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For the main imaging analyses, we combined the three types of forgotten trial in order to 164 

maximise power. However, in case processes that lead to subsequent memory for associative 165 

memory versus item memory differ (e.g., Dennis et al., 2008; Mattson et al., 2014), we ran a 166 

subsidiary imaging analyses with item misses excluded. 167 

Imaging data acquisition and preprocessing 168 

The MRI data were collected using a Siemens 3 T TIM TRIO system (Siemens, Erlangen, 169 

Germany). MR data preprocessing and univariate analysis used the SPM12 software 170 

(Wellcome Department of Imaging Neuroscience, London, UK, www.fil.ion.ucl.ac.uk/spm), 171 

release 4537, implemented in the AA 4.0 pipeline 172 

(https://github.com/rhodricusack/automaticanalysis). The functional images were acquired 173 

using T2*-weighted data from a Gradient-Echo Echo-Planar Imaging (EPI) sequence. A total 174 

of 320 volumes were acquired in each of the 2 Study sessions, each containing 32 axial slices 175 

(acquired in descending order), slice thickness of 3.7 mm with an interslice gap of 20% (for 176 

whole brain coverage including cerebellum; TR =1970 msec; TE = 30 msec; flip angle =78 177 

degrees; field of view (FOV) =192 mm × 192 mm; voxel-size = 3 mm × 3 mm × 4.44 mm). A 178 

structural image was also acquired with a T1-weighted 3D Magnetization Prepared RApid 179 

Gradient Echo (MPRAGE) sequence (repetition time (TR) 2250ms, echo time (TE) 2.98 ms, 180 

inversion time (TI) 900 msec, 190 Hz per pixel; flip angle 9 deg; FOV 256 x 240 x 192 mm; 181 

GRAPPA acceleration factor 2). 182 

The structural images were rigid-body registered with an MNI template brain, bias-corrected, 183 

segmented and warped to match a gray-matter template created from the whole CamCAN 184 

Stage 3 sample (N=272) using DARTEL (Ashburner, 2007) (see Taylor et al., 2015) for more 185 

details). This template was subsequently affine-transformed to standard Montreal 186 

Neurological Institute (MNI) space. The functional images were then spatially realigned, 187 

interpolated in time to correct for the different slice acquisition times, rigid-body coregistered 188 

to the structural image and then transformed to MNI space using the warps and affine 189 

transforms from the structural image, and resliced to 3x3x3mm voxels. 190 

Univariate imaging analysis 191 

For each participant, a General Linear Model (GLM) was constructed, comprising three neural 192 

components per trial: 1) a delta function at onset of the background scene, 2) an epoch of 7.5 193 

sec which onset with the appearance of the object (2 sec after onset of scene) and offset when 194 

both object and scene disappeared, and 3) a delta function for each keypress. Each neural 195 

component was convolved with a canonical haemodynamic response function (HRF) to create 196 

a regressor in the GLM. The scene onset events were split into 3 types (i.e, 3 regressors) 197 

according to the valence of the scene on each trial, while the keypress events were modelled 198 
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by the same regressor for all trials (together, these four regressors served to model trial-locked 199 

responses that were not of interest). The responses of interest were captured by the epoch 200 

neural component, during which participants were actively relating the scene and object (see 201 

Behavioral Procedure). The duration of this component did not depend on response time, as 202 

participants were instructed to continue to link the object and scene mentally for the full 203 

duration of the display.  204 

For the principal GLMs, the epoch component was split into 6 types (regressors) according to 205 

the 3 scene valences and 2 types of subsequent memory, i.e., study trials for which the scenes 206 

were correctly recalled (“remembered”), and those for which the scenes could not be recalled, 207 

an incorrect scene was described instead, or the object was not recognized (“forgotten”). 208 

When comparing remembered and forgotten trials, we averaged across the three valences 209 

because 1) there was no behavioral evidence of an interaction between age and valence on 210 

subsequent memory, 2) there was no imaging evidence of an interaction between age and 211 

valence on subsequent memory, and 3) there would have been insufficient numbers of each 212 

trial-type to examine each valence separately. Thus the main target contrast for the univariate 213 

and multivariate analyses were remembered versus forgotten trials. 214 

As noted above, given that encoding of associative (source) information versus item 215 

information may differ with regard to additional recruitment and (potentially) to compensation 216 

(e.g., Dennis et al., 2008; Mattson et al., 2014), we ran a subsidiary analysis in which the 217 

“forgotten” category excluded item misses. In these GLMs, study trials were modelled using 9 218 

regressors according to the 3 scene valences and 3 (rather than 2) types of subsequent 219 

memory: trials on which the object was recognized but the scene forgotten or incorrectly 220 

recalled (“association forgotten”) and trials on which the object was not recognized (“item 221 

forgotten”). Participants for whom one of the sessions did not contain at least one trial of each 222 

type were removed, leaving n=109 (note this involved removal of more participants in the 223 

oldest age tertile: 0 removed aged 19-35, 2 aged 46-64, and 12 aged 65-88 years). One 224 

remaining outlier (>5 SD) on the univariate measures was removed, giving n=108. As reported 225 

in the Results section, this subsidiary analysis corroborated the findings of the main analysis. 226 

Six additional regressors representing the 3 rigid body translations and rotations estimated in 227 

the realignment stage were included in each GLM to capture residual movement-related 228 

artifacts. Finally the data were scaled to a grand mean of 100 over all voxels and scans within 229 

a session, and the model was fitted to the data in each voxel. The autocorrelation of the error 230 

was estimated using an AR(1)-plus-white-noise model, together with a set of cosines that 231 

functioned to highpass the model and data to 1/128 Hz, fit using Restricted Maximum 232 

Likelihood (ReML). The estimated error autocorrelation was then used to “prewhiten” the 233 
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model and data, and ordinary least squares used to estimate the model parameters. To 234 

compute subsequent memory effects, the parameter estimates for the 6 epoch components 235 

were averaged across the two sessions and the three valences (weighted by number of trials 236 

per session/valence), and contrasted directly as remembered minus forgotten (Morcom et al., 237 

2003; Maillet and Rajah, 2014). Univariate statistical analyses were conducted on the mean 238 

subsequent memory effect across all voxels in the MVB analysis, in each ROI for each 239 

participant (see next section).  240 

Experiment 2: Visual STM 241 

Participants  242 

Participants were a separate subset (N=115; 25-86 years; 54 female) of those recruited to the 243 

