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Description of the API of FASTGenomics 48 

The FASTGenomics ecosystem for single-cell analyses allows integrating algorithms from third parties. For 49 
proper integration into the FASTGenomics pipeline, implementations must comply with the 50 
FASTGenomics application-programming interface (API). This requires that apps are provided as Docker 51 
containers of defined structure, with version information provided in Docker tags. The root directory must 52 
include a Dockerfile, the script to prepare and invoke app components. A manifest.json file that 53 
contains app descriptions, input, output and parameter definitions. The sample_data folder containing 54 
files required for integrity tests during app validation. The readme.md file with the app documentation 55 
and the source code providing the app functionality. Further optional or best practice components of a 56 
generic FASTGenomics app include the docker-compose.yml file with information how to build and 57 
start the Docker container and providing input/output directories. A requirements.txt detailing 58 
dependencies for proper app functioning. Markdown-formatted template file(s) for the summary output 59 
that is dynamically filled with information generated during the app run. FASTGenomics distinguishes 60 
between two types of apps that interact with different parts of the pipeline, calculation apps are handled 61 
by the workflow engine, while visualization apps are managed by the workflow client. Both app types use 62 
defined mountpoints for data (/fastgenomics/data, read-only) and analysis configuration file input 63 
(/fastgenomics/config, read-only). Calculation apps write results (/fastgenomics/output, 64 
read/write) and a summary (/fastgenomics/summary, read/write) to disk, whereas visualization 65 
apps send output to the web browser via port 8000. Apps developed to comply with the FASTGenomics 66 
API can be published in the public FASTGenomics app repository (https://github.com/fastgenomics) and 67 
will be made available in the FASTGenomics Docker registry. A detailed tutorial for the development of 68 
calculation and visualization apps as well as sample code can be found at 69 
https://github.com/fastgenomics. 70 

 71 

Detailed description of end-user experience of the FASTGenomics ecosystem 72 

FASTGenomics (https://fastgenomics.org) allows several distinct levels of usage and access. An 73 
anonymous access allows users interested in FASTGenomics to see results from pre-calculated analyses 74 
on a selection of publicly available datasets. Full access to all functionality requires a free user registration, 75 
which enables usage of a greater set of experiments from public repositories, the possibility to integrate 76 
own data sets, as well as the availability of the full range of analysis tools. The natural first step of a new 77 
project is to upload single-cell expression data to FASTGenomics after which the data may be checked for 78 
quality by exclusion of cells with too few expressed genes, and exclusion of genes expressed in too few 79 
cells (Supplementary Figure S4E). The according calculation app can be incorporated into the workflows 80 
to perform this task (Supplementary Table 1A). This step is followed by the data quality screen showing 81 
general statistics about the data, such as average molecule counts and quantification of batch effects. For 82 
data analysis, FASTGenomics offers two pre-defined alternatives: subtype discovery and time series 83 
analysis (Figure 1D). Furthermore, the workflow editor allows creating custom analytical scenarios that 84 
can involve any app available in the FASTGenomics app store. In both pre-defined workflows, an overview 85 
of the dataset detailing aspects of data quality (e.g. summary statistics on expression values, presence of 86 



putative batch effects, etc.) is given in the first screen (Supplementary Figure S4B-D). The subtype 87 
discovery workflow proceeds with data normalization and dimensionality reduction, followed by 88 
clustering of cells (Supplementary Figure S1C,D). This cluster projection is displayed in an aquarium plot, 89 
with the first two dimensions corresponding to coordinates determined in our parametric t-SNE approach 90 
and the third dimension representing the cluster assignment confidence (with high-confidence cluster 91 
assignments “swimming” on top and low-confidence assigned cells sinking to the ground). The next step 92 
detects differentially expressed genes between clusters and display these in a heatmap (data not shown). 93 
In the pseudotime workflow, diffusion maps are generated to order cellular transcriptomes along 94 
pseudotemporal axes. This workflow also determines genes responsible for branches in the trajectory. 95 
Both, the subtype discovery as well as the pseudotime workflow conclude the analytic sequence with the 96 
functional characterization of signature genes using gene ontology enrichments. At the end of all 97 
workflows, a detailed summary is dynamically generated during runtime and displayed to the user 98 
(Supplementary Figure S5B). 99 

