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 3	
Abstract 4	
Multiple sclerosis is a common, complex neurological disease, where almost 20% of risk heritability can 5	
be attributed to common genetic variants, including >230 identified by genome-wide association studies 6	
(Patsopoulos et al., 2017). Multiple strands of evidence suggest that the majority of the remaining 7	
heritability is also due to the additive effects of individual variants, rather than epistatic interactions 8	
between these variants, or mutations exclusive to individual families. Here, we show in 68,379 cases and 9	
controls that as much as 5% of this heritability is explained by low-frequency variation in gene coding 10	
sequence. We identify four novel genes driving MS risk independently of common variant signals, which 11	
highlight a key role for regulatory T cell homeostasis and regulation, IFNg biology and NFκB signaling in 12	
MS pathogenesis. As low-frequency variants do not show substantial linkage disequilibrium with other 13	
variants, and as coding variants are more interpretable and experimentally tractable than non-coding 14	
variation, our discoveries constitute a rich resource for dissecting the pathobiology of MS. 15	
 16	
Main text 17	
Multiple sclerosis (MS; MIM 126200) is an autoimmune disease of the central nervous system and a 18	
common cause of neurologic disability in young adults (Compston and Coles, 2008). It is most prevalent 19	
in individuals of northern European ancestry and – in line with other complex, common disorders – shows 20	
substantial heritability (Binder et al., 2016), with a sibling standardized incidence ratio of 7.1 (Westerlind 21	
et al., 2014). Over the last fifteen years, we have identified 233 independent, common variant 22	
associations mediating disease risk by genome-wide association studies (GWAS) of increasing sample 23	
size (Andlauer et al., 2016; Australia and New Zealand Multiple Sclerosis Genetics Consortium, 2009; 24	
Baranzini et al., 2009; de Jager et al., 2009; International Multiple Sclerosis Genetics Consortium, 2013; 25	
2011; Jakkula et al., 2010; Martinelli-Boneschi et al., 2012; Nischwitz et al., 2010; Patsopoulos et al., 26	
2011; 2017; Sanna et al., 2010; Wellcome Trust Case Control Consortium, 2007). Cumulatively, these 27	
effects –  including 32 mapping to classical human leukocyte antigen (HLA) alleles and other variation in 28	
the major histocompatibility (MHC) locus (Moutsianas et al., 2015; Patsopoulos et al., 2013; 2017) – 29	
account for 7.5% of h2g, the heritability attributable to additive genetic effects captured by genotyping 30	
arrays, with a total of 19.2% of h2g attributable to all common variants in the autosomal genome  31	
(Patsopoulos et al., 2017). MS is thus a prototypical complex disease with a substantial portion of 32	
heritability determined by hundreds of common genetic variants, each of which explain only a small 33	
fraction of risk (Sawcer et al., 2014).  34	
 35	
As with other common, complex diseases where large GWAS have been conducted, we find that although 36	
common variants (minor allele frequency, MAF > 5%) account for the bulk of trait heritability, they cannot 37	
account for its entirety. Identifying the source of this unexplained heritability has thus become a major 38	
challenge (Manolio et al., 2009). Two hypotheses are frequently advanced: that some common variants 39	
show epistatic (i.e. non-additive) interactions, so that they contribute more risk in combination than each 40	
does alone; and that a portion of risk is due to rare variants that cannot be imputed via linkage 41	
disequilibrium to common variants present on genotyping arrays, and are therefore invisible to heritability 42	
calculations based on such arrays. The only evidence we have found for epistatic interactions between 43	
common MS risk variants is being between two HLA haplotype families in the MHC locus  (Moutsianas 44	
et al., 2015). This lack of epistatic interactions is consistent with other common, complex diseases, both 45	
of the immune system and beyond (Altshuler et al., 2008). We have also found no evidence that mutations 46	
in individual families drive disease risk in genome-wide linkage analyses of 730 MS families with multiple 47	
affected members (Sawcer et al., 2005). These results indicate that neither epistasis between known risk 48	
variants nor mutations in a limited number of loci are major sources of MS risk. They do not, however, 49	
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preclude a role for variants present in the population at low frequencies, which cannot be imputed but 50	
are likely to individually contribute moderate risk. 51	
 52	
Here, we report our assessment of the contribution of low-frequency variation in gene coding regions to 53	
MS risk. We conducted a meta-analysis of 144,209 low-frequency coding variants across all autosomal 54	