Cam-CAN study (see Experiment 1, Participants, for details). Nineteen participants were 244 

excluded from the current analysis as the contrast of interest could not successfully be 245 

decoded from either region of interest (see Multivariate Bayesian decoding). None were 246 

excluded because of statistical outlier values on the measures used (see Statistics for criteria). 247 

The experiment used a within-participant design, so all participants received all the task 248 

conditions.  249 

Materials 250 

The task was adapted from Emrich et al. (2013). Stimuli were three patches of coloured dots, 251 

one red, one yellow, and one blue. Dots were 0.26 degrees of visual angle (dva) in diameter, 252 

at a density of 0.7 per square degree, and viewed though a circular aperture of diameter 11 253 

dva. As a manipulation of set size, one, two, or three of the dot displays moved (at 2 dva/ sec) 254 

in a single direction which had to be remembered. The other, distractor, displays rotated 255 

around a central axis, and were be ignored. On 90% of trials the probed movements were in 256 

one of three directions (7, 127, or 247 degrees). Other directions were selected at random, to 257 

avoid subjects learning the target directions. Order of presentation of the 3 display colors was 258 

randomized trial by trial, as was memory load. Rotation direction alternated across trials of a 259 

given load.  260 

Behavioral procedure 261 

Each trial began with a grey fixation dot in the middle of a black screen for 5 sec, which then 262 

turned white for 2 sec. Participants then saw the 3 dot displays for 500 msec each, with 250 263 

msec in-between. After the third display, an 8 sec blank fixation delay was presented, followed 264 

by the probe display. The probe display showed a colored circle to indicate which dot display 265 

to recall (red, yellow, or blue), with a pointer. Participants had up to 5 sec to adjust the pointer 266 

using 2 buttons until it matched the direction of motion of the remembered target dot display. 267 
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After responding, a third button cleared the probe display. Participants completed 3 runs of 30 268 

trials per run (10 for each load). The direction of the target, the sequential position of the target, 269 

and the set size were counterbalanced within each run, and presented in random order. Colour 270 

and position of target were also counterbalanced using a Greco-Latin square design. 271 

Imaging data acquisition and preprocessing. 272 

Imaging data were acquired on the same scanner as Experiment 1. Functional T2*-weighted 273 

data were acquired using a Multi-Echo Gradient-Echo Echo-Planar Imaging (EPI) sequence. 274 

Approximately 300 volumes were acquired in each of the 3 VSTM task sessions (duration 275 

depending on response times). Each volume had 34 axial slices (acquired in descending 276 

order), slice thickness of 2.9 mm with an interslice gap of 20% (FOV = 224 mm × 224 mm, TR 277 

= 2000 msec; TE = 12 msec, 25 msec, 38 msec; flip angle = 78 degrees; voxel-size = 3.5 mm 278 

× 3.5 mm × 3.48 mm). Structural image sequences were the same as in Experiment 1. The 279 

multiple echos were combined by computing their average, weighted by their estimated T2* 280 

contrast. The functional images were spatially realigned and interpolated in time to correct for 281 

different slice acquisition times. Spatial normalisation used the 'new segment' protocol in 282 

SPM12 (Ashburner and Friston, 2005). Participants’ structural scans were coregistered to their 283 

mean functional image, then segmented into 6 tissue classes. Functional images were rigid-284 

body coregistered to the structural image then transformed to MNI space using the warps and 285 

affine transforms estimated from the structural image, and resliced to 2x2x2mm voxels.  286 

Univariate imaging analysis  287 

The GLM for each participant comprised three neural components per trial: 1) encoding, 288 

modelled as an epoch of 1 sec duration at onset of the first moving dot pattern, 2) 289 

maintenance, modelled as an epoch of 4 sec at offset of the last moving dot pattern (2.25 sec 290 

after onset of 1), and 3) probe, a delta function at the time of the participant’s response. These 291 

components were each split into 3 types (regressors) according to the 3 STM load levels. As 292 

in Experiment 1, 6 additional regressors were added representing the motion parameters 293 

estimated in the realignment stage. Finally the data were scaled to a grand mean of 100 over 294 

all voxels and scans within a session. To confirm that this dataset was suitable as a replication 295 

of Experiment 1’s multivariate results, we first checked that at least one significant cluster 296 

within the PFC region of interest (ROI) showed increased univariate activity in older people. 297 

This was done using a standard analysis of effects of a linear contrast of increasing VSTM 298 

load on activity during the delay period, whole-brain corrected for multiple comparisons at p < 299 

.05 (voxel threshold), and a linear contrast of age. Details of this analysis are not reported and 300 

it did not contribute to ROI selection, which was the same as for Experiment 1. Note that the 301 

continuous nature of the judgment in the VSTM task precludes definition of individual trials as 302 
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correct or incorrect (rather, performance is used to estimate continuous summary measures 303 

for each participant, as in Emrich et al, 2013). Therefore all trials were included in the fMRI 304 

analysis, and the main target contrast for the univariate and multivariate analyses was the 305 

linear effect of load from 1-3 during the delay period. 306 

Regions of interest 307 

ROIs were defined using WFU PickAtlas (http://fmri.wfubmc.edu/, version 3.0.5) with AAL and 308 

Talairach atlases (Lancaster et al., 2000; Tzourio-Mazoyer et al., 2002; Maldjian et al., 2003). 309 

The posterior visual cortex (PVC) mask comprised bilateral lateral occipital cortex and fusiform 310 

cortex (from AAL, fusiform and middle occipital gyri), and the PFC mask comprised bilateral 311 

ventrolateral, dorsolateral, superior and anterior regions: from AAL, the inferior frontal gyrus 312 

(IFG), both pars triangularis and pars orbitalis; middle frontal gyrus, lateral part (MFG); 313 

superior frontal gyrus (SFG); and from Talairach, Brodmann Area 10 (BA10), dilation factor = 314 