 100 

Technical realization of FASTGenomics with Docker-based cloud solution 101 

The publicly accessible instance of the FASTGenomics ecosystem (https://fastgenomics.org) is installed in 102 
the Microsoft Azure cloud hosted by server infrastructure located in Western Europe. Currently, 103 
FASTGenomics services run on a Standard D8s v3 system (8 vCPUs based on the 2.3 GHz Intel XEON ® E5-104 
2673 v4 processor and 32 GB RAM). However, other options can be envisioned since the system is 105 
designed to allow hybrid computing by integrating local and public cloud installations. 106 

The FASTGenomics ecosystem itself is based on Docker infrastructure (currently using version 17.06.0-ce, 107 
build 02c1d87), all pipeline components as well as calculation and visualization apps are packaged in 108 
Docker containers. Internal pipeline components and apps are deployed to different Docker registries, the 109 
former can only be accessed by the runtime environment and FASTGenomics administrators, while the 110 
latter is also accessible to the community to allow contribution of apps.  111 

The FASTGenomics ecosystem consists of several major components, each with its own responsibility as 112 
shown in Supplementary Figure 2. The user directly interacts with the FASTGenomics Client via 113 
the web browser. This serves to display the FASTGenomics website, where users can login, upload and 114 
select datasets, choose analysis workflows and access other specialized services. A calculation engine 115 
consisting of the Workflow Engine, the Task Dispatcher and the Container Service 116 
manages the application of an analysis workflow on a selected dataset. The Workflow Engine uses 117 
the Container Service to start and stop calculation apps that perform individual analysis steps. The 118 
latter reports the calculation status to the Task Dispatcher, that initializes (creates a unique ID) and 119 
finalizes analysis instances upon requests by the Workflow Engine. The Workflow Client shows 120 
a screen flow in the web browser to display results from analyzes; this also makes use of the Container 121 
Service to start and stop visualization apps. Both components access the Data Store, which 122 
organizes data management for an analysis. Finally, the data upload system consists of the Upload 123 
Client, which takes care of data transfer from the user’s system to the FASTGenomics servers, as well 124 



as the Packaging Service integrating the uploaded data into the FASTGenomics system. Overall, 125 
connection to the user is secured by an OpenID Connect component to ensure that only validated 126 
users can access the application. 127 

 128 

Logical implementation built on the Docker-based cloud solution 129 

Each FASTGenomics project consists of one or more analyses and the data set that is to be analyzed. An 130 
analysis in turn can be broken down into the algorithms that calculate results and the visualizations that 131 
display these results (Supplementary Figure S2). In FASTGenomics, the former are called calculation apps 132 
and are combined into workflows, while the latter are called visualization apps and encapsulated into 133 
screen flows.  134 

 135 

Adding third party apps to the Docker-based cloud solution 136 

The scientific community may develop individual apps for FASTGenomics, which are wrapped up in Docker 137 
images. A provider of apps is authorized to push Docker images to the public FASTGenomics Docker 138 
registry where the images are retrieved on demand by the system. Apps can be calculations producing 139 
results or visualizations displaying results. To use a custom app in a FASTGenomics analysis, workflow or 140 
screen flow definitions are adjusted. In the current online release, two pre-defined analysis workflows are 141 
integrated. Adding custom apps and analyses is a feature of FASTGenomics that is predicted to be active 142 
and under continuous development.  143 

 144 

Data Security Concept within FASTGenomics 145 

The FASTGenomics ecosystem as well as any other web-accessible multi-user platform storing and 146 
analyzing sensitive data (e.g. unpublished experimental data, clinically relevant metadata, user data) are 147 
subject to tight regulations for data security. As maintainer of an online platform, FASTGenomics needs 148 
to adhere to the law including the German Federal Data Protection Act (“Bundesdatenschutzgesetz”, 149 
BDSG1) and of May 2018 the European General Data Protection Regulation (GDPR) (Regulation (EU) 150 
2016/6792). These regulations cover diverse aspects of data management and safety.  151 