exons, concentrating on non-synonymous variants, which are more likely to have a phenotypic effect. 55	
We analyzed a total of 32,367 MS cases and 36,012 controls drawn from centers across Australia, ten 56	
European countries and multiple US states, which we genotyped either on the Illumina HumanExome 57	
Beadchip (exome chip) or on a custom array (the MS Chip) incorporating the exome chip content  58	
(Patsopoulos et al., 2017), and which satisfied our stringent quality control filters (Figure S1 and Tables 59	
S1 and S2). The exome array is a cost-efficient alternative to exome sequencing, capturing approximately 60	
88% of low frequency and rare coding variants present in 33,370 non-Finnish Europeans included in the 61	
Exome Aggregation Consortium (minor allele frequencies between 0.0001 and 0.05; Figure S2), and 62	
<5% of the extremely rare alleles present at even lower frequencies. Our study was well powered, with 63	
80% power to detect modest effects at low-frequency (odds ratio OR = 1.15 at MAF = 5%) and rare 64	
variants (OR = 1.5 at MAF = 0.5%) at a significance threshold of p < 3.5 x10-7 (Bonferroni correction for 65	
the total number of variants genotyped).  66	
 67	
We first assessed the contribution of individual variants to MS risk by conducting a meta-analysis of 68	
association statistics across 14 country-level strata (Figure 1). We used linear mixed models to correct 69	
for population structure in 13 of these strata, estimated from the 16,066 common, synonymous coding 70	
variants present on the exome chip (i.e. variants with minor allele frequency MAF > 5% in our samples). 71	
We included population structure-corrected summary statistics for the remaining  cohort (from Germany), 72	
which has been previously described (Dankowski et al., 2015). As expected, we saw a strong correlation 73	
between effect size and variant frequency, with rarer alleles exerting larger effects (Figure S3). We found 74	
significant association between MS risk and seven low-frequency coding variants in six genes outside 75	
the extended MHC locus on chromosome 6 (Table 1 and Figure S4). Two of these variants (TYK2 76	
c.3310C>G, p.Pro1104Ala, overall MAF 4.1% in our samples; and GALC p.Asp84Asp, overall MAF 77	
3.9%), are in regions identified by our latest MS GWAS, and show linkage disequilibrium with the common 78	
variant associations we have previously reported (International Multiple Sclerosis Genetics Consortium, 79	
2011). The remaining variants are novel and are in neither linkage disequilibrium or physical proximity to 80	
common variant association signals.  81	
 82	
The newly discovered genes have clear immunological functions, confirming that MS pathogenesis is 83	
primarily driven by immune dysfunction. The associated polymorphisms show negligible linkage 84	
disequilibrium with other variants, so the genes harboring them are likely to be relevant to disease. PRF1 85	
encodes perforin, a key component of the granzyme-mediated cytotoxicity pathways used by several 86	
lymphocyte populations. In addition to cytotoxic lymphocytes and natural killer cells (House et al., 2015), 87	
perforin-dependent cytotoxicity is also seen in CD4+FOXP3+ regulatory T cells (Tregs), which show 88	
aberrant, T-helper-like IFNg  secretion in MS patients  (Dominguez-Villar et al., 2011). The MS risk variant 89	
rs35947132 (p.Ala91Val) is associated with a decrease in target cell killing efficiency and increases in 90	
IFNγ secretion by NK cells (House et al., 2015), which aligns with the aberrant Treg phenotype observed 91	
in MS. This decreased cytotoxicity efficiency will prolong average cell-cell interactions with target cells, 92	
and such extended interactions are known to increase T cell receptor-mediated signaling and induce 93	
changes to T cell phenotypes, especially secretion of IFNγ and other cytokines (Constant et al., 1995). 94	
Similarly, HDAC7 encodes the class II histone deacetylase 7, which potentiates the repressive effects of 95	
FOXP3, the master regulator governing naïve CD4+ T cell development into Tregs (Bettini et al., 2012; Li 96	
et al., 2007). PRKRA encodes protein kinase interferon-inducible double-stranded RNA-dependent 97	
activator; in response to double-stranded RNA due to virus infection, it heterodimerizes with protein 98	
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kinase R to inhibit EIF2a-dependent translation, resulting in upregulation of NFκB signaling, interferon 99	
production and, eventually, apoptosis (Sadler and Williams, 2008). NFκB-mediated signaling is a core 100	
feature of MS pathogenesis, which we have shown to be altered by at least one MS-associated variant 101	
(Housley et al., 2015), and may be the relevant mechanism for this gene. Finally, NLRP8 is an intracellular 102	
cytosolic receptor active in innate immune responses; the Ile942Met MS risk variant rs61734100 is 103	
