- 1 Supplementary data.

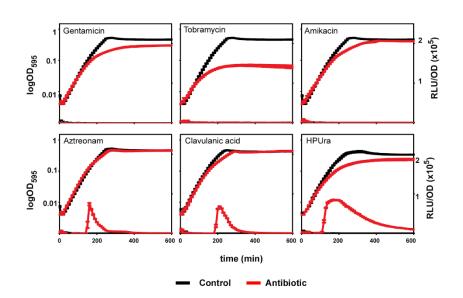


Figure S1. Growth curves (OD₅₉₅) and bioluminescence activity (RLU/OD₅₉₅) of *htrA* mutant in presence of several antibiotics. Strain ADP1 (*P*₅₀₅-*luc*, *htrA*::*ery*) was grown in C+Y medium at pH 7.35 with (red lines) or without (black lines) addition of the antibiotics. Average of 3 replicates and Standard Error of the Mean (SEM) are plotted. Antibiotics used: 10 µg/ml gentamicin, 28 µg/ml tobramycin, 28 µg/ml amikacin, 28 µg/ml aztreonam, 2 µg/ml clavulanic acid, and 0.15 µg/ml HPUra. Aminoglycosides are not able to induce competence in the *htrA* mutant, as suggested before (Stevens et al. 2011). However, both aztreonam and clavulanic acid induce competence by another mechanism, as well as HPUra (Slager et al. 2014).

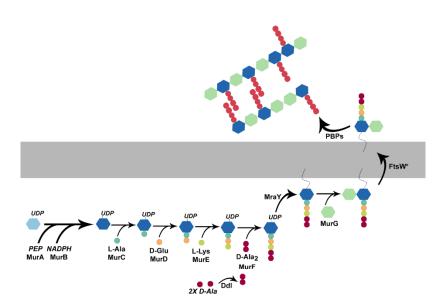
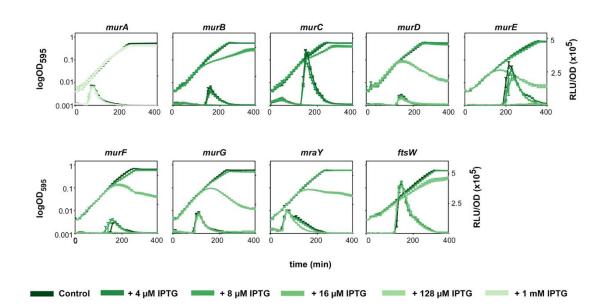
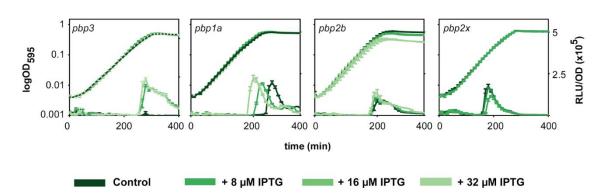



Figure S2. Representation of the cell wall synthesis in *Streptococcus pneumoniae*. The first stage of the peptidoglycan synthesis is the assembling of the pentapeptide, constituted by six enzymes (MurA-F). The second stage, which occurs on the intracellular part of the membrane, drives the synthesis of the lipid II (*mra* Y and MurG). Then, the


- 18 lipid II is flipped and showed at the external part of the membrane, potentially by FtsW. The final stage occurs on the
- 19 extracellular face of the membrane, and involves the continuous transglycosylation and transpeptidation activities of
- 20 the Penicillin-Binding Proteins (PBPs).
- 21 22

24 25 26 27 28 Figure S3. Repression of genes involved in pentapeptide (murA-F) and lipid II (murG and mraY) formation, and its putative flippase (ftsW) by CRISPRi. No effect on competence was observed after depleting the individual genes. Detection of competence development was performed in C+Y medium at a permissive pH 7.5 for natural competence. IPTG was added to the medium at the beginning, at different final concentrations (128 µM and 1 mM for murA; 4 µM and 8 µM for murB and murC; 8 µM and 16 µM for the other genes). The values represent averages of three replicates 29 with SEM. Experiments were also reproduced at pH 7.35 (non-permissive) to confirm that the depletion of none of these 30 genes cause an upregulation of competence (data not shown).

