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Abstract 15 
Recent functional magnetic resonance imaging (fMRI) studies have increasingly revealed 16 
potential neural substrates of individual differences in diverse types of brain function and 17 
dysfunction. Although most previous studies have been inherently limited to state-specific 18 
characterizations of related brain networks and their functions, several recent studies have 19 
examined the potential state-unspecific nature of functional brain networks, such as their 20 
global similarities across different experimental conditions (i.e., states) including both task 21 
and rest. However, no previous studies have carried out direct, systematic characterizations 22 
of state-unspecific brain networks, or their functional implications. Here, we quantitatively 23 
identified several modes of state-unspecific individual variation in whole-brain functional 24 
connectivity patterns, called “Common Neural Modes (CNMs)”, from a large fMRI dataset 25 
including eight task/rest states, obtained from the Human Connectome Project. Furthermore, 26 
we tested how CNMs account for variability in individual behavioral measures. The results 27 
revealed that three CNMs were robustly extracted under various different preprocessing 28 
conditions. Each of these CNMs was significantly correlated with different aspects of 29 
behavioral measures of both fluid and crystalized intelligence. The three CNMs were also 30 
able to predict several life outcomes, such as income and life satisfaction, achieving the 31 
highest performance when combined with behavioral intelligence measures as inputs. Our 32 
findings highlight the importance of state-unspecific brain networks to characterize 33 
fundamental individual variation. 34 
 35 
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Introduction 39 
 40 
An increasing number of cognitive neuroscience studies have revealed the neural substrates 41 
of individual difference using functional magnetic resonance imaging (fMRI) (Dubois and 42 
Adolphs, 2016) by investigating coordinated activation (co-activation) patterns of the whole 43 
brain. The degree of co-activation between different brain regions of interest (ROIs), often 44 
referred to as functional connectivity (FC), is typically measured by the correlation between 45 
the blood-oxygen-level-dependent (BOLD) signals averaged within each ROI. A set of brain 46 
regions that cooperates under some experimental conditions is typically called a “network”, 47 
as represented by the default mode network (DMN) (Raichle, 2015). A wide variety of 48 
individual differences in our cognition and behavior have been associated with the 49 
characteristics of FC patterns and networks in the brain, including cognitive abilities (Finn et 50 
al., 2015; Smith et al., 2015), sustained attention ability (Rosenberg et al., 2016), emotional 51 
sensitivity (Modi et al., 2015; Takagi et al., 2018) and psychiatric disorders (Fox and Greicius, 52 
2010; Takagi et al., 2017). 53 
 54 
These previous studies have investigated the relationship between individual differences and 55 
brain networks while a person is experiencing a specific state. In particular, recent research 56 
has intensively focused on the resting state, as it potentially reflects many types of individual 57 
differences and can be measured easily (Dubois and Adolphs, 2016). The present study is 58 
directly inspired by Smith et al. (2015), who revealed, in a data-driven manner, that a small 59 
number of linear factors underlying individuals’ whole-brain resting-state FC patterns 60 
(“neural modes”) can explain diverse ranges of individual differences simultaneously (Smith 61 
et al., 2015). However, despite their apparent connections with behavior, the brain networks 62 
and neural modes examined in these previous studies, as well as their relations to individual 63 
differences, are inherently state-specific; thus, it is unclear whether these findings generalize 64 
across states, indicating basic traits of individuals. Geerligs et al. (2015) demonstrated that 65 
the relationship between individual differences and FC patterns may substantially change 66 
across different states, including both rest and task (Geerligs et al., 2015). 67 
 68 
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A small number of recent studies have suggested the existence of more fundamental, “state-69 
unspecific” brain networks which characterize individuals in a similar manner across 70 
different states (Cole et al., 2014; Finn et al., 2015; Tavor et al., 2016). Specifically, Cole et 71 
al. (2014) found that average FC patterns of a number of subjects exhibit a high degree of 72 
global similarity among different states, including rest. Finn et al. (2015) reported that FC 73 
patterns of each individual were also globally similar, across various task and rest states. 74 
Furthermore, Tavor et al. (2016) revealed that an individual’s brain activity during a task state 75 
can be predicted from their resting-state FC patterns. These findings clearly suggest a 76 
potential state-unspecific aspect of brain networks. Unfortunately, however, no previous 77 
studies have explicitly identified these state-unspecific brain networks, or quantitatively 78 
investigated their relationship to individual differences in behavior.  79 
 80 
In the present study, we conducted, for the first time, a quantitative characterization of state-81 
unspecific brain networks and investigated its connection with inter-individual variability in 82 
behavior. Our approach combined the large-scale database of the Human Connectome Project 83 
with a sophisticated machine learning technique. Specifically, we applied multiset canonical 84 
correlation analysis (M-CCA) to the FC matrices obtained from eight states, including the 85 
resting state (Kettenring, 1971; Vía et al., 2007). The obtained components uniquely 86 
characterize individuals’ FC patterns that are common across different states, which we refer 87 
to as “Common Neural Modes (CNMs)”. We demonstrated that several CNMs could be 88 
