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Abstract 10 

A widely used experimental design in multisensory integration is the McGurk paradigm that 11 

entail illusory (cross-modal) perception of speech sounds when presented with incongruent 12 

audio-visual (AV) stimuli. However, the distribution of responses across trials and 13 

individuals is heterogeneous and not necessarily everyone in a given group of individuals 14 

perceives the effect. Nonetheless, existing studies in the field primarily focus on addressing 15 

the correlation between subjective behavior and cortical activations to reveal the neuronal 16 

mechanisms underlying the perception of McGurk effect, typically in the “frequent 17 

perceivers”. Additionally, a solely neuroimaging approach does not provide mechanistic 18 

explanation for the observed inter-trial or inter-individual heterogeneity. In the current study 19 

we employ high density electroencephalogram (EEG) recordings in a group of 25 human 20 

subjects that allow us to distinguish “frequent perceivers” from “rare perceivers” using 21 

behavioral responses as well as from the perspective of large-scale brain functional 22 

connectivity (FC). Using global coherence as a measure of large-scale FC, we find that alpha 23 

band coherence, a distinctive feature in frequent perceivers is absent in the rare perceivers. 24 

Secondly, a decrease in alpha band coherence and increase in gamma band coherence occur 25 

during illusory perception trials in both frequent and rare perceivers. Source analysis 26 

followed up with source time series reconstructions reveals a large scale network of brain 27 

areas involving frontal, temporal and parietal areas that are involved in network level 28 

processing of cross-modal perception. Finally, we demonstrate that how a biophysically 29 

realistic computational model representing the interaction among key neuronal systems 30 

(visual, auditory and multisensory cortical regions) can explain the empirical observations. 31 

Each system involves a group of excitatory and inhibitory Hindmarsh Rose neurons that are 32 

coupled amongst each other. Large-scale FC between areas is conceptualized using coupling 33 
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functions and the identity of a specific system, e.g., visual/ auditory/ multisensory is chosen 34 

using empirical estimates of the time-scale of information processing in these systems. The 35 

model predicts that the disappearance of alpha band coherence observed in rare perceivers 36 

stems from a negligible direct A-V (audio-visual) coupling however, an increase in indirect 37 

interaction via multisensory node leads to enhanced gamma band and reduced alpha band 38 

coherences observed during illusory perception. Overall, we establish the mechanistic basis 39 

of large-scale FC patterns underlying cross-modal perception. 40 

  41 
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Introduction 42 

Speech perception during face-to-face conversation inextricably involves multisensory 43 

integration of auditory and visual cues. This is nicely demonstrated in laboratory settings by 44 

the McGurk effect (McGurk & Macdonald, 1976), in which the video stimulus of a human 45 

speaker with  the sound of /ba/ superimposed on the lip movements /ga/ is perceived by the 46 

listener as a completely different syllable /da/ (illusory/ cross-modal percept). Subsequently 47 

several studies have identified the psychophysical parameters that play a dominant role in 48 

eliciting cross-modal effects (Munhall et. al., 1996; van Wassenhove et. al., 2007, Thakur et 49 

al 2016) and their underlying neural mechanisms (Jones & Callan, 2003; Kaiser, 2004; van 50 

Wassenhove et. al., 2005; Saint-Amour et. al., 2007; Beauchamp, 2010; Keil et. al., 2012; 51 

Kumar et al 2017). Nonetheless, the distribution of responses to McGurk stimulus is 52 

heterogeneous and some individuals rarely perceive the illusion (Nath & Beauchamp, 2012a). 53 

While the neural correlates underlying illusory/ cross-modal perception has been extensively 54 

studied in a group of McGurk perceivers, the neurophysiology subserving the perceptual 55 

heterogeneity as well as the brain network mechanisms across individuals remains unclear. 56 

 57 

Recent evidences show that subject-wise variability in the illusory perception is contingent on 58 

the McGurk stimulus and the response choice employed in the experimental paradigm 59 

(Mallick et. al., 2015). Concurrently, neuroimaging evidences attribute the heterogeneity 60 

across individuals to the extent of activation at the superior temporal sulcus (STS) 61 

(Beauchamp, 2010; Nath & Beauchamp, 2012b). Neurophysiological studies highlight the 62 

pre-stimulus activity in STS and its functional connectedness to front-parietal regions  as a 63 

neuromarker of illusory perception within a group of individuals (Keil et al., 2012). More 64 

recent studies have indicated that beyond a specific region of interest, a large-scale network 65 

of oscillatory brain networks are involved in effectuating cross-modal perception(Kumar et 66 

al., 2016). A key question emerges how robust is this network across a group of individuals 67 

and whether the organization of these networks contingent on the stimulus configurations or 68 

the perceptual outcome, specifically in the case of McGurk incongruent stimulus. Secondly, 69 

what are the neural mechanisms that give rise to the network level correlates? While the first 70 

question needs to be answered empirically using a detailed neurophysiological study of 71 

underlying brain networks, the more broader question of systems-level understanding or 72 

functional brain network organization require a neurobiologically inspired computational 73 

model. The existing models of multisensory integration are either motivated from the context 74 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 23, 2018. ; https://doi.org/10.1101/286609doi: bioRxiv preprint 

https://doi.org/10.1101/286609


4 
 

of response choices and probabilistic distribution of stimulus cues in the environment 75 

(Körding et al., 2007) or explanation of behavior from neurally inspired models (Thakur et 76 

al., 2016; Cuppini et al., 2017). Typically these models attempt to explain the firing rate 77 

dynamics of single neurons or the local population using a combination of synaptic and 78 

stimuli inspired parameters. Thus, the explanation of neurophysiological findings observed at 79 

the macroscopic scale of EEG and MEG remains elusive because of the dearth of a network 80 

model that captures the large-scale network dynamics. 81 

 82 

In the current study we use the psychophysical variable of audio-visual (AV) lag that can 83 

modulate the degree of illusory perceptual experience in a group of individuals. We estimate 84 

the large-scale network underlying illusory perceptual experience in a group of individuals 85 

who frequently perceive McGurk illusion as well as investigate the functional network 86 

reorganization in individuals who rarely perceive the McGurk illusion. We find two distinct 87 

large-scale mechanisms operation during the multisensory information processing: 1) 88 

increase in gamma band global coherence and decrease in alpha band global coherence 89 

during illusory perception trials in both frequent and rare perceivers and 2) absence of peak in 90 

alpha band coherence across both illusory and unimodal perception trials in rare perceivers. 91 

Both these mechanisms were validated at the sensor level data and from source connectivity 92 

analysis using the LCMV beamformer (Van Veen et al., 1997). Subsequently, we designed a 93 

neural mass model that captures the global coherence dynamics observed in the EEG data. 94 

Previous studies have argued this kind of modeling is ideally suited to explain the emergence 95 

of spontaneous rhythmic patterns in EEG (Becker et al., 2015). Here we illustrate that a large-96 

scale model of multisensory interactions involving distinct local neuronal populations e.g., 97 

unisensory areas (Heschls‟s gyrus/ STG and higher visual areas) and multisensory 98 

convergence zones (STS) can generate the synchronization patterns in sensor and source 99 

dynamics. Each local population consists of excitatory and inhibitory neural populations that 100 

are interconnected using biophysically observed parameters and each neuron within the 101 

population are capable of generating periodic spiking and bursting dynamics. Finally, we 102 

could illustrate how direct auditory-visual coupling whose presence was reported in 103 

neuroanatomical studies (Falchier et al., 2002; Rockland & Ojima, 2003; Wallace et al., 104 

2004) and indirect interactions between audio-visual areas via multisensory convergence sites 105 

(Bizley & King, 2012) can bring forth distinct network mechanisms to facilitate perceptual 106 

experience. 107 
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Results 108 

Inter-subject variability: Frequent and rare perceivers of illusory McGurk perception 109 

We employed the incongruent McGurk stimulus, visual /ka/ paired with auditory /pa/ to 110 

induce the illusory response /ta/. Overall, we used four kinds of AV stimuli: three McGurk 111 

incongruent pair with AV lags -450 ms (audio leads the articulation), 0 ms (synchronous), 112 

+450 ms (articulation leads the audio) and one congruent AV stimulus (visual /ta/ with 113 

auditory /ta/). Following a forced choice paradigm, the participants reported if they heard /ta/, 114 

/pa/ or something else (others). Concurrently, the participants‟ eye gaze behavior was 115 

recorded by an infra-red based eye tracking device.We characterized a participant as a 116 