23

32

33 34 35

Figure S4. CRISPRi-dependent downregulation of pbp1a and pbp3 leads to competence induction. Depletion of 36 37 pbp1a and pbp3 by induction of dCas9 with IPTG upregulates competence development. In contrast, depletion of pbp2b and pbp2x does not have any effect on the regulation of this process. Detection of competence development was 38 39 performed in C+Y medium at a permissive pH (pH 7.5). IPTG was added to the medium at the beginning, at different final concentrations (8 µM and 16 µM for pbp1a; 16 µM and 32 µM for the other pbp genes). The values represent 40 averages of three replicates with SEM. 41

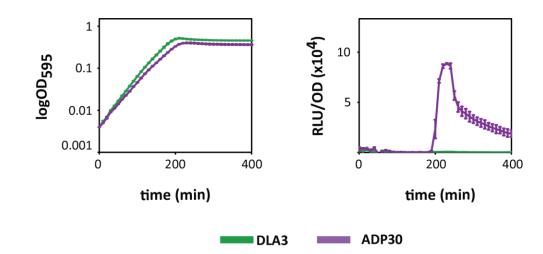


Figure S5. Natural competence in DLA3 (*P*_{stob}-*luc*) and ADP30 (*P*_{stob}-*luc*, *pbp3::chl*). To confirm that *pbp3* is involved
 in competence development, we compared the natural competence activation of the wild type (DLA3) with the *pbp3* mutant (ADP30). At pH 7.35, only the mutant was able to become competent, confirming the upregulation of this

48 pathway in absence of PBP3.

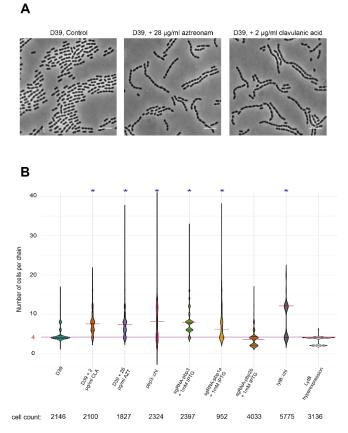
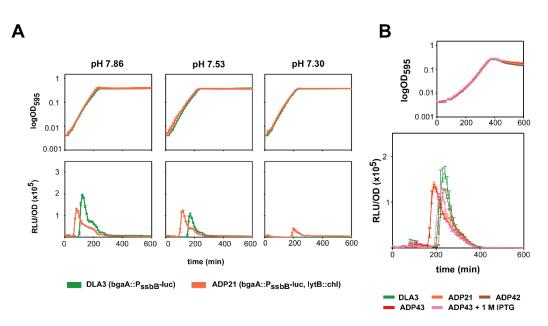



Figure S6. AZT and CLA induce chain formation. Cells were grown in C+Y acid medium until OD 0.4 (stationary fase). A) Phase-contrast images. Scale: 6 µm. B) Length of the chains. Horizontal red line means the average of the number of cells per chain while the purple line highlights the control condition. The addition of AZT or CLA results in the presence of longer chains, as does the deletion and depletion of *pbp3*. Depletion of *pbp1a* induces chain

55 formation, contrary to the pbp2b depletion phenotype. The absence of lytB also resulted in an increase of chain length, 56 while its overexpression restores normal chain length.

57

58

59 Figure S7. A) Natural competence in DLA3 (P...b-luc) and ADP21 (P...b-luc, lytB::chl), in a range of three different

60 pHs. In all the conditions, the lytB mutant strain showed an earlier development of competence. Even at pH 7.30, where

61 the wild type strain did not become competent, the lytB mutant showed bioluminescence activity, implying competence activation. B) LytB complementation restores normal natural competence. Strains showing a chainy phenotype

62 63 [ADP21 (lytB::chl) and ADP43 (inducible lytB in lytB::chl background without presence of the inducer IPTG)] were

64 overcompetent compared with strains showing a wild type phenotype [DLA3 (control), ADP42 (constitutive expression

65 of LytB) or the induction of LytB in ADP43 with 1M IPTG].