In order to respond to these regulations, FASTGenomics is continuously working on a security concept 152 
defining the essential, recommended and desirable security features of a single cell analysis platform. This 153 
is an ongoing process to account for new developments and planned future components and 154 
functionality. At the current state, FASTGenomics has the following security features implemented:  155 

 All data in FASTGenomics are stored on encrypted data volumes.  156 
 To ensure safe network topology, both the external and the internal communication between the 157 

components is encrypted by HTTPS.  158 



 Authentication is achieved by an OpenID Connect Provider. After registration, users are required 159 
to confirm their identity via mail to avoid platform misuse by bots.  160 

 While accessing the platform and user data therein, access is again regulated via authorization 161 
checking done by each involved application. This feature manages access rights of each user, for 162 
example when retrieving information from the data module. Here, the platform ensures that only 163 
eligible private and public data sets are visible for the current user (Supplementary Figure S3).  164 

 Finally, several security features address the setup of the Docker container making up the 165 
FASTGenomics infrastructure. No Docker container is allowed to have root access. Containers that 166 
communicate with external components enforce authenticated users and only communicate 167 
using HTTPS. The export of a port is limited to this container group.  168 

 Implementation of national legal requirements for intellectual property with respect to software 169 
development (app development). 170 

 Definition and monitoring of organizational best practices for all processes involving data 171 
handling, resource access allocation and platform administration. 172 

 Definition and implementation of best practices for internet access of apps. 173 

In addition to these security features, the FASTGenomics security concept addresses further actions for 174 
risk minimization and data protection as features planned for future development. These include: 175 

 implementation of a framework for error logging, data access, and data manipulation 176 
 rules that provide manipulation security of data and apps 177 
 definition of best practices in the context of software development in general and the use of 178 

container frameworks like Docker in particular, e.g. managing resource access of apps 179 
 definition and implementation of rules for computing resource access of apps 180 
 software support for complete data removal upon user request 181 
 definition and implementation of best practices for validation of usage statistics and application 182 

of web tracking software (e.g. Google Analytics) 183 
 definition and implementation of best practices for anonymous access to suitable resources 184 
 definition and implementation of best practices for data publication 185 

 186 

Apart from ensuring data security, FASTGenomics aims to provide a good framework for the 187 
reproducibility of analyses and the sharing of data and knowledge. Such aspects are increasingly discussed 188 
in the scientific world, and driven by concepts like FAIR aiming to facilitate research and knowledge 189 
discovery by Findable, Accessible, Interoperable, and Re-usable data3. Therefore, the security concept is 190 
continuously extended to suggest best practices for data sharing, data publication, community features 191 
on the platform, e.g. user forums, use of the summary feature, or use of social media within the platform.  192 

 193 

Description of data upload to FASTGenomics 194 

FASTGenomics allows registered users to upload own data sets in the data module for further analysis. In 195 
the data upload window, the user is asked to provide the expression file in sparse format, the NCBI 196 
taxonomy ID of the organism and a title for the later appearance in the dataset item list. Once the user 197 



has provided the information, the uploaded data is transformed to our internal FASTGenomics Data 198 
Package Format. A Python script checks the NCBI Entrez IDs and those gene IDs that cannot be mapped 199 
uniquely. The script automatically documents the removed genes. Once finished, the data is provided to 200 
the user in the data module. Thereby, the data set is by default only visible to the person who has 201 
uploaded it.  202 

In addition, we also provide the possibility to directly generate the FASTGenomics Data Package Format. 203 
A documentation including an R-based tutorial for dataset preparation can be found at 204 
https://github.com/FASTGenomics/FASTGenomics_Data_Package_Format. Here, the user can add 205 
further information to the data set like metadata for the cells and genes and a dataset description 206 
including a short abstract, and contact information. This FASTGenomics Data Package can then be 207 
uploaded to the data module and allows fast access to the FASTGenomics functionalities. 208 