robustly extracted from whole-brain FC patterns. These CNMs were then found to be 89 
selectively correlated with behavioral intelligence measures. In addition, we demonstrated 90 
that CNMs could predict several types of life outcomes, complementing conventional 91 
behavioral measures of intelligence.   92 
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Materials and methods 93 
 94 
Subjects 95 
We used a public fMRI dataset available from the Human Connectome Project (HCP) 500 96 
Subject Release (Van Essen et al., 2012) (http://humanconnectome.org/data). We excluded 97 
1) subjects who did not have all eight fMRI datasets (corresponding to seven task states and 98 
one resting state) or who were not given all 44 behavioral measures (subdivided into 12 99 
categories of cognition), and 2) subjects who exhibited substantial movement during fMRI 100 
data acquisition (see fMRI preprocessing). After this screening process, 406 subjects were 101 
included in the final analysis. All subjects were healthy adults (ages 22–36 years, 238 102 
females).  103 
 104 
MRI parameters 105 
The fMRI data were acquired using a protocol with advanced multiband sequences. Whole-106 
brain echo-planar scans were acquired with a 32-channel head coil on a modified 3T Siemens 107 
Skyra with repetition time = 720 ms, echo time = 33.1 ms, flip angle = 52°, bandwidth 2,290 108 
Hz/Px, in-plane field of view = 208 ×180 mm, 72 slices, 2.0 mm isotropic voxels, with a 109 
multiband acceleration factor of 8 (Uǧurbil et al., 2013). Data were collected over 2 days. On 110 
each day, 28 min of rest (eyes open with fixation) fMRI data across two runs were collected 111 
(two runs, 56 min in total, per day), followed by 30 min of task-fMRI data collection (60 min 112 
in total, per day). Each of the seven task-fMRI was completed over two consecutive fMRI 113 
runs. Three task-fMRI (working memory, reward learning, and motor responses) data were 114 
collected on the first day. The other four task-fMRI (emotion perception, language processing, 115 
relational reasoning, and social cognition) data were collected on the second day. More 116 
details about the fMRI collection method were described in previous studies (Barch et al., 117 
2013; Smith et al., 2013).  118 
 119 
Task paradigms 120 
The seven task-fMRI paradigms were selected to activate different neural circuitry that 121 
supports broad cognitive functions, and included emotion perception, reward learning, 122 
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language processing, motor responses, relational reasoning, social cognition, and working 123 
memory (Barch et al., 2013; Cole et al., 2016). Briefly, the emotion task involved matching 124 
fearful or angry faces to a target face. The reward learning task involved a gambling task 125 
involving monetary rewards and losses. The language task involved auditory stimuli 126 
consisting of narrative stories and math problems, along with questions to be answered 127 
regarding the prior auditory stimuli. The motor task involved movement of the hands, tongue 128 
and feet. The relational reasoning task involved higher-order cognitive reasoning regarding 129 
relations among features of presented shape stimuli. The social cognition (theory of mind) 130 
task used short video clips of moving shapes that interacted in some way or moved randomly, 131 
with subjects making decisions about whether the shapes had social interactions. The 132 
working memory task involved the conventional visual 2-back and 0-back tasks. 133 
 134 
fMRI preprocessing 135 
Fig. 1 shows a schematic diagram of our analysis. The datasets were originally preprocessed 136 
through the HCP minimal preprocessing pipeline (Glasser et al., 2013). This pipeline includes 137 
artefact removal, motion correction and registration to standard space. T1 images were 138 
segmented into three tissue classes in Montreal Neurological Institute (MNI) space using 139 
Statistical Parametric Mapping 8 (SPM8: Wellcome Department of Cognitive Neurology, 140 
http:/ /www.fil.ion.ucl.ac.uk/spm/software/) in MATLAB (The MathWorks, Inc., Natick, 141 
MA). First, for each subject, the framewise displacement (FD) at each scan was calculated 142 
by summing up all six head motion parameters. The “scrubbing” procedure (Power et al., 143 
2012) then identified scans that exhibited excessive head motion based on FD volumes. 144 
Specifically, a scan was flagged if the FD exceeded 0.5 mm. The flagged scan, the preceding 145 
scan, and the two subsequent scans, were excluded from the correlation analysis below. 146 
Subjects were excluded from the subsequent analyses if less than 50% of the scans remained 147 
after this procedure for any of the eight fMRI data sets. Then, for each subject, pair-wise, 148 
interregional FC was evaluated among 268 ROIs covering the entire brain (Finn et al., 2015) 149 
(atlas can be downloaded from https://www.nitrc.org/frs/?group_id=51). The representative 150 
time course of each region was extracted by averaging the BOLD time courses of the voxels 151 
within that region. Each ROI time course was linearly regressed on the temporal fluctuations 152 
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of both the white matter and the cerebrospinal fluid as well as the six head motion parameters, 153 
whose effects were then subtracted from the original time course. The fluctuation of each 154 
tissue class was the average time course of the voxels within the corresponding mask. After 155 
within-run linear trend removal, for each subject, we calculated an FC matrix consisting of 156 
all the pairwise FCs between the 268 ROIs, based only on the remaining scans after the 157 
scrubbing step above. As the FC matrices are symmetric, values on only the strictly lower  158 
part were kept, resulting in 35,778 (= 268 × 267 / 2) unique entries (FC values) (Fig. 1a). For 159 
all task and resting state fMRI data, FC matrices were calculated using the same procedure. 160 
Note that an FC matrix was obtained for every run, and those of multiple runs were averaged 161 
in each of the eight task or resting-state conditions. 162 
 163 