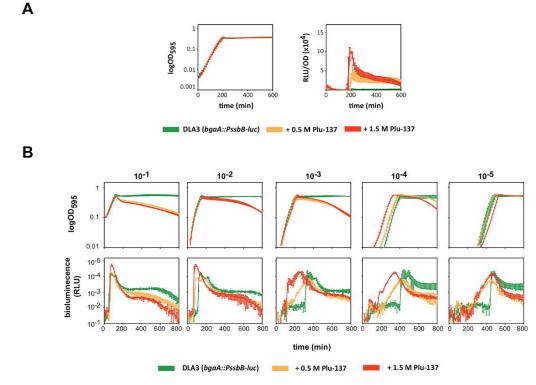


Figure S8. A) Effect of medium density on natural competence development. The addition of increasing concentration of Pluronic-137 results in a lower diffusion of the CSP and thereby a strong and earlier natural competence induction. Cells were grown in C+Y pH 7.3 with or without the indicated concentration of Pluronic 137. B) Synchronization of competence is affected by a reduction of CSP diffusion. Growth curves (OD₅₀₅; up) and competence expression (relative luminescence units; down) in a range of initial densities. Cell were grown in C+Y no acid (green), or in presence of 0.5 M (orange) or 1.5 M (red) of the polymer Pluronic-137 (P-137). Average of 3 replicates and Standard Error of the Mean (SEM) are plotted for each of five inoculation densities: OD₅₉₅ 10⁻¹, 10⁻², 10⁻³, 10⁻⁴ and 10⁻⁵.

Bacterial target	Antibiotic class	Antibiotic*	Concentration range (µg/mL)
Cell-wall inhibitors	Beta-lactams (carbapenems)	Imipenem	0.015 - 0.12
	(carbapenenis)	Meropenem	0.015 - 0.12
	Beta-lactams (monobactams)	Aztreonam	12.5 – 100
	Beta-lactams (amino-penicillins)	Methicillin	0.016 - 2
		Ampicillin	0.0015 – 0.25
		Amoxicillin	0.0015 – 0.25
		Amoxicillin/Clavulanic acid	0.0015/2 - 0.25/2
	Beta-lactams (Cephalosporins)	Cephalexin (1st generation)	0.006 - 1
		Cefaclor (2nd generation)	0.006 – 1
		Cefuroxime (2nd generation)	0.006 – 1
		Cefotaxime (3rd generation)	0.006 – 1
		Cefepime (4th generation)	0.006 – 1
	Beta-lactams (antipseudomonal)	Piperacillin	0.003 – 0.12
	Beta-lactamase inhibitors	Clavulanic acid	0.5 – 8
DNA replication	Fluoroquinolones	Ciprofloxacin	0.4
Innibiuon	-	HPUra	0.15
Protein synthesis nhibition	Aminoglycosides	Gentamicin	5 – 100
		Amikacin	5 – 100
	Macrolides	Clarithromycin (14 carbons)	0.003 – 0.12
		Azithromycin (15 carbons)	0.003 – 0.12
		Josamycin (16 carbons)	0.003 - 0.12

Table S1. List of antibiotics tested for competence induction.

Table S2. Intraspecific in vitro horizontal gene transfer (HGT) of antimicrobial resistance determinants*.