1. In the subregion analyses, separate masks were created for BA10, IFG, MFG and SFG 315 

(regions included in the BA10 mask were excluded from the other masks). 316 

Multivariate Bayesian decoding 317 

A series of MVB decoding models were fit to assess the information about subsequent 318 

memory carried by individual ROIs or combinations of ROIs. Each MVB decoding model is 319 

based on the same design matrix of experimental variables used in the univariate GLM, but 320 

the mapping is reversed: many physiological data features (derived from fMRI activity in 321 

multiple voxels) are used to predict a psychological target variable (Friston et al., 2008). This 322 

target (outcome) variable is specified as a contrast. In Experiment 1 (LTM) the outcome was 323 

subsequent memory, and in Experiment 2 (STM) it was the linear increase in STM load during 324 

maintenance periods. Modelled confounds in the design (all covariates apart from those 325 

involved in the target contrast) are removed from both target and predictor variables.  326 

Each MVB model is fit using hierarchal parametric empirical Bayes, specifying empirical priors 327 

on the data features (voxel-wise activity) in terms of patterns over voxel features and the 328 

variances of the pattern weights. Since decoding models operating on multiple voxels (relative 329 

to scans) are ill-posed, these spatial priors on the patterns of voxel weights act as constraints 330 

in the second level of the hierarchical model. MVB also uses an overall sparsity (hyper) prior 331 

in pattern space which embodies the expectation that a few patterns make a substantial 332 

contribution to the decoding and most make a small contribution. The pattern weights 333 

specifying the mapping of data features to the target variable are optimised with a greedy 334 

search algorithm using a standard variational scheme which iterates until the optimum set size 335 

is reached (Friston et al., 2007). This is done by maximizing the free energy, which provides 336 
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an upper bound on the Bayesian log-evidence (the marginal probability of the data given that 337 

model). The evidence for different models predicting the same psychological variable can then 338 

be compared by computing the difference in their log-evidences, giving the log (marginal) 339 

likelihood ratio test (Bayes factor) (see Friston et al., 2007; Chadwick et al., 2012; Morcom 340 

and Friston, 2012). In this work, the main outcome measures were the log-evidence for each 341 

model and the set of fitted weights for all patterns (voxels) in the ROI, which can be examined 342 

to assess their distribution over voxels and the contributions of different combinations of 343 

voxels. These analyses were implemented in SPM12 v6486 and custom MATLAB scripts.  344 

Features (voxels) for MVB analysis were selected using an orthogonal contrast and a leave-345 

one-participant-out scheme. For each participant and ROI, these were the 1000 voxels with 346 

the strongest responses to the task: in Experiment 1 (LTM), the 6 epoch regressors modelling 347 

object onsets in the GLM, and in Experiment 2 (STM), the 3 epoch regressors modelling 348 

maintenance periods in the GLM (defined using an F contrast in all other participants testing 349 

variance explained by these regressors, regardless of valence or subsequent memory). We 350 

used a sparse spatial prior, in which each pattern is an individual voxel (Morcom and Friston, 351 

2012; Chadwick et al., 2014; Hulme et al., 2014; Maass et al., 2014). We first checked that 352 

the target memory variables could reliably be decoded from the selected features by 353 

contrasting the evidence for each model with the evidence for models in which the design 354 

matrix (and therefore the target variable) had been randomly phase-shuffled, taking the mean 355 

over 20 repetitions, and comparing log-evidence for real versus phase-shuffled models. One-356 

tailed t-tests compared the difference in real versus shuffled model evidences to a 357 

hypothesized population mean difference of 3 which would reflect good Bayesian evidence for 358 

the real over the shuffled models. These showed that the difference in log-evidence was 359 

robustly greater than this in both PVC, t(118) = 6.08, p < .0001, r2
adj = .225, mean difference = 360 

9.72;  and PFC, t(118) = 7.70, p < .0001, r2
adj = .323, mean difference = 11.8. The same applied 361 

to Experiment 2: for PVC, t(95) = 8.42, p < .0001, r2
adj = .415, mean difference = 23.0, and 362 

PFC, t(95) = 11.4, p < .0001, r2
adj = .569, mean difference = 35.0. To confirm that the sparse 363 

prior represented the best spatial model, we then compared the log-evidence with that for 364 

models with smooth spatial priors, in which each pattern is a local weighted mean of voxels 365 

(Gaussian FWHM = 8). For Experiment 1 (LTM): log evidence was substantially greater for 366 

the sparse priors in both ROIs: in PVC, t(118) = 18.4,  p < .0001, r2
adj = .737, and PFC, t(118) 367 

= 18.0, r2
adj = .728, p < .0001, two-tailed tests. The same was true for Experiment 2 (STM): for 368 

PVC, t(95) = 10.3, r2
adj = .464, p < .0001, and PFC, t(95) = 14.9, r2

adj = .650, p < .0001. 369 

Unlike univariate activation measures such as subsequent memory effects, but like other 370 

pattern-information methods, MVB finds the best non-directional model of activity predicting 371 

the target variable, so positive and negative pattern weights are equally important. Therefore, 372 
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the principle MVB measure of interest for each ROI was the spread (standard deviation) of the 373 

weights over voxels, reflecting the degree to which multiple voxels carried substantial 374 

information about subsequent memory. To test whether PFC activity was compensatory, we 375 

also constructed a novel measure of the contribution of prefrontal cortex to subsequent 376 

memory. This used Bayesian model comparison within participants to assess whether a joint 377 

PVC-PFC model boosted prediction of subsequent memory relative to a PVC-only model. The 378 

PASA hypothesis, in which PFC is engaged to a greater degree in older age and this 379 

contributes to cognitive outcomes, predicts that a boost will be more often observed with 380 

increasing age. The initial dependent measure was the log model evidence, coded 381 

categorically for each participant to indicate the outcome of the model comparison. The 3 382 

possible outcomes were: a boost to model evidence for PVC-PFC relative to PVC models, i.e., 383 

better prediction of subsequent memory (difference in log evidence > 3), equivalent evidence 384 

for the two models (-3 < difference in log evidence < 3), or a reduction in prediction of 385 

subsequent memory for PFC-PVC relative to PVC (difference in log evidence < -3).  386 