 164 

Figure 1. Schematic diagram of the analyses. (1) For each subject, feature vectors from 165 
the eight states were extracted. (2) Within each state, data for all subjects were 166 
concatenated to obtain input data matrices. (3) Common Neural Modes (CNMs) were 167 
calculated by minimizing the difference between weighted input matrices and CNMs. 168 
CNMs were iteratively calculated with the orthogonalization constraint. 169 

 170 
 171 
Identifying CNMs 172 
We identified common neural modes (CNMs) of individuals as FC patterns that robustly 173 
characterized individuals irrespective of state. Specifically, we used M-CCA (Kettenring, 174 
1971), which extends canonical correlation analysis (CCA) (Hotelling, 1936) to more than 175 
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two datasets. Both methods identify canonical variates that summarize each dataset by linear 176 
transformations. In contrast, conventional CCA maximizes correlations between a pair of 177 
canonical variates, M-CCA maximizes a scalar objective function that summarizes all 178 
pairwise correlations among M (> 2) canonical variates. M-CCA reduces to CCA when the 179 
number of datasets M is two. Several variants of M-CCA have been proposed, depending on 180 
how it summarizes the pairwise correlations into a single objective function (Kettenring, 181 
1971). We chose the MAXVAR approach because it explicitly introduces common latent 182 
factors across different datasets (Vía et al., 2007), which can be naturally interpreted as 183 
CNMs. 184 
Suppose that we are given M data matrices Xk ∈ ℝ"×$% , k = 1,...,M (Fig. 1b), where N 185 
denotes the sample size and mk denotes the dimensionality of the k-th data space. Each 186 
column is assumed to have zero sample mean, without loss of generality. The MAXVAR 187 
approach can then be stated as the problem of finding M weight vectors wk (k = 1,...,M), each 188 
for one of the M datasets, so that the errors between the corresponding canonical factors Xkwk 189 
and their grand average z ∈ ℝ"×& is minimized. The cost function to be minimized is 190 
formally given as 191 