рН	Experiment	No. of transformants (cfu/ml)*	Total viable count (cfu/ml)	Transformation efficiency (%)
7.3	DLA3 + MK134 (control)	0 <u>+</u> 0 cfu/ml	1.4 ⋅ 10 ¹¹ <u>+</u> 4.0 ⋅ 10 ¹⁰ cfu/ml	0 <u>+</u> 0 %
	DLA3 + MK134 + AZT	6.2 · 10⁴ <u>+</u> 4.1 · 10³ cfu/ml	9.0 · 10 ¹⁰ <u>+</u> 2.7 · 10 ¹⁰ cfu/ml	7.0 · 10 ⁻⁵ <u>+</u> 2.3 · 10 ⁻⁵ %
	DLA3 + MK134 + CLA	2.1 · 10⁴ <u>+</u> 1.0 · 10⁴ cfu/ml	9.3 · 10 ¹⁰ <u>+</u> 1.5 · 10 ¹⁰ cfu/ml	2.3 · 10 ⁻⁵ <u>+</u> 1.4 · 10 ⁻⁵ %
7.5	DLA3 + MK134 (control)	2.0 · 10³ <u>+</u> 1.0 · 10³ cfu/ml	1.4 · 10 ¹¹ <u>+</u> 3.1 · 10 ¹⁰ cfu/ml	1.3 · 10 ⁻⁵ <u>+</u> 4.3 · 10 ⁻⁷ %
	DLA3 + MK134 + AZT	8.4 · 10⁴ <u>+</u> 4.9 · 10³ cfu/ml	9.0 · 10 ¹⁰ <u>+</u> 2.6 · 10 ¹⁰ cfu/ml	9.9 · 10 ⁻⁵ <u>+</u> 3.0 · 10 ⁻⁵ %
	DLA3 + MK134 + CLA	5.3 · 10⁴ <u>+</u> 7.5 · 10³ cfu/ml	9.3 ⋅ 10 ¹⁰ <u>+</u> 1.5 ⋅ 10 ¹⁰ cfu/ml	5.9 · 10 ⁻⁵ <u>+</u> 1.7 · 10 ⁻⁵ %

83

84 * Three independent replicates per condition were performed. Strains: DLA3 (D39, bgaA::Psile-luc, tetracycline 85 resistance marker), MK134 (D39, ssbB-luc, kanamycin resistance marker). Abbreviations: AZT = 28 μg/ml of

86 aztreonam, CLA = 2 µg/ml of clavulanic acid.

87

Table S3. Interspecific transfer of DNA from *E. coli* to *S. pneumonia*e promoted by aztreonam.

Experiment	No. of transformants	Total viable count	Transformation
	(cfu/ml)*	(cfu/ml)	efficiency (%)
pLA18 <i>E. coli</i> + D39 SPNE	0 <u>+</u> 0 cfu/ml	1.9 · 10 ⁸ <u>+</u> 7.8 · 10 ⁶ cfu/ml	0 <u>+</u> 0
pLA18 <i>E. coli</i> + D39	3.4 ⋅ 10 ⁴ <u>+</u> 8.5 ⋅ 10 ³	1.0 ⋅ 10 ⁸ <u>+</u> 3.5 ⋅ 10 ⁶	3.3 · 10 ⁻² <u>+</u> 9.3 · 10 ⁻³ %
SPNE + AZT	cfu/ml	cfu/ml	

89

* Three independent replicates per condition were performed. Abbreviations: AZT: 28 μg/ml of aztreonam; SPNE:
 Streptococcus pneumoniae; E. coli: Escherichia coli DH5α carrying the high-copy plasmid pLA18, with the
 tetracycline resistance marker *tetM*. Both SPNE and *E. coli* were co-incubated at the same initial concentration
 (OD₅₅₅ 0.04).

94

95

Table S4. Functional analysis of the microarray experiments of S. pneumoniae ADP62 (comC::chl) grown in presence or absence of antibiotics

Condition	Gene regulation	Class	Single list	Class Size	Description
AZT (RE)	upregulation	-			
	downregulation	COG	0.00 (3)	209	Cell wall/membrane/envelope biogenesis
		COG	0.00 (3)	159	Inorganic ion transport and metabolism
		GO	0.00022 (2)	7	GO:0005315 - phosphate transmembrane transporter activity
		GO	0.00051 (3)	92	GO:0006810 - transport
		GO	0.00194 (3)	164	GO:0016020 - membrane
		KEYWORDS	0.00258 (3)	121	IPR003439 - ABC transporter-like
		KEYWORDS	0.00082 (3)	66	IPR003445 - Cation transporter
AZT (AE)	upregulation	-			
	downregulation	COG	0.000 (3)	209	Cell wall/membrane/envelope biogenesis
		GO	0.00022 (2)	7	GO:0005315 - phosphate transmembrane transporter activity
		Others	0.0e+00 (4)	23	t_RNA-Ser
		Others	2.1e-06 (2)	2	Serine protease
CLA (RE)	upregulation	-			
	downregulation	-			
CLA (AE)	upregulation	-			
	downregulation	COG	0.00 (5)	209	Cell wall/membrane/envelope biogenesis
		COG	0.00 (4)	159	Inorganic ion transport and metabolism
		GO	7.4e-05 (2)	7	GO:0005315 - inorganic phosphate transmembrane transporter
		GO	0.0e+00 (4)	92	GO:0006810 - transport
		GO	0.0e+00 (5)	164	GO:0016020 - membrane