'frequent perceiver' (N=15) if they responded with 60% of /ta/ response to the McGurk 117 

incongruent stimulus at any lag, -450, 0 or +450 ms, failing which the participants were 118 

categorized as a 'rare perceiver' (N=10). Figure 1B, C illustrates the distribution of 119 

perceptual categorization responses in frequent and rare perceivers to the McGurk 120 

incongruent stimuli. At all AV lags, 80% of the rare perceivers reported /ta/ in <45% trials 121 

(see Figure 1 - figure supplement 1). We ran a repeated-measures two-way ANOVA on the 122 

percentage responses with AV lags and perceptual categories (/ta/ and /pa/) as the variables 123 

within each group of participants and use p<0.05 to evaluate statistical significance. For 124 

frequent perceivers, we observed that AV lags had no influence on the percentage responses, 125 

F (2, 89) = 0.84, p = 0.44. However, we observed a significant variation of percentage 126 

responses between the two perceptual categories, F (1, 89) = 19.90, p < 0.0001. Also, the 127 

interaction between perceptual categories and AV lags was significant, F (2, 89) = 29.83, p < 128 

0.0001. For rare perceivers, no influence of AV lags was observed, F (2, 59) = 0.27, p = 0.76. 129 

However, variation of percentage responses between the two perceptual categories was 130 

significant, F (1, 59) = 64.47, p < 0.0001. Also, no significant interaction was observed 131 

between the perceptual categories and AV lags, F (2, 59) = 0.47, p = 0.66. We also performed 132 

paired Student‟s t-test on the percentage of responses (/ta/ and /pa/) at each AV lag for 133 

frequent and rare perceivers and use statistical threshold of p=0.05 to evaluate significance. 134 

In frequent perceivers, we find significantly higher percentage of /ta/ responses at 0 ms (t 135 

(14) = 7.81, p < 0.0001) and +450 ms AV lag (t (14) = 2.12, p = 0.04). No significant 136 

difference was observed at -450 ms (t (14) = 1.97, p = 0.06) AV lag. However, in rare 137 

perceivers we observed a significantly higher percentage of /pa/ responses at -450 ms (t (9) = 138 

-3.62, p = 0.002), 0 ms (t (9) = -4.93, p < 0.0001) and +450 ms (t (9) = -5.61, p < 0.0001) AV 139 
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lag. Unpaired Student‟s t test employed to compare the percentage of /ta/ responses during 140 

the congruent /ta/ stimulus showed no significant difference between the groups (t (23) = 141 

2.02, p = 0.05) Figure 1 - figure supplement 2.  142 

Gaze fixations on the head and mouth areas of the speaker in the AV stimuli were converted 143 

into percentage measures for each subject on a trial-by trial basis and sorted based on the 144 

stimulus type and perceptual categories. The bar graphs in Figure 1 - figure supplement 3 145 

illustrates the mean and the standard error of the percentage of gaze fixations on the mouth of 146 

the articulator during /ta/ and /pa/ perception averaged across the participants. We performed 147 

a repeated-measures two-way ANOVA on the percentage responses with AV lags and 148 

perceptual categories (/ta/ and /pa/) as the variables in frequent and rare perceivers. In 149 

frequent perceivers Figure 1 - figure supplement 3A, we observed that there was no 150 

influence of AV lags, F (2, 89) = 0.36, p = 0.70 and perceptual categories, F (2, 89) = 3.88, p 151 

= 0.05 on the percentage of gaze fixations on the mouth. Furthermore, the interaction effect 152 

between them was also insignificant, F (2, 89) = 0.07, p = 0.93. Similarly, in rare perceivers 153 

Figure 1 - figure supplement 3B, AV lags, F (2, 59) = 2.54, p = 0.09 and perceptual 154 

categories, F (2, 59) = 0, p = 0.97 had no effect on the percentage of gaze fixations at the 155 

mouth. Also, no evidence of an interaction effect between them was observed, F (2, 59) = 156 

0.2, p = 0.82. We further performed unpaired Student‟s t-test to compare the percentage of 157 

gaze fixations on mouth between frequent and rare perceivers i.e frequent /ta/ vs Rare /ta/ and 158 

frequent /pa/ vs Rare /pa/. We observed that frequent perceivers elicited significantly higher 159 

percentage of fixations at mouth during /ta/ perception at -450 ms (t (23) = 3.42, p = 0.002) , 160 

0 ms (t (23) = 3.88, p = 0.0007)  and +450 ms (t (22) = 2.79, p = 0.01) AV lag. Similarly, 161 

during /pa/ perception frequent perceivers elicited higher percentage of fixations on mouth at 162 

-450 ms (t (23) = 4.56, p < 0.001) , 0 ms (t (23) = 2.95, p = 0.0071)  and +450 ms (t (23) = 163 

2.45, p = 0.02) AV lag.   164 

Large-scale functional connectivity dynamics  165 

To investigate the underlying differences in dynamic functional connectivity (FC) between 166 

the perceptual categories we computed the global coherogram during /ta/ and /pa/ perception. 167 

Global coherogram defined from the normalized vector sum of all pairwise coherences 168 

amongst EEG sensors captures the evolution of global coherence in time and frequency 169 

domain simultaneously (Lachaux et al., 1999). Mathematically, global coherence is the ratio 170 

of the largest eigenvalue of the cross-spectral matrix to the sum of its eigenvalues (Mitra & 171 
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Bokil, 2008). Subsequently, we compared the global coherogram of /ta/ and /pa/ at AV lags: -172 

450ms (Figure 2A, C), 0ms (Figure 2E, G) and +450 (Figure 2I, K) using cluster based 173 

permutation tests. The onset of first stimulus was considered the point of reference for time-174 

locking (zero). Positive clusters highlighted in black dashed rectangles and negative clusters 175 

in red dashed boxes signify time-frequency islands of increased and decreased synchrony 176 

respectively in the large-scale functional network. We also compared the presence of band-177 

specific peaks/enhancement in global coherence in the frequent (Figure 2B, F, J) and rare 178 

perceivers (Figure 2D, H, L) during /ta/ and /pa/ perception using Silverman‟s bootstrapping 179 

test for examining multimodality. 180 

 181 

For frequent perceivers, during -450 ms AV lag (Figure 2A), we observed a negative cluster 182 

in the theta (
0.05 5.31z   ) in the temporal range of 650-800 ms and a positive cluster in the 183 

beta band (
0.95 3.84z   ) between 500 ms to 700ms. For videos at  0 ms AV lag (Figure 2E), 184 

we observed a negative cluster in the theta (
0.05 6.05z   ) and alpha band (

0.05 5.81z   ) in the  185 

temporal range of ~0-450 ms, and a positive cluster  (
0.95 4.32z   )  in gamma band between 186 

800 and 900 ms. During +450 ms AV lag (Figure 2I), we observed three positive clusters, 187 

(1) in the theta band  (
0.95 5.52z   ) in the 100-400 ms time window, (2) in the beta band (188 

0.95 4.40z   ) between 200 to 500 ms, and (3) in the gamma range (
0.95 4.34z   )  in the 189 

temporal window of 50 ms and 250 ms. Also, a negative cluster in the alpha band (190 

0.05 5.85z   ) was observed between 700 to 900 ms time window.  191 

 192 

For rare perceivers, at -450 ms AV lag (Figure 2C), we observed two prominent negative 193 

clusters (
0.05 6.72z   ) spanning gamma band in the temporal range of 0-400 ms and ~500-194 

900 ms. For videos with 0 ms AV lag (Figure 2G), we observed two positive clusters in the 195 

beta band (
0.05 5.69z   ) and (

0.05 5.68z   ) between ~0-150ms and ~300-500 ms 196 

respectively. At +450 ms AV lag (Figure 2K), we observed two positive clusters (197 

0.95 6.16z   ) and (
0.95 6.04z   ) in the theta band in the temporal window of ~0-300 ms and 198 

~400-700 ms respectively. 199 

 200 

Cluster based permutation tests, performed to test the differences in global coherogram 201 

between /ta/ and /pa/ elucidated the neural signatures in large-scale FC corresponding to 202 

inter-trial variability observed within frequent and rare perceivers. Consequently, to address 203 
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if inter-individual heterogeneity stems from the differences in the inherent processing of 204 

multisensory stimuli in the two groups of perceivers, we evaluated if any frequency specific 205 

enhancement of global coherence occurs during /ta/ and /pa/ perception.  Consequently, we 206 

computed the global coherence during /ta/ and /pa/ perception for frequent and rare 207 

perceivers that would provide a holistic picture of the underlying large-scale FC. In frequent 208 

perceivers we observed qualitatively that the global coherence followed a bimodal 209 

distribution during /ta/ and /pa/ perceptions across all AV lags (Figure 2B, F, J). The modes 210 

were primarily centered around alpha (8-13 Hz) and gamma (30-40 Hz) bands, signifying 211 

enhanced coherence. Silvermann‟s bootstrapping test employed to examine the statistical 212 

significance of those peaks revealed significant bimodal peaks (p < 0.05) during /ta/ and /pa/ 213 

perception at -450 ms, 0 ms AV lags. However, there were no significant bimodal peaks 214 

during /ta/ (p = 0.07) and /pa/ perception (p = 0.13) at +450 ms AV lag (Figure 2J).  215 