J = min,‖𝐳 − 𝐗1𝐰1‖3
4

15&

. 192 

where the minimization is performed with respect to both wk and z. To avoid trivial solutions, 193 
wk and zk are constrained to have unit Euclidean norms, and to be mutually orthogonal. The 194 
solution is given by solving a generalized eigenvalue problem. See Via et al. (2005) for more 195 
detailed information about this procedure. Solving this problem gives a set of M vectors wk, 196 
and CNMs are defined as the average of Xkwk for k = 1,…,M (Fig. 1c). 197 
To reduce redundancy among FCs, the dimensionalities of the data matrices were reduced in 198 
advance using principal components analysis (PCA). The numbers of principal components 199 
were varied between 10, 50 and 100 for calculating CNMs, and the numbers of CNMs were 200 
also varied between 10, 50 and 100, respectively. The significance of the pairwise canonical 201 
correlations was investigated using a permutation test for individual CNMs. We first shuffled 202 
subject labels of all Xk, then conducted M-CCA. We ran these analyses 1,000 times and 203 
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obtained 1,000 instances of estimated wk. We then took the average of the absolute correlation 204 
coefficients between all pairs among Xkwk for each random dataset. Finally, we calculated 205 
the statistical significance by comparing the true averaged value of the correlation coefficient 206 
with those obtained from shuffled datasets. 207 
 208 
Relationship between CNMs and cognitive measures 209 
To analyze how CNMs were associated with individual differences in behavior, we calculated 210 
Pearson’s correlations between the CNMs and cognitive measures obtained using HCP with 211 
various behavioral test batteries. The targets of those cognitive measures include, for example, 212 
episodic memory, executive function, self-regulation, language and fluid intelligence. The 213 
original set of measures were available from the HCP database website. When both age-214 
adjusted and age-unadjusted versions existed for the same index, we excluded the age-215 
unadjusted version. 216 
To reduce the risk of overfitting, we conducted all analyses in a fully cross-validated manner 217 
(Barch and Yarkoni, 2013). Specifically, we first split all the subjects into 10 disjointed 218 
subsets of subjects. The model for calculating CNMs was then obtained based on all but one 219 
set of subjects (training set) and the model was then tested on the one withheld set of subjects 220 
(test set). We repeated this procedure 10 times (10-fold cross validation). 221 
 222 
Prediction of life outcomes using CNMs 223 
The preceding analysis suggested that CNMs correlated with representative intelligence 224 
measures obtained by the behavioral test batteries. Thus we further investigated whether the 225 
CNMs may account for individual differences in the subjects’ life outcomes, which have been 226 
considered to be predicted by intelligence measures in the field of educational psychology 227 
(Cattell, 1963; Colom et al., 2010; Gottfredson, 1997). As a measure of life outcomes, we 228 
chose three measures: income, life satisfaction and year of education. We conducted the 229 
analysis using nested 10-fold cross validation. We first split all subjects into 10 sets of 230 
subjects, and identified CNMs based on the training set, as with the previous analysis. We 231 
then constructed a prediction model using 5-fold cross validation among the training set. We 232 
used the L1-reguralized linear regression model for each iteration. The hyper-parameter λ233 
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(the regularization coefficient) was tuned by choosing the best value from λ∈ 234 
{0.0001,0.001,0.01,0.1} based on this inner 5-fold cross validation. We finally applied the 235 
models for calculating CNMs and life outcomes to the test set. Performance was evaluated 236 
by performing Pearson’s correlation between predicted and actual life outcomes across whole 237 
subjects. 238 
 239 
Effects of the number of states used to identify CNMs 240 
We investigated the effects of the number of states used to identify CNMs on prediction 241 
accuracy. Specifically, we conducted the same prediction analyses as above, but here we used 242 
a smaller number of states for constructing the CNMs. We varied the number of states for 243 
constructing the CNMs from 2 to 8. We calculated all possible combinations for each case. 244 