			IPR	0.00 (3)	37	IPR000515 - Metl-like domain	
			KEYWORDS	0.0e+00 (4)	121	IPR003439 - ABC transporter	like
			KEYWORDS	6.9e-05 (3)	42	IPR000515 - Metl-like domain	
			KEYWORDS	0.0e+00 (4)	66	IPR003445 - Cation transporte	er
			Pfam	0.00 (3)	37	PF00528 - Binding-transport s membrane	ystem inner
			Other	0.00 (3)	37	SSF161098 - Metl-like	
98 99 100	Abbreviation				•	d exposure, AE: adaptive exp ontology, IPR: interpro	osure; COG:
101							
102							
103 104	Table S5.					riptome comparison of <i>S. µ</i> e of antibiotics	oneumoniae
105							
	Condition	gene modulation	locus	gene descr	ription		log. fold change
	AZT (RE)	downregulation	SPD_0741	Putative dec permease p		specific ABC transporter	- 1.10
			SPD_1231	Phosphate PstC2	transport sy	ystem permease protein	- 1.12
			SPD_1393	pyridine nuc protein	cleotide-dis	ulfide oxidoreductase family	- 1.32
			SPD_1230	Phosphate PstA2	transport sy	ystem permease protein	- 1.35
			SPD_0555	Antibiotic Al	BC transpo	rter permease protein	- 1.48
	AZT (AE)	downregulation	SPD_1682	tRNA-Ser2			-1,01
			SPD_1231	Phosphate PstC2	transport sy	ystem permease protein	-1,01
			SPD_1695	tRNA-Leu3			-1,13
			SPD_1685	tRNA-Phe1			-1,13

		SPD_1760	tRNA-Cys1	-1,22
		SPD_2069	SpoJ protein	-1,34
		SPD_0555	Antibiotic ABC transporter permease protein	-1,36
		SPD_2068	Serine protease	-1,40
		SPD_0913	Hypothetical protein	-1,46
		SPD_1697	tRNA-Asp-GTC	-1,98
		SPD_1874	LysM domain-containing protein	-2,37
CLA (RE)	upregulation	SPD_0620	Lysyl-tRNA synthetase	2.31
		SPD_2028	Choline binding protein D	1.90
		SPD_1654	Ribosomal large subunit pseudouridine synthase B	1.08
		SPD_0919	Hypothetical protein	1.04
	downregulation	SPD_1697	tRNA-Asp-GTC	- 1.01
		SPD_0361	Transcriptional regulon	- 1.10
CLA (AE)	upregulation	SPD_1181	Hypothetical protein	1.19
		SPD_2007	Transporter major facilitator family protein	1.16
		SPD_0141	Hypothetical protein	1.04
		SPD_0293	PTS system transporter subunit IIA	1.02
		SPD_0934	Tn5252, ORF 10 protein	1.01
	downregulation	SPD_1738	MATE efflux family protein DinF	- 1.01
		SPD_1220	Spermidine/putrescine ABC transporter permease	- 1.01
		SPD_0741	Putative deoxyribose-specific ABC transporter permease protein	- 1.15
		SPD_1231	Phosphate transport system permease protein PstC2	- 1.23
		SPD_1230	Phosphate transport system permease protein PstA2	- 1.43
		SPD_0555	Antibiotic ABC transporter permease protein	- 1.53
		SPD_1697	tRNA-Asp-GTC	- 1.57

- 107 108 Abbreviations: AZT: aztreonam, CLA: clavulanic acid, RE: rapid exposure, AE: adaptive exposure. In bold, genes with transcriptome changes in more than one condition.

Table	S6.	List	of	strains	used.
Iabic	00.	LISU	v	Suamo	uscu.