In rare perceivers, Silvermann‟s bootstrapping test revealed significant bimodal peaks only  216 

during /ta/ perception at 0 ms AV lag (p < 0.05) (Figure 2H). There were no significant 217 

bimodal peaks during /pa/ perception at -450 ms (p = 0.35) (Figure 2D), 0 ms (p = 0.30) 218 

(Figure 2H) and +450 AV lag (p = 0.15) (Figure 2L). Similarly, no significant bimodal 219 

distribution were observed during /ta/ perception at -450 ms (p = 0.21) (Figure 2D) and +450 220 

ms (p = 0.20) AV lags (Figure 2L). Importantly, the bimodal peaks during /ta/ perception at 221 

0 ms AV lag were clustered around delta (1-4 Hz), theta (4-8 Hz) and gamma (30-40 Hz). 222 

Notably, a desynchronization in the alpha band was observed in rare perceivers (Figure 2D, 223 

H, L) across all AV lags and perceptual categories. 224 

 225 

To further understand if these frequency specific coherence differences contingent on the 226 

stimulus configurations, we computed the global coherogram and time averaged global 227 

coherence during congruent /ta/ in frequent and rare perceivers and compared them using 228 

cluster based permutation tests (Figure 3). Global coherogram differences in congruent /ta/ 229 

between frequent and rare perceivers computed employing cluster based permutation tests 230 

revealed three negative clusters, (1) in the beta band between ~50-400 ms (
0.05 5.87z   ) 231 

temporal window , (2) in the beta band between the time window ~700-900 ms (
0.05 5.79z   ) 232 

and (3) in the gamma band from ~150-900 ms (
0.05 6.54z   ). A positive cluster in the delta 233 

and theta band was also observed between ~700-900 ms (
0.95 6.24z   ) time window (Figure 234 

3C). Conspicuously, the global coherence distribution for the congruent /ta/ in frequent and 235 

rare perceivers followed a similar pattern (Figure 3D).  236 
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Source analysis reveals cortical areas participating in functional connectivity dynamics  237 

To validate the role of the identified sources in the overall functional connectivity pattern 238 

observed in the sensor EEG, we initially identified the cortical generators of the EEG time 239 

series by employing linear constrained minimum variance (LCMV) beamformer algorithm 240 

(Van Veen et al., 1997). Subsequently, we projected the epoched time series into the source 241 

time space by multiplying them with the concordant spatial filter (constructed by LCMV 242 

beamformer, for more info. see methods) of the source locations that showed statistical 243 

significance in the ratio of source power between /ta/ and /pa/ trials. Finally, we computed 244 

the global coherogram for the perceptual categories and compared them using cluster based 245 

permutation tests. Elicitation of a similar trend in the global coherogram differences 246 

essentially confirms the involvement of the identified sources in the large-scale FC 247 

underlying McGurk perception. The sources eliciting statistical significance in the ratio of 248 

source power between /ta/ and /pa/ are illustrated in Figure 4A and the source locations are 249 

listed in Table 1. The source locations were consistent across all AV lags and between 250 

frequent and rare perceivers. Cluster based permutation tests employed to compare the global 251 

coherogram (/ta/ - /pa/) computed from the source time series revealed in frequent perceivers 252 

at -450 ms AV lag (Figure 4B) one positive cluster in the alpha band (
0.95 5.18z   ) in the 253 

temporal range of ~200-700 ms,. During 0 ms AV lag (Figure 4D), three negative clusters, 254 

two clusters in the alpha band in the temporal window of ~0–100ms (
0.05 6.03z   ) , ~600-255 

900ms (
0.05 6.05z   ) and one (

0.05 6.93z   ) in the low gamma band between ~150-350 ms. 256 

At +450 ms AV lag (Figure 4F), one prominent positive cluster in the high beta and gamma 257 

band (
0.95 6.65z   ) spanning the entire stimulus duration, and two negative clusters 258 

spanning the theta and alpha band in the time window of ~0-400 ms (
0.05 5.57z   ) and 259 

between ~500-650 ms (
0.05 5.62z   ) was observed. 260 

For rare perceivers, during -450 ms AV lag (Figure 4C), three positive clusters, (1) in the 261 

theta and alpha band (
0.95 4.56z   ) from the onset to ~500ms, (2) in the beta band between 262 

~300- 700 ms and (3) a prominent positive cluster (
0.95 4.56z   ) in the gamma band 263 

spanning the entire stimulus duration was observed. At 0 ms AV lag (Figure 4E), a negative 264 

cluster (
0.05 5.39z   ) in the alpha band between from stimulus onset to ~600 ms and a 265 

negative cluster (
0.95 4.57z   ) in the beta band in the temporal range of ~600-900 ms was 266 

observed. During +450 ms AV lag (Figure 4G), three positive clusters, (1) in the theta band 267 
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and alpha band (
0.95 4.60z   ) between ~0-220 ms, (2) in the beta band (

0.95 4.16z   ) 268 

between ~600-900 ms, and (3) in the gamma band (
0.95 4.38z   ) spanning the entire 269 

stimulus duration was observed.         270 

Table 1:  The table lists the cortical loci that elicited power higher than the set threshold (> 271 

99.5 percentile) in the source analysis 272 

 Left hemisphere Right hemisphere 

Frontal 

lobe 

 

Inferior frontal gyrus 

Middle frontal gyrus 

Superior frontal gyrus 

Cingulate gyrus 

Inferior frontal gyrus 

Middle frontal gyrus 

Superior frontal gyrus 

Cingulate gyrus 

Temporal 

lobe 

 

Fusiform gyrus 

Middle temporal gyrus 

Superior temporal 

gyrus 

 

 

Fusiform gyrus 

Middle temporal 

gyrus 

Superior temporal 

gyrus 

Parietal 

Lobe 

Precuneus  

 

 273 

Network model comprising of 3 neural masses with fast, intermediate and slow time-274 

constants generates alpha and gamma coherence  275 

 276 

We incorporated a neural mass model approach (Becker et al., 2015; Aerts et al., 2018) to 277 

investigate the alpha and gamma coherence dynamics associated with inter-individual and 278 

inter-trial variability respectively. Since EEG data does not necessarily reflect the local 279 

synaptic activity, neural mass model which operates to phenemenologically explain 280 

mesoscopic and macroscopic features in EEG/ MEG data offers an attractive tool to 281 

understand the underlying neural mechanisms (Lopes da Silva et al., 1974; Jansen & Rit, 282 

1995; David & Friston, 2003). A neural mass is essentially an abstraction of summed 283 

synapto-dendritic activity of several thousand neurons in an area which can be in a 284 

cooperative dynamical state such as synchronous firing that gives rise to low-frequency 285 

oscillations. Such shared dynamical states allow us to reduce the population dynamics in 286 

terms of coupled ordinary differential equations where explicit spatial effects can be ignored 287 

(Stefanescu & Jirsa, 2008). Armed with the knowledge of cortical sources underlying cross-288 

modal perception (Table 1) we consider broadly a network of three neural masses as the 289 

underlying neuro-cognitive network comprising of auditory, visual and cross-modal masses 290 

(nodes). Each node can be further expanded as a population of excitatory and inhibitory 291 

Hindmarsh-Rose (HR) neurons (Hindmarsh & Rose, 1984) representing auditory, visual and 292 
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multisensory areas. The key parameters that govern the time scale of the oscillatory dynamics 293 

come from physiologically motivated parameter values for each neural area. For instance, the 294 

auditory node is assumed to be the most sensitive to ambient temporal fluctuations hence 295 

operating with a fast time-scale,  visual node the slowest in terms of sensitivity and somewhat 296 

intermediate time-scale for multisensory node (see materials and methods for details, Figure 297 