For example, we calculated 28 CNMs (=782:), then constructed prediction models for all 245 

CNMs, when we estimated the prediction accuracy of two states. 246 
 247 
Interpretation of CNMs 248 
To facilitate the characterization of the biological substrates of the CNMs, we summarized 249 
the FC patterns that were correlated with first, second and third CNMs. We focused on these 250 
three CNMs because they had been robustly extracted by M-CCA. First, we averaged every 251 
FC value over all eight states. We then calculated Pearson’s correlation coefficients between 252 
three CNMs and each averaged FC. The 268 ROIs were then grouped into eight 253 
representative macroscale networks (e.g., DMN) defined functionally in a previous study 254 
(Finn et al., 2015). We then examined the number of FCs between each pair of regions in 255 
each network. Finally, we visualized the relative numbers of FCs in each of the two networks 256 
as the thickness of the connection lines (see Fig. 5). To aid interpretation, we visualized 200 257 
FCs among all 38,578 FCs that were the most strongly correlated with the CNMs. 258 
  259 
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Results 260 
 261 
Characterization of CNMs 262 
We first determined the number of CNMs that exhibited significant pairwise canonical 263 
correlations among eight states. For any choices of the preprocessing PCA dimensions (i.e., 264 
10, 50, and 100), first, second and third CNMs (namely CNM1, CNM2 and CNM3) exhibited 265 
significant overall correlations between states (where all the pairwise correlations were 266 
averaged) (P < 0.001 for all CNMs; 1,000 times permutation test); the other CNMs did not 267 
(P > 0.05; 1,000 times permutation test). The M-CCA results were highly consistent under 268 
different choices of PCA dimensions (see Supplementary Notes). We therefore focused on 269 
the top three CNMs, obtained by M-CCA on 10 PCs of FC vectors. 270 
We then investigated which cognitive measures correlated with each of the three CNMs. Figs. 271 
2a, 2b and 2c show the distributions of the correlation coefficients between cognitive 272 
measures and CNM1, CNM2 and CNM3, respectively. Table 1 shows representative  273 
behavioral indices with significantly higher correlation coefficients than the chance level. 274 
CNM1 was selectively correlated with fluid intelligence, which is a representative 275 
component of general intelligence having a broad effect on our daily life and future success 276 
(Cattell, 1963; Colom et al., 2010; Gottfredson, 1997). CNM2 correlated with various 277 
language related scores (reading recognition and vocabulary comprehension) and self-278 
regulation (delay discounting). It is noteworthy that language related scores are related to 279 
crystalized intelligence, a central component of general intelligence along with fluid 280 
intelligence (Cattell, 1963; Gottfredson, 1997). Finally, CNM3 was correlated with both fluid 281 
intelligence and language-related scores. Note that we confirmed that the correlations 282 
described above were not simply the consequence of PCA, which maximizes the variability 283 
between individuals in each state (see Supplementary Notes). 284 
 285 
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 286 
Figure 2. Absolute correlation coefficients (r) between each cognitive measure and 287 
the CNMs. Absolute correlation coefficients (r) between 44 cognitive measures and (a) 288 
CNM1, (b) CNM2 and (c) CNM3, respectively. The bar with light, medium, dark colored 289 
and grey indicated different levels of significance (P < 0.001, P < 0.01, P < 0.05 and P ≥ 290 
0.05, respectively). 291 
 292 