Lastly, given that the relative contribution of anterior versus posterior regions could change 387 

with age, even if the absolute amount of pattern information decreased with age in both 388 

regions, we computed a second novel measure: we estimated the PFC contribution to 389 

cognitive outcome in terms of the proportion of top-weighted voxels in the joint PVC-PFC 390 

model that were located in PFC, as opposed to PVC, derived from joint PVC-PFC models. In 391 

each participant, the voxels making the strongest contribution to the cognitive outcome, 392 

defined as those with absolute voxel weight values greater than 2 standard deviations from 393 

the mean, were split according to their anterior versus posterior location. The dependent 394 

measure was the proportion of these top voxels located in PFC. 395 

Experimental design and statistical analysis 396 

Sample size was determined by the initial considerations of Stage 3 of the CamCAN study – 397 

see Shafto et al.(Shafto et al., 2014) for details. For the LTM experiment, a sensitivity analysis 398 

indicated that with N=123, we would have 80% power to detect a small to medium effect 399 

explaining 6.5% of the variance on a two tailed test for a model with 2 predictors (r2 = .0658). 400 

For the STM experiment with N = 115, the corresponding minimal effect size for 80% power 401 

was 6.9% of the variance (r2 = .0694).  In our previous report of aging and successful memory 402 

encoding, an a priori test of a between-region difference in subsequent memory effects 403 

according to age showed a large effect (r2 = .257) (Morcom et al., 2003).  404 

Age effects on continuous multivariate or univariate dependent measures were tested using 405 

robust second-order polynomial regression with “rlm” in the package MASS for R (Venables 406 

et al., 2002); MASS version 7.3-45; R version 3.3.1) with standardized linear and quadratic 407 
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age predictors. For analysis of covariance for behavioral data we used JASP version 0.8.3.1. 408 

Analysis of outcomes of the between-region MVB model comparison (PVC and PFC combined 409 

versus PVC, see Fig 2 and main text) used ordinal regression with “polr” in MASS. 410 

Distributions were also trimmed to remove extreme outliers (> 5 SD above or below the mean). 411 

In Experiment 1 (LTM), the two participants (aged 72 and 80) with outlier values for univariate 412 

effects were also removed from the MVB analyses so the samples examined were 413 

comparable. We excluded two further participants (aged 68 and 83) in whom subsequent 414 

memory could not be decoded from at least one of the two ROIs (log model evidence <= 3), 415 

giving n=119. In Experiment 2 (STM), we excluded nineteen participants in whom VSTM load 416 

could not be decoded during maintenance, giving n=96. All tests were two-tailed and used an 417 

alpha level of .05.  418 

Where it was important to test for evidence for the null hypothesis over an alternative 419 

hypothesis, we supplemented null-hypothesis significance tests with Bayes Factors 420 

(Wagenmakers, 2007; Rouder et al., 2009). The Bayes Factors were estimated using Dienes’ 421 

online calculator (Dienes, 2014) which operationalizes directional hypotheses such as PASA 422 

in terms of a half-normal distribution. Here, we assumed an effect size of 1 SD and therefore 423 

defined the half-normal distribution with mean=0 and SD=1. All statistics and p values are 424 

reported to 3 significant figures, except where p < .0001. 425 

Results  426 

Experiment 1: Long-term Memory (LTM) Encoding 427 

Behavioral results 428 

We examined age effects on the number of trials in each remembered and forgotten condition 429 

(see Table 2). For remembered trials, there was a significant linear decrease with age (t(118) 430 

= -7.30, p < .0001, r2
adj = .299), with no significant quadratic component (t(118) = -0.104, p = 431 

.917; alpha = .0125). As a consequence, the number of forgotten trials increased with age, 432 

and this was true for both associative misses (linear t(118) = 4.82, p < .0001, r2
adj = .150; 433 

quadratic, t(118) = 0.630, p = .532) and item misses (linear t(118) = 5.43, p < .0001, r2
adj = 434 

.186; quadratic, t(118) = 1.57, p = .120), although not for associative intrusions (linear t(118) 435 

= -1.38, p = .163; quadratic, t(118) = -2.29, p = .0221). Analysis of covariance with the factor 436 

of valence (Positive, Neutral, Negative) showed no interaction between age and valence on 437 

the number of remembered items (for linear effect of age, F(2,231) < 1, p = .486; quadratic, 438 

F(2,231) = 1.59, p = .206). 439 

Testing compensation 440 
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Standard univariate activation analyses assessed mean activity in each ROI across all voxels 441 

included in the multivariate analysis (see Materials and Methods). Consistent with the PASA 442 

account, the increase in activity associated with subsequent memory became more 443 

pronounced with age, particularly in later years (linear effect of age, t(118) = 2.43, p = .0166; 444 

quadratic effect of age, t(118) = 2.58, p = .0111) (Fig 2a, Table 2). Age effects in PVC were 445 

not significant (see Table 2). The age effects in PFC were also present after removal of the 446 

older participant with the largest SM effect (although they did not meet our criterion for an 447 

outlier; see Fig 2a; linear t(117) = 2.14, p = ; quadratic F(117) = 2.31, p = .033).  In both ROIs 448 

results were very similar for the models excluding forgotten trials for which the items 449 

themselves were forgotten (see Methods; PFC: linear t(107) = 2.22, p = .0316; quadratic t(107) 450 

= 2.91, p = .00527; PVC: linear, t(107) = 1.10, p= .288; quadratic, t(107) = 1.24, p = .233).  451 

 452 

Figure 2.  Relationship between age and univariate and multivariate effects within ROIs. (a). Univariate 453 

subsequent memory effects (mean activity for remembered - forgotten), showing increased activity with 454 

age in PFC but not PVC. (b). Spread of multivariate responses predicting subsequent memory 455 

(standard deviation of fitted MVB voxel weights), showing reduced spread of responses with age in both 456 

ROIs. (c). Univariate effects of load (positive linear contrast) during STM maintenance, showing 457 

increased activity with age in both ROIs. (e). Spread of multivariate responses during STM maintenance 458 

predicting increasing load, showing reduced spread of responses with age in both ROIs. Red and blue 459 

lines are robust-fitted second-order polynomial regression lines and shaded areas show 95% 460 
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confidence intervals. (e). PVC (blue) and PFC (red) ROIs overlaid on sagittal section (x=+36) of a 461 

canonical T1 weighted brain image. Note that y-axis scales are not comparable across tasks. 462 