 209 

Description of Summary of any given analysis 210 

The analysis summary report gives a detailed overview of all steps executed and results produced in an 211 
analysis workflow to facilitate understanding and to ensure reproducibility (Supplementary Figure S5). 212 
Workflows describe the sequence of analysis steps performed to get from raw data to an analysis result. 213 
Such workflows are not necessarily linear and may contain several branches (e.g. when one app depends 214 
on input from several other apps executed before), i.e. a workflow is a directed acyclic graph. Each node 215 
(i.e. a versioned calculation or visualization app) in this graph is described in the workflow definition, 216 
including information on the analysis context within the workflow. Furthermore, each app provides text 217 
passages containing information about applied methods and offers links to access generated interim 218 
results during runtime. For report generation, the summary_visualization app recursively resolves 219 
the app dependencies (required input data and necessary analysis steps to generate this) from leaf to the 220 
root and dynamically assembles information gathered from the nodes into the final analysis report. Apps 221 
connecting the analysis summary to laboratory information management systems (LIMS) will be 222 
developed in the near future and included into the FASTGenomics analytical ecosystem. 223 

 224 

Concordance rate analysis of FASTGenomics Analyses with published results 225 

Analysis of single-cell RNA-seq data is a complex multistep procedure with many methods available for 226 
individual tasks, however with no gold standard being defined. Published experiments thus typically 227 
present analysis strategies that are highly specific for the respective underlying dataset. Accordingly, 228 
comparison of analysis strategies can be a daunting task. Here, we applied the FASTGenomics subtype 229 
discovery workflow for the analysis of a selection of published single-cell RNA-seq datasets generated with 230 
different technologies and of various dataset sizes. One common task in single-cell RNA-seq analysis is the 231 
definition of cell clusters to define sub-populations in complex mixtures of cells, with a definition of 232 
characteristic gene expression signatures and their functional characterization being typical downstream 233 
applications that crucially depend on the cluster assignment of cells. We therefore quantitatively 234 



compared FASTGenomics single-cell cluster assignments based on a neural network-based dimensionality 235 
reduction algorithm (see description below) to previously published clustering results for a selection of 236 
single-cell RNA-seq datasets (Supplementary Table 2)4–9.  237 

 238 

Neural network-based dimensionality reduction and clustering  239 

The standard subtype discovery workflow in FASTGenomics consists of three calculation apps that reduce 240 
the input dimensionality and group samples based on their similarity as seen in the gene expression 241 
profile. The first calculation app normalizes the data using the term-frequency times inverse-document-242 
frequency (TF-IDF)10. This scheme replaces the gene expression in each sample with a number 243 
proportional to the expression amplitude in this sample multiplied by the inverse number of samples in 244 
which the gene is observed. This amplifies genes which are specific for a given subpopulation and 245 
dampens the effect of genes which are present in most samples. Since the non-linear dimensionality 246 
reduction needs a dense matrix with intermediate dimensionality, the sparse, normalized expression table 247 
is compressed to 32 dimensions using truncated singular value decomposition implemented in a second 248 
calculation app. In the third step, a calculation app uses a neural network to approximate a parametric t-249 
SNE embedding11. This step projects the intermediate 32-dimensional data onto a two-dimensional space. 250 
The neural network approximates the t-SNE optimization problem by learning a projection that minimizes 251 
the t-SNE loss function and allows iterative training on batches. By default, the app uses batches consisting 252 
of 512 samples and calculates the joint probabilities of samples in the higher dimensional space (by default 253 
32 dimensions from the truncated singular value decomposition) and the target two-dimensional space. 254 
Then, the network minimizes the Kullback-Leibler (KL) divergence between input probability and output 255 
probability similar to the original t-SNE algorithm. Finally, clustering of the cells is performed using 256 
the HDBSCAN algorithm. 257 
 258 