S. pneumoniae strains	Relevant genotype	Reference
D39	Serotype 2 strain	Avery et al. 1944
DLA3	$\Delta bgaA::P_{ssbb}$ -luc-gfp	Slager et al. 2014
MK134	ssbB-luc	(Slager et al. 2014
ADP21	∆bgaA::P _{ssbB} -luc-gfp, lytB::chl	This study
ADP30	$\Delta bgaA::P_{ssbB}$ -luc-gfp, dacC::chl	This study
ADP42	$\Delta bgaA::P_{ssbB}$ -luc-gfp, cep:: P_{Lac} -lytB , lytB::chl	This study
ADP43	Δ bgaA:: P_{ssbB} -luc-gfp, cep:: P_{Lac} -lytB , lytB::chl, prsA:: P_{Fb} -lacl, ssbB-luc	This study
ADP62	$\Delta bgaA::P_{ssbb}$ -luc-gfp, comC::chl	Moreno-Gámez et al. 2017
ADP157	∆cep::P₃-sgRNA-pbp1A, ∆bgaA::P₊₅-dCas9, prsA::P₅- lacl, ssbB-luc	This study
ADP161	∆cep::P₃-sgRNA-pbp2b, ∆bgaA::Pь₅-dCas9, prsA::P₅- lacl, ssbB-luc	This study
ADP165	∆cep::P₃-sgRNA-murB, ∆bgaA::P₊₅-dCas9, prsA::P₅- lacl, ssbB-luc	This study
ADP173	∆cep::P₃-sgRNA-murA-2, ∆bgaA::P⊥ac-dCas9, prsA::P _{F6} - lacl, ssbB-luc	This study
ADP177	∆cep::P₃-sgRNA-pbp2x, ∆bgaA::P₅-dCas9, prsA::P₅- lacl, ssbB-luc	This study
ADP178	∆cep::P₃-sgRNA-mraY, ∆bgaA::P₊₅-dCas9, prsA::P₅- lacl, ssbB-luc	This study

	ADP179	Δ cep::P ₃ -sgRNA-murD, Δ bgaA::P ₁₀₀ -dCas9, prsA::P _{F0} - lacl, ssbB-luc	This study
	ADP180	∆cep::P₃-sgRNA-murG, ∆bgaA::Pւഛ-dCas9, prsA::Pℯ₅- lacl, ssbB-luc	This study
	ADP185	Δ cep::P ₃ -sgRNA-ftsW,, Δ bgaA::P _{Lac} -dCas9, prsA::P _{F6} - lacl, ssbB-luc	This study
	ADP187	Δ cep::P ₃ -sgRNA-murE, Δ bgaA::P _{Lac} -dCas9, prsA::P _{F6} -lacl, ssbB-luc	This study
	ADP190	Δ cep::P ₃ -sgRNA-murF, Δ bgaA::P _{Lac} -dCas9, prsA::P _{F6} - lacl, ssbB-luc	This study
	ADP203	Δ cep::P ₃ -sgRNA-murA-1, Δ bgaA::P _{Lac} -dCas9, prsA::P _{F6} -lacl, ssbB-luc	This study
	ADP207	Δ cep::P ₃ -sgRNA-murC, Δ bgaA::P _{Las} -dCas9, prsA::P _{F6} -lacl, ssbB-luc	This study
	ADP245	$\Delta cep::P_3$ -mkate2, P_{ssbb} -ssbB-gfp	Moreno-Gámez et al. 2017
	ADP264	Δ cep::P ₃ -sgRNA-pbp3, Δ bgaA::P _{Lac} -dCas9, prsA::P _{F6} - lacl, ssbB-luc	This study
E.	coli pLA18	DH5α, plasmid amp [«] , bgaA', tet [«] , P _{ssbe} -luc_gfp, 'bgaA	Slager et al. 2014

115 Supplementary methods

116 *CRISPRi library:* to monitor the competence effect of the downregulation of genes involved in
117 the cell wall synthesis, the PCR product of the fragment *ssbB–luc–kan* from strain MK134 (Slager
118 et al. 2014) into the CRISPRi library of the indicated genes (Slager et al. 2014; Liu et al. 2017).
119 Transformants were selected on Columbia blood agar containing 250 µg/ml kanamycin resulting
120 in strains listed on table S6.