5). The existence of two time-scales facilitates the co-existence of synchronous states in alpha 298 

and gamma oscillations when slow (visual) node is source of excitatory influence (EI) and 299 

fast (auditory) node is sink of EI and when coherence was computed across all nodes. These 300 

co-existent states emerge via two possible routes, 1) when visual node (V) interacts with the 301 

auditory node (A) through direct coupling ( AVW ) and 2) when indirect coupling ( &AM VMW W ) 302 

between A-V nodes via the multisensory node (M) range from 0.35 to 0.7 (Figure 6 303 

Supplement 1A). We assume coupling strength less than 0.35 to be weak coupling (WC), 304 

coupling strength between 0.35 and 0.7 to be moderate coupling (MC) and coupling greater 305 

than 0.7 to be strong coupling (SC). We also observe high coherence around alpha band and 306 

gamma band in SC range however, a distinct peak around alpha band is not clearly observed. 307 

Any other model configuration is not able to create the co-existence of alpha and gamma 308 

band coherence in MC range (Figure 6 Supplement 2). Further, when the fast-slow 309 

interaction takes place via direct coupling alone ( AVW ranges from 0 to 1, &AM VMW W = 0) we 310 

observe the existence of only alpha band coherence but not the gamma band coherence 311 

(Figure 6 Supplement 1B). Here, the absence of gamma band coherence implies a 312 

diminished indirect coupling of A-V nodes via multisensory node ( &AM VMW W ). Moreover, 313 

we observe only gamma band coherence in MC range (Figure 6 Supplement 1C) when we 314 

restricted the fast-slow (A-V) interactions via multisensory node alone (indirect A-V 315 

coupling &AM VMW W range from 0 to 1, AVW = 0). This observation clearly links alpha 316 

coherence to direct A-V coupling whereas gamma coherence to indirect A-V coupling (A-M-317 

V) of neural masses.  318 

 319 

Direct Audio-Visual interaction underpins Inter-Individual Variability 320 

Our empirical results suggest that negligible alpha coherence is a hallmark of rare perceivers.  321 

Since, direct A-V interaction generates a peak around alpha coherence (Figure 6 322 

Supplement 1 A & B), we hypothesize that lesser amount of direct interaction or even 323 

absence of it is associated with de-synchronization of alpha band coherence. To test this 324 
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hypothesis, we start with a balanced network coupling state, 0.35AV AM VMW W W   , where 325 

alpha and gamma band coherences co-exist (Figure 6 Supplement 1A) and study the change 326 

in the coherence peaks as direct A-V coupling ( AVW ) decreases. In Figure 6A, we observe a 327 

suppression of alpha coherence peak as A-V coupling decreases; however gamma coherence 328 

peak remains more or less intact. Further, when A-V coupling becomes negligible (329 

0.05AVW  ) we observe disappearance of alpha coherence peak. This suggests that alpha de-330 

synchronization can stem from low direct A-V coupling in rare perceivers. 331 

 332 

Audio-Visual interaction via Multisensory node underpins Inter-Trial Variability 333 

Broadly speaking, enhanced gamma coherence and decreased alpha coherence is observed 334 

unequivocally in frequent perceivers and rare perceivers when illusory and non-illusory trial 335 

comparisons were extracted to study the inter-trial variability. Even though rare perceivers 336 

exhibited overall lower alpha coherence, the differential decrease in alpha band coherence 337 

was clearly observed at sensor and source level (Figure 2 & 4). As shown earlier, decrease in 338 

direct A-V coupling causes a decrease in alpha band coherence (Figure 6A) in rare 339 

perceivers and hence decrease in direct A-V coupling cannot be associated with illusory 340 

perception. However, gamma band coherence peaks emerge as a coexistent state once 341 

indirect A-V interactions via multisensory node are incorporated in the model (Figure 6 342 

Supplement 1 A & C) allowing us to propose a dominant role of interactions between 343 

multisensory and unisensory areas modulating cross-modal perception. To test this 344 

hypothesis for frequent perceivers we start with a balanced network configuration that 345 

generates co-existing alpha band and gamma band coherence ( 0.35AV AM VMW W W   , 346 

Figure 6 Supplement 1A) and for rare perceivers we choose a network configuration that 347 

generates peak only around gamma band ( 0.05; 0.35AV AM VMW W W   , Figure 6A & 348 

Figure 6 Supplement 1C). Then, we track the change in gamma coherence as indirect A-V 349 

interaction via multisensory node ( &AM VMW W ) increases simultaneously in MC range (0.35 350 

to 0.7). As hypothesized, we observe an increase in gamma coherence in network 351 

configurations for both frequent and rare perceivers. Interestingly, increasing indirect A-V 352 

interactions not only increases gamma band coherence but also display a decrease around 353 

alpha band coherence in network configurations of frequent as well as rare perceivers even 354 

though rare perceivers exhibit overall weaker alpha band coherence (Figure 6 B & C). Thus, 355 

our model implicates an increase in indirect A-V interaction via multisensory node leading to 356 
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an increase in gamma band coherence as well as a decrease in alpha band coherence and thus 357 

facilitating illusory perception. 358 

  359 
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Discussion  360 

A vast body of work has used the Mcgurk paradigm to study cross-modal perception and the 361 

numbers are only increasing (Alsius et al., 2018). An ongoing challenge still remaining to the 362 

community is accurate identification and characterization of possible neural mechanisms that 363 

govern the behavioral variability. For example, why do some people perceive it so strongly, 364 

whereas others do not?  An approach taken by brain stimulation studies had earlier addressed 365 

the issue of inter-individual variability, and identified the candidate brain areas that are 366 

probably responsible (Beauchamp, 2010). A more emerging understanding suggest the 367 

existence of networks of brain regions facilitating perceptual processing (Bressler & Menon, 368 

2010), nonetheless the neurophysiological correlates of inter-individual variability are yet to 369 

be understood. In this perspective, a recent review suggests neuronal oscillations as a key 370 

substrate of neuronal information processing that needs to be fully explored to answer the 371 

individual‟s perceptual experience (Keil & Senkowski, 2018). It is well known that robust 372 

oscillations observed from macroscopic recordings such as EEG/ MEG are an outcome of 373 

network interactions among local subpopulations of excitatory and inhibitory neurons 374 

(Wilson & Cowan, 1972; Deco et al., 2010; Becker et al., 2015). Empirically such 375 

interactions result in global coherence dynamics observed by earlier studies such as Kumar et 376 

al (Kumar et al., 2017). In the current study we demonstrate how distinct coherence patterns 377 

further become the hallmark of category specific perceptual experience such as the presence 378 

of alpha band coherence became a group-labeling attribute for perceptual categorization. 379 

Furthermore we find that across trials, the pattern of coherence dynamics determine the trial-380 

specific perceptual outcome. Finally, using computational models of interactive large-scale 381 

brain networks, we capture the neural mechanisms through which coherence dynamics evolve 382 

in the brain. Put together, we present an attractive mechanistic proposal that underlie the 383 

observed inter-individual and inter-trial variability in multisensory speech perception.  384 

 385 

The key empirical observations in our study are: (1) Rare perceivers exhibit a diminished 386 

alpha band global coherence, indicating desynchronization of large-scale neural assemblies in 387 

the alpha band (2) Both rare and frequent perceivers‟ cross-modal perception (such as /ta/) 388 

involves an enhanced gamma band coherence and decrease in alpha band coherence 389 

compared to unimodal perception (such as /pa/). The large-scale neuro-dynamic model of 390 

cross-modal perception suggests de-synchrony in the alpha band, characteristic of rare 391 

perceivers, is due to extremely weak direct A-V coupling ( 0.05AVW  ). Furthermore, an 392 
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increase in indirect interaction between auditory and visual systems via multisensory node 393 

(increase in &AM VMW W ) facilitates high level of synchronization in gamma band and a 394 

desynchronization at alpha band. We further elaborate on our empirical and modeling results 395 

in the following subsections. 396 

 397 

Heterogeneous nature of illusory perception 398 

Trial-by-trial variation of perceptual experience within an individual has been previously 399 

reported by several studies (Beauchamp, 2010; Keil et al., 2012; Roa Romero et. al., 2015, 400 

Kumar et. al. 2016). Behavioral results (Figure 1B, C) also indicate that the entire population 401 

of volunteers can be distinctly classified in two categorical groups: frequent perceivers and 402 

rare perceivers. Similar inter-individual variability were observed and quantified by previous 403 

studies (Nath & Beauchamp, 2012; Proverbio et al., 2016).  We also presented the McGurk 404 

incongruent video (/pa/-/ka/) with varying temporal asynchrony, AV lags of ±450ms. 405 

Perceptual experience of frequent perceivers was modulated as a function of lags, however, 406 

no such effect was observed in rare perceivers. The decrease in McGurk perception for 407 