Methods applied to determine concordance 259 

Dataset pre-processing and clustering 260 

For cluster determination we downloaded count tables derived from previously published scRNA-seq 261 
datasets (Supplementary Table 2) and used them as they were provided within the public repository. 262 
After upload into FASTGenomics we used the pre-installed workflow ‘subtype discovery’ for the 263 
identification of clusters within the dataset using the above described neural network-based 264 
dimensionality reduction algorithm. Cluster assignments for individual cells were requested from the 265 
corresponding authors of individual datasets and compared to those obtained by the FASTGenomics 266 
workflow.  267 

Concordance rate calculation 268 

From individual cells’ published cluster assignments as well as clusterings produced with the 269 
FASTGenomics subtype discovery workflow, a contingency matrix M of cell counts per cluster pairs was 270 
generated. To provide a quantitative measure for the concordance of clustering results obtained from the 271 



two methods, we calculated the concordance rate C for each cluster produced with a specific method as 272 
follows: 273 

𝐶(𝑀௜) =
𝑚𝑎𝑥൫𝑀௜, ∙൯

∑ 𝑀௜,௝௝
× 100 274 

To provide an overall summary statistic how well one clustering method captures results from the other 275 
method, the median concordance rate was calculated. For each pair of clustering methods, two median 276 
concordance rates (one for each method) can be calculated. 277 

Adjusted mutual information 278 

To quantify the overall clustering concordance between published and the FASTGenomics analysis, we 279 
use the adjusted mutual information (AMI), which ranges between 0 (two clusterings show only random 280 
overlap) and 1 (overlap between two clusterings is not due to chance)7.  281 

 282 

Results of concordance rate analysis  283 

To provide an unbiased analysis of the publicly provided dataset we did not adjust the number of cells 284 
when uploading the data to the FASTGenomics portal.  As shown in Supplementary Table 2, the number 285 
of cells reported in the respective publications and the number of cells publicly available was not always 286 
identical. Due to the inclusion of different sets of cells into the analysis and the differences in analysis 287 
settings, we are aware that the number of clusters between the FASTGenomics analysis and previously 288 
published results can vary. Nevertheless, if publicly available datasets are to be used by a broader 289 
community, we postulated that the use of the complete datasets provided will be the default usage of 290 
such data resources.  291 

We performed a quantitative comparison between previously reported cluster structures and clusters 292 
determined in an unbiased fashion by the FASTGenomics ‘subtype discovery’ pipeline for a selection of 293 
single-cell RNA-seq datasets (Figure 2A). We observed variation in the AMI values determined for the 294 
selected datasets and hypothesize that apart from technical influences like sparsity of the expression 295 
matrix and read coverage per cell, also biological aspects impact the clarity of cellular subtype discovery. 296 
We found that AMI values were generally lower in immune cell datasets compared to those from other 297 
cell types (cerebral and cancer cells as well as retinal tissue), presumably due to the lower RNA content of 298 
immune cells and the lower number of genes expressed therein8,9. 299 

A more detailed analysis of the cluster structure was performed for 3,005 single-cell transcriptomes 300 
derived from the murine primary somatosensory cortex (S1) and the hippocampal CA1 region4, which was 301 
previously divided into 9 main clusters and 47 subclasses. When applying the FASTGenomics ‘subtype 302 
discovery’ pipeline, we identified 16 clusters. Of the 3,005 cells analyzed in the published study4, 630 cells 303 
(20.1%) could not be assigned to any of the clusters due to limited assignment confidence resulting from 304 
almost equidistant positioning between cell clusters in the tSNE space. However, the median concordance 305 
rates for the previously determined 9 main clusters and the 16 newly defined ones were as high as 96.5% 306 



for FASTGenomics and 90% for BACKSPIN, arguing for a high degree of concordance for a large fraction of 307 
clusters and cells. Likewise, the AMI for both clustering results was high (AMIZeisel et al., Science (2015) = 0.75, 308 
Figure 2A). We further compared the 16 FASTGenomics clusters to the 7 cell classes corresponding to the 309 
9 published main clusters as well as to the 47 cell subtypes (Figure 2B). Here, all oligodendrocytes classes 310 
and all S1 and CA1 pyramidal neurons were each captured by one FASTGenomics cluster, while 311 
interneurons were mainly represented in six distinct clusters by FASTGenomics. Thus, the standard 312 
subtype discovery workflow revealed an intermediate resolution between the overall and the fine-grained 313 
published analysis without generating contradictions to existing knowledge.  314 