 463 

ROI/ 

measure 

Model  Linear   Quadratic 

 F p t r2
adj p T r2

adj p 

Mean univariate SM activation        

PFC 5.49 .00525 2.43 .0312 0.0166 2.58 .0371 .0111 

PVC 0.426 .654 0.728 -- 0.480 0.703 -- .495 

PFC-PVC 0.837 .436 0.883 -- 0.388 1.084 -- 0.293 

Multivariate spread (SD) of SM activity       

PFC 6.36 .00240 -3.33 .0701 .000998 -1.44 -- .151 

PVC 11.3 < .0001 -3.49 .0780 .000650 -3.50 .0784 .000621 

PFC-PVC 2.02 .109 4.16 -- .0437 .398 -- .690 

 

Table 2. Age effects on mean univariate SM effects and spread of multivariate SM effects in the LTM 464 

task. PFC-PVC refers to analyses where the dependent variable was the difference in each measure 465 

between PFC and PVC. SD = standard deviation. r2
adj = the unbiased estimate of the amount of variance 466 

explained in the population. n = 119. 467 

 468 

If the increasing PFC activation with age reflected compensation, we expected the multivariate 469 

analyses to show that this increased activity carried additional information about subsequent 470 

memory. However, the data revealed a different pattern. In MVB models, like other linear 471 

models with multiple predictors, each voxel within an ROI has a weight that captures the 472 

unique information it contributes (in this case, for predicting subsequent memory). Because 473 

both positive and negative weights carry information, we summarised the MVB results by the 474 

spread (standard deviation) of weights over voxels (see Materials and Methods).  475 

In both ROIs, this spread was markedly reduced during later life (PVC: linear t(118) = -3.49, 476 

p= .000650; quadratic t(118) = -3.50, p = .000621; PFC: linear t(118) = -3.33, p = .000998; 477 

quadratic t(118) = -1.44, p = .151); see Fig 2b and Table 2. This means that, contrary to a 478 

compensatory PASA shift, PFC showed fewer, rather than more, voxels with large positive or 479 

negative weights with increasing age. Again, the results were similar for the subsidiary models 480 

excluding item misses (PVC: linear t(107) = -1.41, p= .158; quadratic t(107) = -2.81, p = 481 

.000544; PFC: linear t(107) = -2.21, p = .0280; quadratic t(107) = -0.566, p = .570). By contrast, 482 

the spread of univariate activities across voxels increased with age in both ROIs (for PVC, 483 

linear effect of age, t(118) = 5.91, p < .0001, r2
adj = .215; quadratic effect of age, t(118) = 1.72, 484 
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p = .0881; for PFC, linear effect of age, t(118) = 5.64, p < .0001, r2
adj = .199; quadratic t(118) 485 

= -2.31, p = .0226, r2
adj = .0268). 486 

To provide a more direct test for a compensatory posterior-to-anterior shift, we assessed the 487 

specific contribution of PFC to subsequent memory, over and above that of PVC. We fitted a 488 

joint MVB model that included both posterior and anterior ROIs, and contrasted this with a 489 

model including PVC only, using Bayesian model comparison. Thus we could ask, for each 490 

participant, whether or not adding PFC to the model “boosted” prediction of subsequent 491 

memory (see Methods). Contrary to the PASA theory of a compensatory shift towards greater 492 

reliance on PFC, a Bayes Factor comparing these two models revealed strong evidence for 493 

the null hypothesis of no boost (BF01 = 11.1); indeed, the probability of a boost to model 494 

evidence for PVC-PFC compared to PVC-only actually decreased with age numerically (Fig 495 

3a; linear t(118) = -1.54, p = .126). Excluding item misses from the model enhanced this 496 

pattern (for linear age effect t(107) = -2.34, p = .0211, BF01 = 14.3). 497 

 498 

Figure 3. Evidence against a compensatory posterior-to-anterior shift from MVB comparisons between 499 

ROIs. Ordinal regression of Bayesian model comparison of combined PVC+PFC model versus PVC-500 

only model using age to predict outcomes of model comparison: adding PFC to the model boosts 501 

prediction of the cognitive outcome (difference in log-evidence > 3), or there is no boost (-3 < difference 502 

< 3), or a reduction in log-evidence (difference < -3).  (a) LTM, for subsequent memory effects, a boost 503 

was no more frequent with increasing age (b) STM, for load effects, a boost was less frequent with 504 

increasing age. 505 

Testing sub-regions within PFC 506 

We also explored whether the pattern of results was similar across subregions within PFC. 507 

The PASA theory does not specify which areas are involved in a compensatory shift, but aging 508 

does not affect all subregions equally (Raz and Rodrigue, 2006). In functional studies, 509 
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univariate SM effects in ventrolateral and dorsolateral PFC tend to be age-invariant while 510 

anterior and superior prefrontal regions show age-related increases (Morcom et al., 2003; 511 

Maillet and Rajah, 2014). In contrast, Davis et al.’s (2008) PASA proposal was based on 512 

increased activation in older people in anterior ventrolateral PFC and anterior cingulate during 513 

visual perception and episodic retrieval. In the present episodic encoding task, there were 514 

significant age-related increases in univariate activation in anterior PFC (BA10) and lateral 515 

inferior frontal gyrus (IFG), and significant decreases in the spread of multivariate voxel 516 

weights in BA10 and superior (medial) frontal gyrus (SFG), as well as numerical decreases 517 

also in IFG and in lateral middle frontal gyrus including dorsolateral PFC (MFG) (Table 3; see 518 