±450ms AV lags is consistent with the existing studies (Munhall et al., 1996; van 408 

Wassenhove et al., 2007).  Also for ±450ms AV lagged videos, higher degree of illusory 409 

perception was observed in frequent perceivers compared to rare perceivers. Furthermore, 410 

irrespective of the perception (/ta/ or /pa/) the gaze fixations on the mouth of the articulator 411 

were also significantly lower in rare than frequent perceivers. The distinctness in the behavior 412 

of rare perceivers pinpoints a difference in the processing of multisensory speech. Therefore, 413 

we expected to identify neurophysiological correlates that can characterize a rare perceiver 414 

from the frequent perceivers as well as the cross-modal perceptual experience from the 415 

unimodal perception that varies trial-by-trial within an individual. Ideally, a single measure 416 

that captures these different kinds of heterogeneity, inter-individual and inter-trial can set the 417 

ideal platform for discussing about network mechanisms. 418 

 419 

Neuromarkers of inter-individual and inter-trial variability 420 

Large-scale systems of distributed and interconnected neuronal populations organized to 421 

perform specific cognitive tasks are referred to as neurocognitive networks (NCNs) (Bressler 422 

& Menon, 2010). Multisensory speech perception that requires the integration of information 423 

among spatially distinct sensory systems, components of which are often distributed over the 424 

whole brain becomes an ideal candidate to explore from the perspective of NCNs. In 425 
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physiological signals NCNs can be studied by quantifying the extent of coordination among 426 

neuronal assemblies over the whole brain (Bressler, 1995; Bressler & Kelso 2001). The most 427 

significant achievement of our study was to capture the network correlates of inter-individual 428 

and inter-trial variability with the same measure of global coherence at both sensor level and 429 

source level EEG analysis. Our results show that frequent perceivers exhibit enhanced global 430 

coherence in the alpha band than rare perceivers. Notably, the enhancement was consistent 431 

across all AV lags in frequent perceivers. Previous evidences accentuate the modulations in 432 

alpha band coherence to central executive processes (Klimesch, 1999; Sauseng et. al., 2005) 433 

that are postulated to be involved in allocating working memory storage to phonological loop 434 

that maintains verbal information, and the visuo-spatial sketchpad that maintains transient 435 

visuo-spatial information (Baddeley, 1992). Therefore, we posit that the enhanced global 436 

coherence in alpha band as a marker that characterizes the presence of specific NCN level 437 

processing in frequent perceivers which is absent in rare perceivers.  438 

 439 

Recent study by Fernández and colleagues demonstrates an increase in the power of theta 440 

oscillations in response to an incongruent McGurk stimulus accentuating its role in the 441 

prediction of the conflict (Fernández et al., 2018). Noticeably, we observed an enhanced 442 

global coherence in the theta band in frequent and rare perceivers irrespective of the 443 

perceptual experience which indicates even if theta band communication is present in both 444 

group of perceivers, it is a not necessarily a marker of inter-individual differences or trial 445 

specific perception. In general it is quite possible that different neuro-cognitive processes can 446 

be operating simultaneously involving communication at various frequencies via coherence 447 

(Senkowski et al., 2008). Hence, it is important to identify which of these are meaningful to 448 

the ongoing task and the subtle differences that vary with the context in which the task 449 

evolves. In an earlier study Kumar et al. (Kumar et al., 2016) have showed that global 450 

coherogram captures the difference in processing of crossmodal (illusory /ta/) and unimodal 451 

(non-illusory /pa/) perception in frequent perceivers from a subset of data that we present in 452 

this manuscript. While the detailed pattern of coherogram differences between /ta/ and /pa/ 453 

trials in perceivers and rare perceivers are slightly different, there was an enormous similarity 454 

in trend of coherence differences in distinct spectro-temporal locations that was conspicuous. 455 

For example, both frequent and rare perceivers have enhanced gamma band coherence and 456 

diminished alpha band coherence in /ta/ trials compared to /pa/ trials for temporally 457 

synchronous AV stimuli. For asynchronous trials, broadband coherence enhancement in both 458 

frequent and rare perceivers was observed. Based on these observations we argue that global 459 
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coherogram differences (/ta/-/pa/) present itself as a signature of the inter-trial perceptual 460 

variability. Furthermore, frequency specific signature in the global coherence consistent 461 

across the perceptual categories enhanced alpha and gamma band coherence in frequent 462 

perceivers and desynchronization in alpha band coherence accompanied with enhanced 463 

gamma band coherence pinpoints alpha band coherence as signature of inter-individual 464 

variability. These observations further highlight a mechanistic difference in the processing of 465 

cross-modal stimuli between frequent and rare perceivers. Nonetheless, such differences are 466 

contingent on the stimulus as there was no difference in the global coherence pattern between 467 

frequent and rare perceivers during congruent /ta/. In retrospect of the global coherence 468 

patterns during McGurk stimuli, an obvious question is, do cross-frequency couplings among 469 

theta, alpha, beta and gamma band exist in a context specific way? Questions of such nature 470 

become a prime candidate to answer for future studies. A detailed account of cross-frequency 471 

coupling via coherence is currently out of scope of the present study. 472 

 473 

Characterization of NCN at source space 474 

Pairwise coherence is affected by volume conduction to a considerable degree, specifically 475 

for local functional connectivity (Winter et al., 2007). The global coherence results are 476 

affected to a lesser degree by volume conduction, simply because the functional connections 477 

that can spuriously affect a distinct pattern of coherence are unlikely to survive the 478 

normalized vector summation procedure that is undertaken. Nonetheless, we need to validate 479 

if at least qualitatively the source and sensor level analysis are consistent. Subsequently, the 480 

global coherogram computed from reconstructed sources, first estimated through LCMV 481 

analysis were explored. The locations that showed statistical significance in the ratio of 482 

source power between /ta/ and /pa/ trials were used for reconstruction of sources. Frequent 483 

and rare perceivers showed a considerable overlap in brain areas involving right STS, 484 

fusiform gyrus, left inferior frontal gyrus and bilateral superior frontal gyrus. When 485 

coherogram was computed at the source level and the difference of global coherence between 486 

/ta/ and /pa/ are plotted, we could identify a high degree of similarity with the sensor space 487 

results (Figure 4B-G). Even though the exact spectro-temporal boundaries were slightly 488 

different, the overall pattern of results of enhanced gamma coherence and decreased alpha 489 

coherence at zero AV lag, and broadband coherence for ±450 ms AV lag was observed.  490 

Crucially, the major overlap of cortical sources across frequent and rare perceivers pinpoints 491 

the significance of understanding the communication within network of cortical regions over 492 

emphasizing role of isolated cortical loci in cognition 493 
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Mechanistic understanding of NCN dynamics using biologically realistic computational 494 

model 495 

Alpha and gamma band coherences are observed in processing of multisensory stimulus ( 496 

Hummel & Gerloff, 2005; Kanayama et al., 2007; Doesburg et al. 2008; Kayser et al., 2008; 497 

Maier et al., 2008; Kayser & Logothetis, 2009; Kumar et al., 2016;  also present results, 498 

Figure 2). Interestingly, high gamma coherence is seen when the nature of multisensory 499 

stimulus is complex (asynchronous, incongruent) (Doesburg et al., 2008; Kumar et al., 2016 500 

and present results, Figure 2) which in some instances lead to illusory perception (Kanayama 501 

et al., 2007; Kumar et al., 2016; and present results, Figure 1). Gamma coherence is also 502 

observed in the communication involving higher order multisensory areas (Maier et al., 2008; 503 

and present results, Figure 4). Our computational model explains that alpha band coherence 504 

emerges when visual system has a direct influence on auditory node, while gamma coherence 505 

was observed only with indirect A-V interactions via multisensory node (Figure 6 506 

Supplement 1). From a theoretical perspective this is possible because the time scale of 507 

processing is most disparate for the auditory and visual system, with auditory the fastest and 508 

visual the slowest. Without the presence of an intermediate time-scale, one “mode of 509 

communication” (alpha coherence) is sustained by the neural mass model within biologically 510 

relevant parameter regimes. Once there is another neural mass of intermediate time-scale 511 

participating in processing of information, the higher dimensionality of the resultant 512 

dynamical system allows creation of another mode of communication.  Hence, our model 513 

suggests that gamma coherence could emerge due to the communication between primary 514 

auditory and visual areas but routed indirectly via higher order areas such as pSTS or inferor 515 

parietal or frontal areas. Our suggestion is in line with earlier observations of visual stimuli 516 

modulating auditory perception either directly resulting in alpha coherence (Kayser et al., 517 