 315 

Setup of ASAP, Granatum and SeqGeq for comparison with FASTGenomics 316 

To evaluate the analytical capabilities of the FASTGenomics analysis pipeline, we defined a set of analytical 317 
tasks and checked the performance on published single-cell analysis pipelines featuring a graphical user 318 
interface, ASAP12, Granatum13 and SeqGeq14. ASAP was evaluated using the publicly accessible online 319 
instance at https://asap.epfl.ch. Granatum required the local installation of VirtualBox version 5.1.26 320 
(Oracle) and the import of the Granatum appliance version 1.1_2 obtained from 321 
http://garmiregroup.org/granatum/app. SeqGeq version 1.3 was obtained from 322 
https://www.flowjo.com/solutions/seqgeq and installed locally in the default configuration. The 323 
performance of Granatum and SeqGeq was evaluated on a 64-bit Windows 10 machine with Intel i7 6700K 324 
CPU and 32 GB RAM.  325 

 326 

Resource Requirements of a FASTGenomics Analysis Workflow 327 

The memory requirements and the computing time to complete an analysis of a dataset of defined size 328 
were chosen to describe the performance of the FASTGenomics pipeline. These parameters were 329 
determined in a single-user setting for datasets consisting of 1,920 to 68,579 cells4,5,7–9,15; analysis tasks 330 
evaluated for the performance measurements were data normalization, dimensionality reduction and cell 331 
clustering, because the effort needed for detection of differentially expressed genes and their functional 332 
analysis depend on the number of clusters found in the single-cell dataset. Computing times for individual 333 
analysis steps were extracted from the Docker log generated by the FASTGenomics Task Dispatcher and 334 
summed up for all steps in the analysis workflow. Memory requirements were determined with a batch 335 
script running in the background during the calculations that executes docker stats and docker 336 
ps in intervals of two seconds logging memory consumption of individual containers. During the runtime 337 
of each container, the maximum memory requirement was used for further evaluation. Resource 338 
requirements were determined with the publicly accessible instance of FASTGenomics, which is currently 339 
installed on a Standard D8s v3 system (8 vCPUs based on the 2.3 GHz Intel XEON ® E5-2673 v4 processor 340 
and 32 GB RAM).  341 



Supplementary Figures 342 

A B

C D

Figure S1

 343 

Supplementary Figure 1: Graphical User Interface of the FASTGenomics analysis ecosystem. (A) The 344 
main menu. (B) Overview of accessible datasets. (C) Workflow selection page. (D) Analysis result 345 
visualization. 346 
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348 
Supplementary Figure 2: Technical Representation of the FASTGenomics Architecture. A web browser 349 
allows the interaction with the FASTGenomics Client, which internally manages the upload dock (middle 350 
branch), the calculation engine (left branch) and the screenflow engine (right branch). 351 
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ENCRYPTION AT REST
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Figure S3

public private

353 
Supplementary Figure 3: Data Access. All data is stored on encrypted storage devices. Users can access 354 
public datasets and those uploaded by the users, but nor those from other users. Data is encrypted for 355 
calculation and visualization apps. 356 
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358 
Supplementary Figure 4: Data Quality. (A) Data upload in FASTGenomics. (B) Data quality check concept. 359 
Based on the overall number of genes detected in the single-cell transcriptomics dataset, a lower 360 
threshold for the number of genes per cell is dynamically generated; cells expressing fewer genes are 361 
excluded from analysis. Furthermore, genes expressed in less than a predefined proportion of cells are 362 
removed from the dataset. (C-E) Quality check screens in FASTGenomics, screenshots illustrating (C) 363 
average molecule counts, (D) gene types, (E) quantification of batch effects. 364 
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Figure S5