Materials and Methods, Regions of Interest for region definition). Thus the overall age-related 519 

increase in activation was mainly driven by BA10 and IFG, but no subregion showed a 520 

decrease in activation with age. The reduction in multivariate information and evidence against 521 

a functional boost were relatively uniform over subregions (Table 3). Direct model comparison 522 

showed no evidence that PFC activity was compensatory in older age, even in the two 523 

subregions with strong increases in activation: Bayes Factors weighed against any boost to 524 

prediction of subsequent memory for joint PFC-PVC models relative to PVC-only models (BF01 525 

favoring the null over positive linear effect of age = 11.1 for BA10, 12.5 for MFG, 5.00 for IFG 526 

and 14.2 for SFG).  527 

ROI/ measure Model Linear Quadratic 

 F p t r2
adj p t r2

adj p 

BA10         

Mean univariate SM 5.24 .00660 1.33 -- .180 2.36 -- .0189 

MVB spread (SD) 8.28 .000433 -3.75 .0911 .00032

49 

-1.86 -- .0623 

PFC boost -- -- -1.44 --  -0.321 --  

IFG          

Mean univariate SM 5.39 .00572 2.48 .204 .0152 2.72 .227 .00824 

MVB spread (SD) 3.30 .0405 -2.50 -- .0127 -0.653 -- .514 

PFC boost -- -- 0.00665 --  -0.210 --  

MFG         

Mean univariate SM 1.34 .266 1.56 -- .119 1.38 -- .169 

MVB spread (SD) 4.54 .0126 -2.86 .0487 .00466 -1.10 -- .271 

PFC boost -- -- -1.45 --  -.132 --  

SFG         

Mean univariate SM 1.72 .184 1.33 -- .181 1.34 -- .179 

MVB spread (SD) 4.39 .0145 -2.83 .0474 .00533 -1.09 -- .275 

PFC boost -- -- -1.68 --  1.03 --  
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Table 3. Age effects for PFC subregions in the LTM task. The table lists mean univariate SM effects, 528 

the spread (SD) of multivariate Bayesian (MVB) voxel weights predicting SM, and results of the 529 

between-region tests of ‘boost’ to model evidence for PFC plus PVC models compared to PVC-only. 530 

See text for details. Alpha = .0125. SD = standard deviation. SM = subsequent memory. n=119.  531 

Testing posterior-anterior shift 532 

The foregoing analyses provide strong evidence that the increase in (univariate) PFC activity 533 

observed in this task did not reflect compensation. Nonetheless, the PASA theory is more 534 

general, describing a shift in relative reliance on posterior and anterior regions with age, which 535 

need not be compensatory, but could reflect differential age effects in posterior and anterior 536 

cortices. In other words, the relative involvement of anterior versus posterior regions could 537 

increase with age, even if the absolute involvement of both decreased with age. Direct 538 

comparison of the mean univariate activation between ROIs did not reveal any evidence for 539 

such relative differences in age effects, with strong Bayesian evidence against the predicted 540 

greater age-related increase in PFC (BF01 for null hypothesis = 25; Table 2). We next tested 541 

for a shift in the relative multivariate information between regions. In the separate MVB 542 

models, the age-related reduction in spread of weights was numerically greater in PFC than 543 

PVC (linear age effect on PFC-PVC difference, t(118) = 4.16, p = .0437); see Table 2. We 544 

also measured the proportion of top-weighted voxels (> 2 standard deviations above the 545 

mean) that were located in PFC as opposed to PVC in the joint PVC-PFC model. This 546 

proportion decreased significantly with age (overall model, F(2,116) = 3.27, p = .0415; linear 547 

t(118) = -2.55, r2
adj = .359, p = .0119; quadratic t(118) = -.106, p = .915), with mean 52.4% of 548 

top voxels located in PFC in the younger tertile (SD = 9.09; 18-45 years) and 47.1% in the 549 

older tertile (SD = 8.57; 65-88 years), although this was no longer significant when item misses 550 

were excluded (overall model, F(2,105) = 2.60, p = .0799, linear t(107) = -1.86, p = .0638). 551 

Thus, there was no evidence that in older age there is a general shift in the areas contributing 552 

to subsequent memory from posterior to anterior (though see Experiment 2 below). 553 

Experiment 2: Short-term Memory (STM) Maintenance 554 

Behavioral results 555 

For the visual STM task, analysis of the effects of increasing load on performance showed a 556 

strong age-related increase in the effect of load on accuracy, measured using the root mean 557 

squared error of the estimated dot direction relative to the actual dot direction in degrees (Fig 558 

1b). As expected, older people showed a larger increase in error at load = 3 compared to load 559 

= 1 (linear contrast) than younger people (for linear age-by-load interaction, t(95) = 5.53, p < 560 

.0001, r2
adj = .192; quadratic t(95) = =1.27, p = .203), although some age-related decrement in 561 

accuracy was present even at load = 1 (for linear effect of age, t(95) = 2.607, p = 0110, r2
adj = 562 

.0382; quadratic t(95) = 0.388, p = .699). 563 
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Testing compensation 564 

For STM, standard univariate activation analyses showed that increasing load elicited activity 565 

increases during the maintenance period which varied according to age in both ROIs. As in 566 

the LTM experiment, and consistent with the PASA account, PFC activation increased with 567 

age, particularly in later years (linear t(95) = 3.01, p = .003; quadratic t(95) = -0.505, p = .615) 568 

(Fig 2c, Table 4). Unlike for LTM encoding, there was also a significant increase in load-related 569 

PVC activation over the lifespan (linear t(95) = 4.28, p < .0001; quadratic t(93) = -0.988, p = 570 

.324; see Table 4.  571 

ROI/ 

measure 

Model  Linear   Quadratic  

 F p t r2
adj p T r2

adj p 

Mean univariate STM activation      

PFC 4.57 .0128 3.01 .0553 .00336 -0.505 -- .615 

PVC 9.43 .000187 

 

4.28 .119 < .0001 -0.988 -- .324 

PFC-PVC .606 .548 -0.587 
 

-- .559 
 

-0.878 
 

-- .380 

Multivariate spread (SD) of STM activity      

PFC 13.4 < .0001 .662 -- .507 -5.03 .162 < .0001 

PVC 9.30  .000210 -1.01 -- .308 -4.07 .108 < .0001 

PFC-PFC 3.00 .0547 .674 -- .497 2.26 .0250 0244 

 

Table 4. Age effects on mean univariate SM effects and spread of multivariate SM effects in the STM 572 

task. PFC-PVC refers to analyses where the dependent variable was the difference in each measure 573 

between PFC and PVC. SD = standard deviation. n = 96. R2
adj = the unbiased estimate of the amount 574 

of variance explained in the population. 575 

 576 

Separate MVB analysis in each ROI showed a similar pattern of age effects to the LTM task. 577 

In both PFC and PFC, the spread (SD) of individual voxel weights predicting increased STM 578 

load was particularly reduced during later life, with a significant quadratic component (PVC: 579 

linear t(95) = -1.01, p = .308; quadratic t(95) = -4.07, p < .0001; PFC: linear t(95) = 0.662, p = 580 