2008) or indirectly via higher order regions (STS) resulting primarily in gamma coherence 518 

(Maier et al., 2008; Kayser & Logothetis, 2009). 519 

 520 

Behavioral responses from rare perceivers indicate limited influence of visual stimulus in 521 

shaping up the perceptual response since their response is akin to unisensory auditory 522 

response. The neuromarker of inter-individual variability, alpha coherence was drastically 523 

diminished (desynchronization) when A-V coupling was extremely weak ( 0.05AVW  ) 524 

(Figure 6A). This indicates that overall  interaction between visual and auditory node (direct 525 

and indirect via pSTS for example) is comparatively lesser in rare perceivers with respect to 526 
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frequent perceivers and thus, results more in unisensory perception. Subsequently, we can 527 

also infer that direct A-V coupling is crucial for "frequently" perceiving the illusion of 528 

McGurk stimulus as in the case of frequent perceivers. On the other hand, differences in 529 

illusory perception and unisensory perception in both kinds of perceivers emerge from 530 

indirect A-V coupling via multisensory node (Figure 6 B & C). As discussed before, high 531 

gamma coherence is associated with multisensory processing involving interaction with 532 

higher order multisensory areas (Maier et al., 2008). Supporting this observation, we show A-533 

V communication via multisensory node is crucial to generate gamma coherence during 534 

illusory perception in frequent and rare perceivers. 535 

 536 

Alpha and/or gamma coherences have been observed in other Audio-Visual perception 537 

studies involving A-V speech phrases (Doesburg et al., 2008), natural A-V scenes (Kayser et 538 

al., 2008) and also artificially generated A-V looming signals (Maier et al., 2008). Increase in 539 

gamma coherence and reduction in alpha and beta coherences were observed during the 540 

perception of incongruent (lagged) A-V speech phrases (Doesburg et al., 2008). Increase in 541 

the interaction between fast and slow nodes via intermediate node increases the gamma 542 

coherence and decreases coherences in alpha and beta band (Figure 6B). Therefore, a similar 543 

mechanism that explains the observations of McGurk illusory perception is also applicable 544 

for explaining observations during perception of incongruent (lagged) A-V speech phrases. 545 

Increase in A-V interactions via multisensory node also explains the enhanced gamma 546 

coherence between auditory cortex and Superior Temporal Sulcus during congruent A-V 547 

looming signals in rhesus monkeys (Maier et al., 2008). Similarly, strong A-V interactions 548 

that distinguish the two kinds of perceiver groups (Figure 6A) also explain the increase in 549 

alpha phase consistency observed during natural A-V scenes in rhesus monkeys (Kayser et 550 

al., 2008). A different configuration of the model, where fast (auditory) node is source of EI 551 

and the slow (visual) node is sink of EI, generates peaks in beta band coherence (Figure 6 552 

Supplement 2B) whereas the default configuration generates peaks in beta band as well as 553 

alpha band coherences (Figure 6 Supplement 1B). Therefore, this difference in 554 

configurations distinguishes visual perception of words (increase in beta band coherence and 555 

decrease in alpha band coherence) from auditory perception of words (increase in alpha and 556 

beta band coherence) suggesting that auditory (fast) node is the sink of EI during auditory 557 

perception and visual (slow) node is the sink of EI during visual perception (von Stein et al., 558 

1999). Stretching to studies other than audio-visual perception, direct interactions between 559 

fast and slow nodes also explain the observed high alpha coherence during good performance 560 
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while matching tactile Braille stimulus with its visual counterpart (Hummel & Gerloff, 2005) 561 

and the fast-slow indirect interactions via intermediate time-scale node explains the high 562 

gamma band coherence during rubber-hand illusion when visuo-tactile stimuli were 563 

congruent (Kanayama et al., 2007). 564 

 565 

We have speculated the specific interactions of neural masses with different time-constants 566 

that generate band specific coherences and that are responsible for their enhancement and 567 

diminution. Multi-parametric and unbounded nature of the parameter space results in myriads 568 

of dynamics including chaos which is non-biological (Stefanescu & Jirsa, 2008). Therefore, 569 

such models should not be used to directly fit the data by estimating model parameters that 570 

minimize the error using optimization techniques. However, our model will be useful as a 571 

phenomological or minimalistic model in providing mechanistic insights into many findings 572 

(Fries, 2015; Engel et al., 2012) including pathological conditions (Başar & Güntekin, 2008) 573 

where relative changes in band specific coherences are observed.  574 

  575 
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Materials and Methods 576 

 Participants 577 

Twenty nine normal healthy volunteers (16 males and 13 females, in the range of 21-29 years 578 

of age; mean age 25, SD = 3) participated in the study. All participants gave written informed 579 

consent in a format approved by the Institutional Human Ethics Committee of the National 580 

Brain Research Centre, Gurgaon which is in agreement with the Declaration of Helsinki. 581 

None of the participants had a history of neurological or audiological problems and were 582 

compensated for their time devoted to the experiment. All had normal or corrected-to-normal 583 

vision and were right-handed (tested using Edinburgh handedness inventory). The data from 584 

four volunteers were not included in the study because the channel impedance values in EEG 585 

exceeded 10 kΩ. 586 

Stimuli and trials 587 

The experiment composed of 360 trials in which videos of a native Hindi speaking male 588 

articulating the syllables /ka/ and /ta/ (Fig. 1A) were presented. One-fourth (90 trials) of the 589 

trials consisted of congruent videos (visual /ta/ auditory /ta/). The remaining three-fourths of 590 

the trials comprised incongruent videos (visual /ka/ auditory /pa/) presented with AV lags: -591 

450 ms (audio leads the articulation), 0 ms (synchronous) and +450 ms (articulation leads the 592 

audio), each encompassing one-fourth of the overall trials. The auditory object in the 593 

incongruent trials was extracted from a video of the speaker articulating /pa/ using the 594 

software Audacity (www.audacityteam.org). Subsequently, the extracted auditory /pa/ was 595 

superimposed onto the muted video of the speaker articulating the syllable /ka/ using the 596 

software Videopad Editor (www.nchsoftware.com). The composite multisensory stimuli were 597 

rendered into an 800 x 600 pixels movie with a digitization rate of 29.97 frames per second. 598 

Stereo soundtracks were digitized at 48 kHz with 32 bit resolution. Presentation software 599 

(Neurobehavioral System Inc.) was used to present the stimulus videos using a 17" LED 600 

monitor. Sound was delivered using sound tubes at an overall intensity of ~60 dB. 601 

Experimental design 602 

The experiment was divided into three blocks. Each block consisted of 120 trials comprising 603 

all the four kinds of videos (30 trials of each). Inter-stimulus intervals were pseudo-randomly 604 

varied between 1200 ms and 2800 ms to minimize expectancy effects. Using a forced choice 605 
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task, the participants had to indicate their choice by pressing a specified key on the keyboard  606 

whether they heard /ta/, /pa/ or something else (others) while watching the videos.  607 

Eye Tracking 608 

Gaze fixations of participants on the computer screen were recorded by EyeTribe eye 609 

tracking device (https://theeyetribe.com/). The gaze data were analyzed using customized 610 

MATLAB codes. The image frame of the speaker video was divided into 2 parts, the head, 611 

and the mouth. The gaze fixations at these locations over the duration of stimulus 612 

presentation were converted into percentage measures for further statistical analysis. 613 

EEG recording 614 

Continuous EEG scans were acquired using a Neuroscan system (Synamps2, Compumedics, 615 

Inc.) with 64 Ag/AgCl scalp electrodes sintered on an elastic cap in a 10-20 montage. 616 

Recordings were made against the centre (near Cz) reference electrode on the Neuroscan cap 617 

and digitized at a sampling rate of 1000 Hz. Channel impedances were monitored to be at 618 

values < 5kΩ. Four volunteers showing higher impedances (~10 kΩ) were discarded from 619 

further analysis. 620 

EEG Data processing 621 

In the preprocessing step, the acquired EEG data was filtered using a band pass of 0.2-45 Hz. 622 