121 ADP21 strain: to monitor the effect of the chain formation on competence induction, the gene 122 lytB encoding for the Autolysin B was replaced by the chloramphenicol resistance marker. The 123 upstream region was amplified using primers ADP1/34 (GATGTGGTGAAAGCAGCTGTGGAAG) 124 and ADP1/35+Ascl (CGATGGCGCGCCTCCTCTGTTCTTATTTATTTG), the downstream 125 region with primers ADP1/36+Notl (CGATGCGGCCGCTACTATAAGTGAATATGATTTGAGTG) 126 and ADP1/37 (GTGTAGAAACCGTCCTCAACCAAG), and the chloramphenicol resistance 127 marker with sPG11+Ascl (ACGTGGCGCGCCAGGAGGCATATCAAATGAAC) and sPG12+Notl 128 (ACGTGCGGCCGCTTATAAAAGCCAGTCATTAG). All three fragments were digested with the 129 proper restriction enzymes (Ascl and/or Not) and ligated. The $\Delta lytB::chl$ fragment containing the 130 chloramphenicol resistance marker flanked by the sequence up- and downstream of lytB was 131 transformed into DLA3 resulting in ADP21 strain (ΔbgaA::P_{stef}-luc, ΔlytB::chl). Transformants 132 were selected on Columbia blood agar containing 4.5 µg/ml chloramphenicol. Correct deletion 133 was verified by PCR and sequencing.

134 ADP30 strain: to monitor the effect of the PBP3 on competence, the related gene was replaced 135 by the chloramphenicol resistance marker. The upstream region was amplified using primers 136 ADP1/59 (GCCCTCAACTCAGCAGTATGG) ADP1/60+Ascl and 137 (CGATGGCGCGCCTTATCCAACTGATCCCTCCATTTC), the downstream region with primers 138 (CGATGCGGCCGCGAGGTAACTCATGTTTCGTAG) ADP1/61+NotI and ADP1/62 139 (AAGCCTGCAATATGCAAGCGATCC), and the chloramphenicol resistance marker with 140 (ACGTGGCGCGCCAGGAGGCATATCAAATGAAC) sPG11+Ascl and sPG12+Notl 141 (ACGTGCGGCCGCTTATAAAAGCCAGTCATTAG). All three fragments were digested with the 142 proper restriction enzymes (Ascl and/or Not) and ligated. The Appp3::chl fragment containing the 143 chloramphenicol resistance marker flanked by the sequence up- and downstream of pbp3 was 144 transformed into DLA3 resulting in ADP30 strain (ΔbgaA::P_{stel}-luc, Δpbp3::chl). Transformants 145 were selected on Columbia blood agar containing 4.5 µg/ml chloramphenicol. Correct deletion 146 was verified by PCR and sequencing.

147 **ADP42 and ADP43 strains**: to test whether the ectopic hyperexpression of LytB in the $\Delta lytB$ 148 mutant restored the normal diplococcus phenotype and restored competence development to wild 149 type, we created an inducible expression of LytB. The inducible system was created using 150 BglFusion cloning (Sorg et al. 2015). To amplify the *lytB* fragment, primers ADP1/71+BglII 151 (ACGTAGATCTAGAGGAAGAAGGTTGATGAAGAAAG) and ADP1/72+Xhol 152 (CATGCTCGAGTTACTGGAGGGATCCAGTACTAATCTTTG) used using D39 were 153 chromosomal DNA as a template. The construction was transformed to strain ADP21 and 154 transformants (ADP42) were selected on Columbia blood agar containing 100 µg/ml 155 spectinomycin. Correct deletion was verified by PCR and sequencing. ADP42 shows a 156 constitutive expression of LytB since it lacks the lacl repressor of the IPTG-inducible system. To 157 control the expression of the LytB, we then transformed the codon optimized lacl gene into strain 158 ADP42. For that, we PCR-ed the fragment including *lacl* integrated into the *prsA*-locus together 159 with a gentamycin resistance cassette from chromosomal DNA of strain ADP95 (Moreno-Gámez 160 et al. 2017) using primers OLI40 (CCATGGCATCAGCGAGAAGGTGATAC) and OLI41 161 (GCGGCCGCAGGATAGAAAGGCGAGAG).