.507; quadratic t(95) = -5.03, p < .0001) (see Fig 2d and Table 4). The result for PVC was 581 

unchanged by removing a subset of subjects with very low values (i.e., SD weights < .0005; 582 

for quadratic age effect t(69) = -5.32, p = .0012). As found for LTM encoding, the direction of 583 

the effect in PFC was contrary to a compensatory PASA shift, i.e., PFC voxels contributed 584 

less to the cognitive task in old age. Again, the spread of univariate effects did not show the 585 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/156935doi: bioRxiv preprint first posted online Jun. 28, 2017; 

http://dx.doi.org/10.1101/156935
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

same effects of age (in PVC linear t(95) = 1.52, p = .134; quadratic t(95) = 0.831, p = .406; in 586 

PFC, linear t(95) = -0.471, p = .641; quadratic t(95) = 1.70, p = .0912). 587 

As for LTM encoding, we used model comparison of a joint PVC-PFC model with a PVC-only 588 

model to directly evaluate the compensatory PASA hypothesis. The results were similar to the 589 

LTM experiment: The “boost” to prediction of the cognitive variable obtained by adding PFC 590 

to the model showed a significant age-related reduction in the probability of a boost for STM 591 

load (in an ordinal regression, t(95) = -2.00, p = .0479). The Bayes Factor provided strong 592 

evidence against the compensatory hypothesis of an increased boost (for unidirectional 593 

hypothesis, BF = 10.2), although evidence was only anecdotal for the presence of an age-594 

related reduction in boost (for bidirectional hypothesis, BF = 1.81). Thus, like for the LTM 595 

experiment, there was clear evidence against a compensatory increase in prefrontal 596 

contribution to the task with age. 597 

Testing sub-regions within PFC 598 

Again, we examined the four prefrontal subregions separately to assess whether the findings 599 

were driven by a specific part or parts of the large ROI (Table 5). For this experiment, the age-600 

related increase in univariate activation was not separately significant in any subregion, which 601 

may have reflected relatively distributed effects and the more inclusive selection of ‘active’ 602 

voxels. As for the LTM experiment however, overall age effects on the spread of multivariate 603 

voxel weights were significant in three subregions, and those in IFG were similar in magnitude 604 

and form, suggesting reductions in spread across PFC, with no major between-subregion 605 

differences. Moreover, all ROIs showed Bayes Factors of at least 6 against a boost to model 606 

evidence from adding PFC to the posterior-only models predicting increasing STM load, again 607 

consistent with the overall results.  608 

ROI/ measure Model Linear Quadratic 

 F P t r2
adj p t r2

adj p 

BA10         

Mean univariate  1.90 .155 1.79 -- .0787 -0.937 -- .352 

MVB spread (SD) 12.7 < .0001 -1.41 -- .158 -4.69 .171 < .0001 

PFC boost t -- -- -1.48 -- .142 -1.00 -- .320 

PFC boost BF01 -- -- 10.0 -- -- -- -- -- 

IFG          

Mean univariate  2.64 .0767 1.99 -- .0512 0.997 -- .323 

MVB spread (SD) 6.26 .00282 -0.787 -- .427 -3.35 .0864 .00109 

PFC boost t -- -- -1.11 -- .270 -1.10 -- .274 

PFC boost BF01 -- -- 7.69 -- -- -- -- -- 
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MFG         

Mean univariate  2.08 .131 2.03 -- .0459 -0.447 -- .654 

MVB spread (SD) 11.0 < .0001 0.300 -- .762 -4.60 .165 < .0001 

PFC boost t -- -- -1.38 -- .171 -0.788 -- .433 

PFC boost BF01 -- -- 6.25 -- -- -- -- -- 

SFG         

Mean univariate  2.64 .0770 2.27 -- .0264 0.241 -- .812 

MVB spread (SD) 7.37 .00106 -1.57 -- .116 -3.34 .0858 .00111 

PFC boost t -- -- -2.73 .0528 .00755 -0.720 -- .473 

PFC boost BF01 -- -- 14.3 -- -- -- -- -- 

 

Table 5. Age effects for PFC subregions in the visual short-term memory task. The table lists mean 609 

univariate activation during maintenance in response to increasing VSTM load, the spread (SD) of 610 

MVB voxel weights predicting linearly increasing VSTM load, and results of the between-region tests 611 

of ‘boost’ to model evidence for PFC plus PVC models compared to PVC-only. See text for details. 612 

Alpha = .0125. SD = standard deviation. n=96.  613 

 614 

Testing posterior-anterior shift 615 

Finally, even if age increased activity and decreased multivariate information in both PFC and 616 

PVC, it is possible that the PFC:PVC ratio of activity and/or multivariate information increases 617 

with age, consistent with the general PASA claim. As for LTM encoding, there was no evidence 618 

that age effects on (univariate) activation in the two ROIs differed, i.e. the increase in activation 619 

in older people was similar in magnitude (Table 4; BF01 for null hypothesis over prediction of 620 

a greater age-related increase in PFC = 33.3). However, multivariate analysis revealed a 621 

picture different from that in the LTM task. In the separate MVB models, the age-related 622 

reduction in spread of weights showed a stronger quadratic component in PFC than PVC (for 623 

PFC-PFC, quadratic t(95) = 2.26, p = .0244; Table 4). More clearly, when examining the 624 

location of top-weighted voxels from the joint PFC+PVC model, a higher proportion were 625 

located in PFC in older age (for model, F(2,93) = 22.4, p < .0001, linear t(95) = 3.72, p < .001, 626 

quadratic t(95) = 5.20, p < .0001), with mean 69.1% of top voxels located in PFC in the younger 627 

tertile (SD = 14.1; 25-43 years) but 81.0% in the older tertile (SD = 13.3; 66-85 years). Thus 628 

while the STM experiment, like the LTM experiment, found decreases in absolute PFC (and 629 

PVC) involvement in old age, the relative involvement of PFC versus PVC voxels (at least in 630 

terms of those with high weights in the joint model) did increase with age, unlike in the LTM 631 

experiment. This provides some support for a PASA pattern in this task, even though there 632 

was no evidence that this greater PFC involvement was compensatory.  633 
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Discussion 634 