Subsequently, epochs of 900ms post the onset of first sensory object (auditory vocalization or 623 

articulatory lip movement) was extracted. Epochs extracted from congruent and incongruent 624 

videos were further sorted based on the perceptual experience: /ta/, /pa/ and 'others'. The 625 

sorted epochs were then baseline corrected by removing the temporal mean of the EEG signal 626 

on an epoch-by-epoch basis. Finally, in order to remove the response contamination from 627 

ocular and muscle-related artifacts, epochs with maximum signal amplitude above 50 µV or a 628 

minimum below -50 µV were removed from all electrodes. 629 

Network analysis and global coherogram  630 

To investigate frequency specific FC that subserves cross-modal perception and characterizes 631 

a frequent from a rare perceiver, we computed the global coherogram. Global coherogram 632 

captures the global coherence dynamics and quantifies the strength of neural co-activation 633 

across the whole brain at specific frequencies over time. In order to compute global 634 
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coherogram from the preprocessed time series sorted based on the perceptual categories, we 635 

employed the Chronux (Mitra & Bokil, 2008) function cohgramc.m to obtain trial-wise time 636 

frequency cross-spectral matrix for all the sensor combinations. The output variable 'S12' of 637 

the function cohgramc.m yields the time frequency cross-spectrum density at a frequency f 638 

between sensor pair i and j employing the formula:  639 

*( ) ( ) ( )ij i jC f X f X f                                                                                           (1) 640 

where, ( )ijC f  represents the cross spectrum, ( )iX f
 
represent the tapered Fourier transform 641 

of the time series from the sensor i and ( )*jX f  represent the complex conjugate of the 642 

tapered time series from the sensor j at frequency f.  In our analysis, a 62 x 62 matrix of cross 643 

spectra that represents all pairwise sensor combinations was computed. The time bandwidth 644 

product and the number of tapers were set at 3 and 5, respectively, and a moving window of 645 

0.4 s with a step size of 0.05s were employed in the computation. Thereafter, we computed 646 

the global coherence at each time and frequency bin by computing the ratio of the largest 647 

eigenvalue of the cross-spectral matrix to the sum of the eigenvalues on a trial-by-trial basis 648 

employing the following equation: 649 
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represents the sum 652 

of eigenvalues of the cross-spectral matrix at every time bin. Subsequently, the time-653 

frequency global coherogram computed for /ta/ and /pa/ responses were compared non-654 

parametrically using cluster based permutation tests for frequent and rare perceivers 655 

explicitly (Maris et. al., 2007;  Kumar et. al., 2016). 656 

We computed the global coherence collapsed across the entire epoch to identify if there are 657 

certain frequencies around which the network is most robust underlying cross-modal (illusory 658 

/ta/) and unimodal (/pa/) perception in frequent and rare perceivers. Furthermore, to 659 

investigate whether the organization of these networks dependent on the stimulus 660 

configurations or the perceptual outcome, we also computed the global coherence during  661 

congruent /ta/ perception in frequent and rare perceivers. We employed the Chronux function 662 

CrossSpecMatc.m for computing the global coherence. The output variable 'Ctot' of the 663 
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function yields the global coherence value at frequency f by initially computing the cross-664 

spectrum for all sensor combinations following the Equation 1. Subsequently, global 665 

coherence at every frequency bin is obtained by computing the ratio of the largest eigenvalue 666 

of the cross-spectral matrix to the sum of the eigenvalues on a trial-by-trial basis employing 667 

Equation 2. The time bandwidth product and the number of tapers were set at 3 and 5, 668 

respectively, and a fixed window size of 0.9 s was employed in the computation. Finally, we 669 

employed Silvermann's bootstrapping test for detecting the presence of a bimodal distribution 670 

(Silverman, 1981). We performed Silvermann's bootstrapping bimodality test on the time 671 

averaged global coherence separately on the perceptual categories across all AV lags in 672 

frequent and rare perceivers.  673 

The aforementioned analysis was further performed to compute the global coherogram and 674 

coherence during the perception of congruent /ta/ in frequent and rare perceivers. 675 

Subsequently, the global coherogram was compared employing cluster based permutation 676 

tests.     677 

Source Reconstruction and functional connectivity  678 

To investigate if the global coherogram patterns observed at the sensor level affected by 679 

volume conduction, we constructed source time-series and computed the global coherogram 680 

differences between /ta/ and /pa/ at all AV lags in frequent and  rare perceivers. We 681 

employed a linearly constrained minimum variance (LCMV) beamformer algorithm (Van 682 

Veen et al., 1997) to identify the cortical generators of the time-series during /ta/ and /pa/ 683 

perception in frequent and rare perceivers. The entire epoch of 0.9s was employed in the 684 

source analysis. Prior to source reconstruction, we constructed our personalized average 685 

template from the individual MRIs of the subjects using the function 686 

'antsMultivariateTemplateConstruction' developed by Advanced Normalization Tools 687 

(ANTs) (http://stnava.github.io/ANTs/)(Avants et al., 2011). The pipeline initially involves 688 

rigidly registering the participants T1 images to a MNI template while maintaining the 689 

volume and size of the original structural images. The rigidly registered images are then 690 

averaged to generate a temporary template. This template is then used as the first registration 691 

target onto which each participants T1 image is non-linearly registered, transformed and 692 

averaged. Iteratively, the T1 images are non-linearly registered to the new average, 693 

transformed and re-averaged generating a relatively a more precise average for the next 694 

iteration.  695 
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For source reconstruction we employed Fieldtrip toolbox. Firstly, we used 696 

ft_prepare_leadfeild.m and employed the Boundary Element Method (BEM) to generate the 697 

leadfield matrix from the template we constructed. The leadfield matrix corresponds to the 698 

tissue and geometrical properties of the brain represented as discrete grids or voxels. 699 

Subsequently, we employed ft_timelockanalysis.m to evaluate the covariance matrix of the 700 

epochs sorted based on perceptual categories in frequent and rare perceivers as the LCMV 701 

adaptive spatial filters are constrained by the covariance and leadfield matrices. These spatial 702 

filters regulate the amplitude of brain electrical activity passing from a specific location while 703 

attenuating activity originating at other locations. The distribution of the output amplitude of 704 

the spatial filters provides the metric for source localization.  However, in order to compare 705 

the source power during /ta/ and /pa/ perception, we computed an inverse „common spatial 706 

filter‟ employing ft_sourceanalysis.m from the dataset obtained by appending the datasets of 707 

/ta/ and /pa/ post time-lock analysis. Eventually, based on the pre-computed common spatial 708 

filter we evaluated the sources separately for /ta/ and /pa/ employing ft_sourceanalysis.m. 709 

The difference in the source power between /ta/ and /pa/ were consequently compared by 710 

taking the ratio of the source power of /ta/ and /pa/. Finally, the grids eliciting power above 711 

the 99.5th percentile were identified as sources and were interpolated onto the constructed 712 

template for illustrative purposes.       713 

For reconstructing time series from the thresholded sources, we projected single trial epoched 714 

time series from sensors onto the source space by multiplying them to the concordant spatial 715 

filters of the thresholded sources. There were overall 52 grids of the spatial filter 716 

corresponding to the sources represented in Figure 4A onto which the sensor level data was 717 

projected to obtain the source time series. Furthermore, each spatial filter is represented by 718 

three components representing the unity moment in the x, y and z direction of the dipole at the 719 

respective grid location. We estimated the global coherogram differences between the /ta/ 720 

and /pa/ perception in frequent and rare perceivers from the source time series from the 721 

component that best matched the sensor level global coherogram results. 722 

Large scale dynamical model of three neural masses 723 

Our objective was to construct a large-scale dynamical model which is biologically realistic 724 

to explain the generative mechanisms underlying observed coherence spectra and frequency 725 

specific functional connectivity during illusory and non-illusory perception in rare and 726 

frequent perceivers based on empirical data. Our proposed model is a network of three neural 727 
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masses, each comprising of excitatory and inhibitory neurons representing auditory, visual 728 

and higher order multisensory cortical regions (Figure 5). We follow a previously established 729 

practice and convention in computational modelling by treating each cortical region as an 730 

individual node  as suggested by Stefenascu and Jirsa (Stefanescu & Jirsa, 2008).  731 

 732 

Broadly we incorporate the following biophysically realistic factors in our model 733 

construction. 734 

1. The time-scale of processing of the visual system can be considered slowly varying in 735 

comparison to auditory system (Williams et al., 2004; Rosen & Howell, 2011). 736 

Multisensory system can be placed in between the auditory and visual systems in terms of 737 

the processing time-scale.  738 

2. Two of the ways visual inputs are directed to the auditory cortex are: 1) visual cortex 739 

could directly influence the auditory cortex in a feedforward manner due to direct 740 

projections (Falchier, et al., 2002; Rockland & Ojima, 2003; Wallace et al., 2004) and 2) 741 

feedback from the higher multisensory association areas (Bizley & King, 2012). Hence, 742 

in our proposed model visual node influences the auditory node in both manners: directly 743 

and indirectly via multisensory node. 744 

3. As post-synaptic potentials of pyramidal cells, which are excitatory, are shaped by their 745 

connections with other excitatory cells and inhibitory cells (Kirschstein & Köhling, 746 