CNM1 CNM2 CNM3 

Name R Name R Name R 

Penn Progressive 
Matrices: Number of 
Correct Responses 

0.148 
NIH Toolbox Oral Reading 
Recognition Test: Age-
Adjusted Scale Score 

0.221 
Penn Progressive 
Matrices: Number of 
Correct Responses 

0.211 

Penn Progressive 
Matrices: Total 
Skipped Items 

0.115 
Delay Discounting: 
Subjective Value for $200 
at 1 year 

0.219 
Penn Progressive 
Matrices: Total Skipped 
Items 

0.207 

Penn Emotion 
Recognition Test: 
Number of Correct 
Happy Identifications 

0.100 
Delay Discounting: Area 
Under the Curve for 
Discounting of $40,000 

0.189 

Variable Short Penn 
Line Orientation: Total 
Positions Off for All 
Trials 

0.191 
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Delay Discounting: 
Subjective Value for $40K 
at 5 years 

0.187 
NIH Toolbox Picture 
Vocabulary Test: Age-
Adjusted Scale Score  

0.189 

  
Delay Discounting: 
Subjective Value for $200 
at 6 months 

0.181 
Delay Discounting: 
Subjective Value for 
$40K at 1 year 

0.169 

  
NIH Toolbox Picture 
Vocabulary Test: Age-
Adjusted Scale Score  

0.179 
Variable Short Penn 
Line Orientation: Total 
Number Correct 

0.167 

  
Delay Discounting: Area 
Under the Curve for 
Discounting of $200 

0.178 

Penn Emotion 
Recognition Test: 
Number of Correct 
Responses 

0.157 

  
Delay Discounting: 
Subjective Value for $200 
at 3 years 

0.174 

Penn Emotion 
Recognition Test: 
Number of Correct Sad 
Identifications 

0.138 

  
Short Penn Continuous 
Performance Test: 
Specificity 

0.172 

NIH Toolbox Pattern 
Comparison Processing 
Speed Test: Age-
Adjusted Scale Score  

0.127 

  
Short Penn Continuous 
Performance Test: True 
Negatives 

0.172 
Delay Discounting: Area 
Under the Curve for 
Discounting of $40,000 

0.126 

 293 
Table 1. Cognitive measures that were highly significantly correlated with CNMs  294 
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 295 
Prediction of life outcomes using CNMs 296 
We next investigated whether CNMs could predict life outcomes, complementing 297 
conventional behavioral tests (i.e., measures of fluid intelligence). 298 
Figs. 3a, 3b and 3c show that predicting with CNMs alone achieved significant predictive 299 
value (P < 10-4 for income and number of years of education; P < 2.00 × 10-4 for life 300 
satisfaction; 10,000 times permutation test). The correlation coefficient (r) was slightly 301 
higher than that with fluid intelligence alone for income and life satisfaction, but worse for 302 
years of education. Combining both the CNMs and fluid intelligence yielded the highest 303 
performance in every case (P < 10-4 for all income and years of education; P < 2.00 × 10-4 304 
for life satisfaction; 10,000 times permutation test).  305 
 306 

 307 

Figure 3. Prediction performance. Cross validated prediction accuracies by the fluid 308 
intelligence obtained by the behavioral test batteries (FIQ; left), the CNMs (middle) and 309 
their combination (right) for income, life satisfaction and number of years of education, 310 
respectively. 311 

 312 
Effects of the number of states used for the CNMs 313 
We further investigated the effects of the number of states used for identifying the CNMs on 314 
the prediction accuracy. Fig. 4a, 4b and 4c show the prediction accuracies using the CNMs 315 
with different numbers of states. These figures indicate that the more states we used, the 316 
greater accuracy we were able to achieve for predicting life outcomes. We constructed linear 317 
regression models, and found that the effects of the number of states were significant for all 318 
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models (P = 8.15 × 10-13 for income; P = 5.71 × 10-13 for life satisfaction; P = 0.007 for years 319 
of education). 320 
 321 

