.). There is by default
no limit on the maximum number of times a stimulus can be repeated, and the
stimulus frequency is not controlled with a hard limit. The default resolution
in the python module is 0.1 seconds, while in the GUI it is 0.25 seconds. For
the genetic algorithm, the default settings are as follows. The optimisation
calculates the A-optimality. In each generation, the percentage of mutations is
1%, the number of immigrants is 4 designs and the size of each generation is 20
designs, as is suggested by Kao (2009). When generating new designs, there are
40% blocked designs, 40% random designs and 20% m-sequences. Convergence
is reached when the score is stable for 1000 generations. There are no default
settings on the number of cycles in the python module, while the GUI runs
by default 10 cycles to find the maximum F,; and F, and 100 cycles for the
optimisation (again with a clear message that this can be increased for more
optimal results).

8.2 Reproducibility

In line with the recent effort to make neuroimaging research fully reproducible,
this application makes it possible to track the exact source of each design. Low
level reproducibility is provided by making a script available for download with
which the optimisation can be regenerated. Running this script in python, given
that the required libraries are installed, will repeat the analysis. However, this
script will repeat the analysis but does not guarantee the same results as the
specific configuration of the computer on which the analysis is run can influence
the results.

Higher level reproducibility, that guarantees replicability not only of the
analysis but also of the results, is possible with the use of Docker containers,
which is a small piece of software that emulates a given computational configura-
tion (operating system, libraries, python packages,...). Based on the model pre-
sented by BIDS-apps (Gorgolewski et al., 2017), our analyses run in Docker con-
tainers that are open-source and available for download at https://hub.docker.com/r/neuropower/neuropower
Running the following command in a terminal will replicate the analysis that
has been performed through the GUI.
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docker run -v /location_where_the_script_is/:/local \\
-it neuropower/neuropower python /local/name_of_the_script.py

This use of Docker containers is not only well suited for reproducibility of
the GUI, but also allows the replication of results from a python script (given
that a random seed is set).

9 Conclusion

We present a toolbox for optimizing fMRI designs. The toolbox is an extension
of currently available toolboxes, allowing for more complex design and better
control and optimization of timing of stimuli. The toolbox is available through
different modalities: a user-friendly GUI accessible at www.neuropowertools.org
and a python package. The code is available on www.github.com/users/neuropower.
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