366 
Supplementary Figure 5: Analysis Summary. (A) Schematic overview of the summary report-generating 367 
app. Information about analyzed data, applied workflows with invoked apps including version information 368 
and parametrization are recursively resolved and compiled during run-time to generate the summary 369 
report. (B) Screenshot of an example summary report generated during the subtype discovery workflow. 370 

  371 



Figure S6

372 
Supplementary Figure 6: Re-Analysis of Mass et al. (A) Cluster assignments of individual cells. (B) 373 
Individuals cells colored according to EMP signature gene expression. (C) Individual cells colored according 374 
to macrophage signature gene expression. (D) Individual cells colored according to preMac signature gene 375 
expression. 376 

 377 



Name Functionality Algorithm/Method Status 
calc_batch_effect_classifier Batch effect quantification Random Forest Active 
calc_clustering_hdbscan Cell clustering HDBSCAN Active 
calc_clustering_louvain 

Cell clustering Louvain 
Under 
Development 

calc_count_normalize 
Normalization various 

Under 
Development 

calc_de_genes_diffrank Detection of differentially 
expressed genes Diffrank (Scanpy) Active 

calc_de_genes_glm Detection of differentially 
expressed genes 

Generalized Linear 
Model Active 

calc_de_genes_nonparametric Detection of differentially 
expressed genes 

Mann-Whitney U 
test Active 

calc_diffusion_pseudotime Pseudo-temporal ordering of 
cells Scanpy Active 

calc_dimreduction_autoencoder Dimensionality reduction Neural network Active 
calc_dimreduction_tsne Dimensionality reduction tSNE Active 
calc_filter_quality 

Quality control 
Detection rate 
filtering 

Under 
Development 

calc_functional_analysis Enrichment analysis Fisher’s Exact test Active 
calc_list_filtering 

Blacklist/whitelist filtering ID list filtering 
Under 
Development 

calc_logreg_confusion  Logistic regression Active 
calc_normalize_tfidf Normalization TF/IDF Active 
calc_tsvd 

Dimensionality reduction 
Single value 
decomposition Active 

Supplementary Table 1A: Calculation Apps in FASTGenomics. The table lists the calculation apps 378 
available in FASTGenomics and currently under development. For each app, the name, functionality and 379 
used algorithm or method is specified.380 



Name Usage Status 
viz_barchart Data Quality Active 
viz_batch_effect Data Quality Active 
viz_dataquality Data Quality Active 
viz_confusionmatrix Cluster Inference Active 
viz_heatmap DE Genes, Functional Analysis Active 

viz_scatterplot 
Clustering, Diffusion Pseudo-
time Active 

viz_table DE Genes Active 

viz_linechart Gene dynamics 
Under development/ 
soon in FAST Genomics 

Supplementary Table 1B: Visualization Apps in FASTGenomics. The table lists the visualization apps 381 
available in FASTGenomics and currently under development. 382 



ID 
GEO Accession 
Code Organism 

Number of 
Genes 

Number of 
Cells 

Macosko et al., Cell (2015) GSE63473 Mouse 21,605 49,300 
Mass et al., Science (2016) GSE81774 Mouse 8,553 408 
Moignard et al., Nature 
Biotechnology (2015) --- Mouse 46 3,934 
Nestorowa et al., Blood 
(2016) GSE81682 Mouse 23,357 1,920 
Paul et al., Cell (2015) GSE72857 Mouse 19,362 10,368 
Tirosh et al., Nature (2016) GSE70630 Human 22,338 4,347 
Tirosh et al., Science (2016) GSE72056 Human 22,333 4,645 
Zeisel et al., Science (2015) GSE60361 Mouse 18,920 3,005 
Zheng et al., Nature 
Communications (2017) --- Human 21,253 68,579 
Ziegenhain et al., Molecular 
Cell (2017) GSE75790 Mouse 22,701 482 

Supplementary Table 2: Description of datasets available in the FASTGenomics pipeline. 383 
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