322 
Figure 4. Relationship between the number of states used for the CNMs and 323 
prediction performance. Cross validated prediction accuracies of the CNMs obtained 324 
from different numbers of states for income (left), life satisfaction (middle) and number 325 
of years of education (right), respectively. 326 

 327 
Interpretation of the CNMs 328 
To facilitate characterization of the biological substrates of the FCs underlying CNMs, we 329 
grouped the 268 ROIs into eight macroscale canonical networks. Figure 5 show the circle 330 
plots of the FCs that were correlated with CNM1, CNM2 and CNM3. The numbers of FCs 331 
in each of the two macroscale regions (the medial frontal [MF], frontoparietal [FP], default 332 
mode network [DMN], subcortical-cerebellum [SC-CB], motor [MTR], visual I [V1], visual 333 
II [V2], and visual association [VAssc]) networks are presented as the thickness of the 334 
connection lines. Connection lines are colored blue within the same network and red between 335 
two networks. Although the FCs were widely distributed rather than locally constrained, 336 
there were some differences in the distributions among the CNMs. A certain degree of the 337 
FCs in the CNM1 belonged to the networks between cortical and subcortical brain regions, 338 
including the medial frontal network. On the other hand, FCs in the CNM2 belonged to the 339 
networks within cortical brain regions including the frontoparietal network. Finally, FCs in 340 
the CNM3 belonged to both the cortico-cortico and cortico-subcortical networks including 341 
both the medial frontal and frontoparietal networks. 342 
 343 
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 344 
Figure 5. Spatial distribution of the functional connectivity (FC) related to CNMs. 345 
The number of FCs between each pair of canonical networks in (1) CNM1, (2) CNM2 and 346 
(3) CNM3, respectively. Canonical networks included the medial frontal (MF), 347 
frontoparietal (FP), default mode network (DMN), subcortical-cerebellum (SC-CB), 348 
motor (MTR), visual I (V1), visual II (V2), and visual association (VAssc). Connection 349 
lines are colored blue within the same network and red between two networks. 350 