2009). We use a population of excitatory and inhibitory neurons in each node where the 747 

number of excitatory neurons are considerably higher (Olbrich & Braak, 1985). Thus, 150 748 

excitatory neurons and 50 inhibitory neurons are selected to have a 3:1 ratio between 749 

them, an approach previously followed by Stefanescu and Jirsa (Stefanescu & Jirsa, 750 

2008). Inhibitory neurons in one neural area do not directly influence inhibitory neurons 751 

within the same area since such connections are sparse in nature (Wilson & Cowan, 1972; 752 

Stefanescu & Jirsa, 2008). 753 

 754 

Incorporating these factors we define a dynamic mean field model that comprises of three 755 

equations for an excitatory Hindmarsh Rose (HR) neuron (number of excitatory neurons are 756 

150 within an area, 150EN  ) and three equations for an inhibitory HR neuron (number of 757 

inhibitory neurons are 50 within an area, 50IN  ) (Figure 5). The three variables account 758 

for the membrane dynamics and two kinds of gating currents, one fast and one slow 759 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 23, 2018. ; https://doi.org/10.1101/286609doi: bioRxiv preprint 

https://doi.org/10.1101/286609


27 
 

respectively. Thus, the entire network can be represented as a network of coupled non-linear 760 

differential equations comprising of  761 
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 762 

Where L: A, V and AV for auditory, visual and audio-visual areas that are driven by a 763 

common noise distribution ( ). In our model auditory node has the fastest time-constant (764 

~ 0.05A ms ), visual node has the slowest time-constant ( ~ 2.5V ms ) and time-constant of 765 

multisensory node is chosen to be in between the two ( ~1M ms ) as it integrates information 766 

from both the modalities. The mean activity of excitatory neurons in a node (767 

1

1
( )

E

E E

E

N

n n

nE

x x
N 

   influences neuronal activities of other nodes that is governed by coupling 768 

parameters: AVW  (auditory-visual coupling), AMW  (auditory-multisensory coupling) and VMW  769 

(visual-multisensory coupling). Positive value of coupling parameters reflects excitatory 770 

influence and negative value reflects inhibitory influence. Inhibitory influences are chosen to 771 

maintain a balance with excitation. For example, visual node's excitatory influence of AVW  772 

on auditory node is balanced with inhibitory influence of the same strength ( AVW ) from the 773 

auditory node.  774 

 775 

In this configuration, visual node is referred as source node as it is the source of excitatory 776 

influence whereas auditory node is referred to as sink node as all excitatory influences are 777 

directed towards auditory node and multisensory node behaves as both source and sink..  778 
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We place each individual neuron in a dynamical regime where both spiking and bursting 779 

behavior is possible depending on the external input current (I) that enters the neuron when 780 

other parameters are held constant at the following values: 781 

01; 3; 1; 5; 4; 0.006; 1.6;a b c d s r x         (Stefanescu & Jirsa, 2008). 782 

 783 

The coupling between the  neurons within a node is linear and its strength is governed by the 784 

following parameters: EEK  for excitatory-excitatory coupling, EIK  for excitatory-inhibitory 785 

coupling and IEK  for inhibitory-excitatory coupling. As excitatory and inhibitory synapses 786 

are not independent processes, their relation is captured by the ratio IE

EE

K
n

K
 .  As alpha (8-12 787 

Hz) and delta (1-4 Hz) rhythms are observed during resting state (Gold et al., 2006), the 788 

inhibition to excitation ratio ( 3.39n  ) is chosen when the average activity of nodes in a 789 

disconnected network has higher power at alpha and delta frequencies in the absence of 790 

stimulus (
, ,( ) 0.1A V MI  ; baseline) (Figure 5 Supplement 1).  The external currents to both 791 

the excitatory and inhibitory subpopulations are drawn from a Gaussian distribution where   792 

and   are the mean and standard-deviation. As the input stimulus relays to auditory, visual 793 

and multisensory regions via thalamus, we interpret lateral geniculate nucleus (LGN) and 794 

medial geniculate nucleus (MGN) to be the source of external current  ( AI , VI  and MI ) pulse 795 

of 450 ms in the nodes when the model was simulated for 1 sec. In rhesus monkey, the 796 

projections of MGN to pSTS were found to be sparse (Yeterian & Pandya, 1989). Therefore, 797 

we choose lower mean value of external current to multisensory node ( ( ) 0.85MI  ) in 798 

comparison to visual node ( ( ) 2.8VI  ) and auditory node ( ( ) 2.8AI  ) while keeping the 799 

standard deviation of the external current at 0.4 for all nodes.  800 
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Figure 1: Experimental setup and behavior: (A) Video frames from the stimulus showing
neutral face at the stimulus onset and the facial gesture during articulation (B) The McGurk stimuli:
Audio /pa/ superimposed onto the lip movement /ka/ presented with AV lags -450 ms, 0 ms and
+450 ms and the congruent stimulus: Audio /ta/ superimposed onto the lip movement /ta/. The
location of the onset of the audio is place with respect to the articulator’s initiation of lip movement.
(C) Group percentage distribution of the perceptual responses (/ta/, /pa/ and others) in frequent
and rare perceivers.
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Figure 1 Supplement 1: Individualist participant behavior: Percentage of /ta/ responses
during the 0 ms and 450 ms AV stimuli in (A) Frequent perceivers (B) Rare perceivers.
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Figure 1 Supplement 2: Hit rate during congruent /ta/ stimulus: The percentage of /ts/
responses trail-by-trial across the participants.
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Figure 1 Supplement 3: Gaze behavior: Percentage of gaze fixations on the mouth of the
articulator in the AV stimuli averaged trail-by-trial across the participants (A) Frequent perceivers
(B) Rare perceivers.
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Figure 2: Large scale functional connectivity dynamics observed in sensor time series:
Global coherogram differences between the perceptual categories (/ta/ and /pa/) and time averaged
global coherence respectively during /ta/ and /pa/ perception in frequent and rare perceivers at
-450 ms (A,B,C,D), 0 ms (E,F,G,H) and +450 ms (I,J,K,L) AV lag.
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coherence during /ta/ and /pa/ perception in frequent and rare perceivers.
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Figure 4: Source reconstruction: (A) Sources identified using the LCMV beamformer algorithm
from the sensor time series. The source power of the ratio between /ta/ and /pa/ eliciting power
than the set threshold (¿99.5 percentile) are highlighted. Global coherogram differences between
the perceptual categories (/ta/ and /pa/) computed from the source-time series in frequent and
rare perceivers during - 450 ms (B,C), 0 ms (D,E) and +450 ms (F,G) AV lag.
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with different time-constants: The model comprises three nodes representing auditory (fast
time-constant), visual (slow time-constant) and higher order multisensory regions (intermediate
time-constant). Each node consists of network of 100 Hindmarsh-Rose excitatory and 50 inhibitory
neurons. Each neuron can exhibit isolated spiking, periodic spiking and bursting behavior. Exci-
tatory influences between the nodes are balanced by their inhibitory counterpart. The source and
sink represent the flow of excitatory influence.
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Figure 5 Supplement 1: Selection of Inhibition-Excitation ratio (n): Delta and alpha
power when the nodes are disconnected and driven by baseline current (I=0.1). Selection of n was
made in order to have comparatively higher delta and alpha power.
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Figure 6: Mechanistic understanding of Inter-individual and inter-trial variability: A)
Alpha de-synchronization characteristic of rare perceivers resulted due to negligible A-V coupling.
B) & C) Enhanced gamma coherence and reduced alpha coherence observed in illusory perception
is due to increase in indirect coupling involving multisensory node irrespective of the influence of
direct A-V coupling.
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Figure 6 Supplement 1: Prediction of alpha and gamma coherences from neural mass
model: A) Alpha and gamma band coherence co-exist in moderate coupling range. B) Only direct
A-V coupling generates alpha coherence independently. C) Indirect A-V coupling via multisensory
node generates gamma coherence at the limit case scenario of weak direct coupling.
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Figure 6 Supplement 2: Global coherence for different source-sink combinations: G)
Only when visual node is source and auditory node is the sink (as in our model), we observe
co-existence of alpha and gamma band coherence in moderate coupling range. A)-F) and H) Ex-
ploration of various coupling scenarios to identify if it is possible to generate alpha and gamma
coherence in moderate coupling range.
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