This study investigated the proposal that there is a posterior-to-anterior shift in task-related 635 

brain activity during aging, with the greater reliance on prefrontal cortex in older age reflecting 636 

compensatory mechanisms. We tested the predictions of this PASA theory with data from two 637 

memory tasks that were conducted on independent and relatively large population-derived 638 

adult lifespan samples. Using novel model-based multivariate analyses, we provide direct 639 

evidence against a compensatory posterior-to-anterior shift. Instead, our data suggest that the 640 

increased prefrontal activation reflects less specific or less efficient activity, rather than 641 

compensation. 642 

The results of our standard univariate activation analyses are consistent with previous studies 643 

showing age-related increases in activation in prefrontal cortex, which form the basis of the 644 

PASA theory (Grady et al., 1994; Davis et al., 2008). Many studies have found such increases 645 

in PFC activation in different cognitive tasks, although regional reductions in activation are 646 

also found (e.g. see Rajah and D’Esposito, 2005; Spreng et al., 2010; Li et al., 2015). We 647 

found such age-related increases in both the PFC activation associated with trials that were 648 

later remembered many minutes later (in the LTM experiment) and the activation associated 649 

with maintaining increasing numbers of items for a few seconds (in the STM experiment). We 650 

also further generalized previous findings across PFC sub-regions, in that the increased 651 

activation was reliable across lateral, anterior and superior prefrontal areas (although in the 652 

LTM experiment, it was mainly driven by inferolateral and anterior PFC).  653 

Importantly, despite this increased univariate activity, multivariate analysis of both 654 

experiments showed that with increasing age, PFC possessed less, rather than more, 655 

information about the cognitive outcome. This reduced pattern information was evident both 656 

in terms of the spread of voxel weights (Figure 2) and the lack of a meaningful boost to model 657 

evidence when adding PFC voxels to the model (Figure 3). The latter type of inference was 658 

made possible by our novel use of multivariate Bayesian (MVB) classification. 659 

If the increased prefrontal activation with age is not compensatory, then what does it reflect? 660 

One possibility is that neural function is less efficient, such that a greater BOLD signal is 661 

required for the same level of computation, i.e, less “bang for the buck” for the same level of 662 

neural activity (Grady, 2008; see also Rypma and Esposito, 2000; Morcom et al., 2007; 663 

Reuter-Lorenz and Campbell, 2008; Nyberg et al., 2014). This could reflect the proposed 664 

greater sensitivity of prefrontal cortices than other brain regions to aging (West, 1996; Glisky 665 

et al., 2001; Raz and Rodrigue, 2006). Another possibility is that PFC activity becomes less 666 

specific with age, as might be expected by theories of age-related dedifferentiation, particularly 667 

in complex cognitive functions (Li et al., 2001; Park et al., 2004; Carp et al., 2011; 668 
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Abdulrahman et al., 2014). Partial support for the latter comes from the LTM experiment, 669 

where the negative effect of age on the spread of multivariate weights across voxels was 670 

accompanied by a positive effect of age on the spread (as well as mean) of univariate activity. 671 

This suggests that, while more voxels showed substantial (positive or negative) activity related 672 

to subsequent memory in older people, these additional responses were redundant, with fewer 673 

voxels contributing uniquely to memory encoding, as expected if the increased prefrontal 674 

activity is less specific. In the STM experiment, on the other hand, the spread of univariate 675 

responses was age-invariant, suggesting a more spatially uniform increase in response to 676 

load with age, although the MVB results suggested that – just as in the LTM task – this 677 

increased response carried less information. Whether the present results reflect reductions in 678 

efficiency or reductions in specificity, they are more consistent with the general idea of brain 679 

maintenance (Nyberg et al., 2014) – that cognitive function in older age is determined by the 680 

ability to maintain a youth-like brain – than with the idea associated with PASA of functional 681 

compensation by anterior brain regions. 682 

Despite age-related decreases in overall multivariate information in both PFC and PVC, it is 683 

possible that the relative contribution of anterior regions to cognitive tasks could increase with 684 

age. There is some evidence for such a shift from studies showing crossover effects in which 685 

age-related decreases in posterior cortical activity occur alongside age-related increases in 686 

PFC (e.g., Grady et al., 1994; Davis et al., 2008; see also recent meta-analysis by Maillet and 687 

Rajah, 2014). However, our univariate activation analyses showed little evidence of such a 688 

relative posterior-to-anterior shift: despite increased prefrontal activation, age effects on 689 

univariate activation in PFC and PVC did not differ significantly in either experiment. In terms 690 

of multivariate information, the LTM experiment actually showed, if anything, a decrease rather 691 

than increase in the contribution of PFC relative to PVC. The only comparison that provided 692 

some support for a relative increase in anterior contribution was for multivariate information 693 

about load in the STM experiment. Thus the direction of any relative shift in reliance on PFC 694 

versus PVC with age seems to be task-dependent, as opposed to the task-general posterior-695 

to-anterior shift claimed by PASA (Davis et al., 2008; see also Ford and Kensinger, 2017). 696 

This is consistent with other meta-analyses, which have found age-related decreases as well 697 

as increases in activation, depending on the task (Spreng, Wojtowicz, & Grady, 2010; Li et al., 698 

2015). Moreover, most studies have not made the direct statistical comparisons needed to 699 

test for anterior-posterior differences in the absence of crossover effects (see Morcom & 700 

Johnson, 2015). A strength of our approach is that our analyses encompassed large ROIs in 701 

both anterior and posterior cortices, as well as direct comparisons between the two.  702 

In summary, our data replicate an increase in PFC activity over the adult lifespan, but do not 703 

support the idea that this reflects a compensatory posterior-to-anterior shift, at least in the 704 
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context of the two memory tasks considered here. Our results are inconsistent both with the 705 

proposal that the increased activity is compensatory, and with a generalized shift with age to 706 

greater relative reliance on prefrontal cortex. The data are most parsimoniously explained by 707 

reduced efficiency or specificity of neural responses, reflecting primary age-related deleterious 708 

changes in posterior as well as prefrontal cortex which vary in their relative magnitudes 709 

according to the task. Our results therefore help to adjudicate between competing accounts of 710 

neurocognitive aging, while also illustrating the more general ability of MVB to compare 711 

models that comprise different sets of voxels, thereby offering an exciting new general way to 712 

test the relative contributions of brain regions to cognitive outcomes.  713 
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