  351 
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Discussion 352 
 353 
In the present study, we conducted, for the first time, a quantitative examination of the 354 
potential factors underlying state-unspecific inter-individual variability of whole-brain FC 355 
patterns, which we termed CNMs, and investigated their associations with behaviors and life 356 
outcomes. Although previous studies have suggested a state-unspecific pattern of FC (Cole 357 
et al., 2014; Finn et al., 2015; Tavor et al., 2016), to our knowledge no study has directly 358 
defined such FC patterns in a quantitative manner. The CNMs were extracted by M-CCA in 359 
a fully cross-validated manner from the fMRI datasets of the HCP, covering a broad range of 360 
task and resting states. The CNMs predicted representative intelligence measures including 361 
fluid and crystalized intelligence with significant correlations, which could not be achieved 362 
without M-CCA (i.e., with PCA alone). We further demonstrated that the CNMs were able to 363 
predict several life outcomes, complementing conventional behavioral tests of fluid 364 
intelligence. We also found that the more states we used to identify CNMs, the higher 365 
accuracy we were able to achieve when predicting life outcomes. The FCs constituting those 366 
CNMs were widely distributed throughout the brain rather than being locally constrained. 367 
 368 
Three CNMs were robustly extracted by M-CCA, which correlated significantly with 369 
representative intelligence measures (Fig. 2). Intelligence measures are related to a wide 370 
range of cognitive functions and predict broad social outcomes such as educational 371 
achievement, job performance, health, and longevity (Cattell, 1963; Colom et al., 2010; 372 
Gottfredson, 1997). Therefore, the relationships between the CNMs and these measures are 373 
intuitive to understand. It is also noteworthy that each CNM correlated with a different 374 
dimension of intelligence. That is, CNM1 and CNM3 correlated with fluid intelligence, while 375 
the CNM2 correlated with crystalized intelligence. This suggests that these CNMs may have 376 
different biological substrates (Fig. 5). Importantly, the CNMs were derived in a fully data-377 
driven, cross-validated manner. The relationship between CNMs and intelligence measures 378 
was thus non-trivial. Although our study was inspired by the “positive-negative” neural 379 
modes (Smith et al., 2015) which are also correlated with intelligence measures, our CNM 380 
analysis fundamentally differs from that used by Smith et al. (2015) in several important 381 
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ways. First, although Smith et al. (2015) obtained their results by optimizing the correlation 382 
between behavioral measures and FCs explicitly, our CNM did not use any behavioral 383 
measure. Second, while Smith et al. (2015) used resting state data only, our CNM method 384 
used multiple states. 385 
 386 
When predicting life outcomes from CNMs alone, CNMs achieved higher prediction 387 
accuracies for income and life satisfaction than prediction with conventional intelligence 388 
measures alone. In contrast, conventional intelligence measures achieved better prediction 389 
for the number of years of education (Fig. 3). These results may reflect different 390 
characteristics between biologically defined measures and measures from a behavioral 391 
battery. It should be noted that combining the CNMs with fluid intelligence achieved the 392 
highest prediction accuracies for all life outcomes. These results indicate that CNMs contain 393 
valuable information for predicting behavior that may not be captured by conventional 394 
intelligence measures. 395 
 396 
Importantly, using a greater number of states to identify CNMs enabled us to achieve greater 397 
prediction accuracy (Fig. 4). This indicates that CNMs were more reliably extracted when 398 
considering a greater number of behavioral states. Indeed, the correlation between 399 
representative intelligence measures and first principal components derived from each single 400 
state were lower than those of the CNMs. Our findings suggest that contrasting many 401 
different states, rather than considering any single (typically resting) state, can more reliably 402 
identify the neural modes that are able to predict diverse types of individual differences.  403 
 404 
Although all three CNMs were related to the subcortical-networks and motor networks, we 405 
observed different trends among them in terms of the related canonical networks (Fig. 5). 406 
CNM1, CNM2 and CNM3 were related to the medial frontal network, frontoparietal network, 407 
and both networks, respectively. This finding is of interest because CNM1 and CNM2 408 
captured different aspects of intelligence (fluid and crystalized intelligence, respectively) 409 
while CNM3 was related to both. We also observed that brain regions contributing to all 410 
CNMs were widely distributed rather than locally restricted. This is consistent with a 411 
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previous study reporting that brain regions related to intelligence were broadly distributed 412 
(Haier et al., 2009). Several previous studies have also reported a relationship between 413 
intelligence measures and FCs (Finn et al., 2015; Lerman-Sinkoff et al., 2017; Schultz and 414 
Cole, 2016). However, most of these studies have examined only one state. 415 
 416 
Although we focused on state-unspecific neural modes across various states, these modes 417 
would be expected to function in a coordinated way with other state-specific neural modes 418 
in any particular state. Different neural modes for respective states may have different 419 
abilities associated with different neural substrates, which may also cause individual 420 
differences in behavior. Thus, it would be useful for future studies to comprehensively 421 
compare the relationship between the state-specific and state-unspecific neural modes in 422 
terms of their relationship with both cognitive measures and neural substrates. 423 
 424 
In summary, we identified neural modes that appeared to be stable across different states, and 425 
quantitatively characterized various individual differences. These components, referred to as 426 
CNMs, were identified in a fully data-driven manner using a machine learning technique. 427 
The CNMs were significantly correlated with representative intelligence measures as well as 428 
life outcomes. Although previous studies suggested the potential of brain networks that are 429 
shared among broad states, the current study is the first to quantitatively define such networks 430 
and demonstrate that they may have a broad effect on behavior and life outcomes. We believe 431 
that the present study provides evidence that state-unspecific brain networks may be related 432 
to a diverse range of behaviors and life achievements. 433 
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visualization. 442 
  443 
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