detected only in individuals with European ancestry in ExAC.  104	
 105	
Though we are able to identify individual low-frequency variants associated with MS risk, we recognize 106	
that we cannot detect all such variants at genome-wide significance. We thus sought to quantify the 107	
overall contribution of low-frequency coding variation to MS risk. In each of the thirteen strata that 108	
comprise our data, we estimated the proportion of heritability explained by common (MAF > 5%) and low-109	
frequency (MAF < 5%) variants on the exome arrays  (Yang et al., 2011). We included genotype-derived 110	
principal components to further control for population stratification. By meta-analyzing these estimates 111	
across the twelve strata where the restricted maximum likelihood model converged, we found that low-112	
frequency variants explain 11.34% (95% confidence interval 11.33%-11.35%) of the observed difference 113	
between cases and controls (mean estimate 4.1% on the liability scale; Figure 2). We further partitioned 114	
the low-frequency variants into intermediate (5% > MAF > 1 %) and rare (MAF <1%), and found that the 115	
latter alone explain 9.0% (95% confidence interval 8.9%- 9.1%) on the observed scale (mean estimate 116	
3.2% on the liability scale; Figure 2). We note that six of the eight genome-wide significant variants 117	
presented in Table 1 are of intermediate frequency, and thus are not included in the rare category. Our 118	
results thus indicate that many more rare non-synonymous variants contribute to MS risk but are not 119	
individually detectable at genome-wide thresholds even in large studies like ours. 120	
 121	
In this study, we show that low frequency coding variation explains a fraction of MS risk, which cannot 122	
be attributed to common variants across the genome. We capture most, but not all, low-frequency 123	
missense variants (Figure S2), suggesting our heritability estimates for low-frequency and rare variation 124	
are conservative. This broadly agrees with previous reports that such variants contribute to complex 125	
traits, including Alzheimer disease (Sims et al., 2017) and schizophrenia (Purcell et al., 2015), where 126	
heritability modeling similar to ours supports a role for rare variants . Studies of quantitative phenotypes 127	
shared by the entire population, such as height (Marouli et al., 2017), serum lipid levels (Liu et al., 2017) 128	
and blood cell traits (Chami et al., 2016; The CHARGE Consortium Hematology Working Group, 2016), 129	
have also reported novel associations to low-frequency coding variants outside the large number of 130	
known GWAS loci in each trait. However, a meta-analysis of different type 2 diabetes study designs found 131	
no associations outside common variant GWAS regions (Fuchsberger et al., 2016), though this may be 132	
due to the heterogeneity of sample ascertainment and study design.  In aggregate, therefore, our results 133	
and these past studies demonstrate that rare coding variants contribute a fraction of common, complex 134	
trait heritability. These results also agree with both theoretical expectation and empirical observations 135	
that low-frequency coding variants are under natural selection, and are unlikely to increase in frequency 136	
in the population (Nelson et al., 2012; Schoech et al., 2017; Zeng et al., 2017). Thus, some portion of 137	
disease-associated variants, and hence the genes they influence, may not be detectable with 138	
conventional GWAS designs. Our discovery of multiple risk-associated genes that are central to IFNg 139	
biology, Treg function and the NFκB signaling pathway in MS pathogenesis, and that do not reside in 140	
>200 known MS risk loci, supports this view. 141	
 142	
 143	
 144	
 145	
 146	
 147	
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Display item legends 151	
Table 1 – coding variants associated to multiple sclerosis risk. We analyzed 144,209 low-frequency 152	
non-synonymous coding variants across all autosomal exons in 32,367 MS cases and 36,012 controls 153	
drawn from centers across Australia, ten European countries and multiple US states. Genome positions 154	
are relative to hg19. The two variants in PRKRA are in linkage disequilibrium (R2 = 1, D` = 1 in HapMap 155	
3 European samples). * These variants lie in common variant risk loci found in our previous GWAS 156	
(Patsopoulos et al., 2017).  157	
 158	
Figure 1 – rare coding variants are associated to multiple sclerosis risk in a multi-cohort study. 159	
We analyzed 144,209 low-frequency non-synonymous coding variants across all autosomal exons in 160	
32,367 MS cases and 36,012 controls drawn across the International Multiple Sclerosis Genetics 161	
Consortium centers. We find evidence for association with both common variants with combined MAF 162	
>5% (A); and with rare variants across the autosomes (B). We sourced samples from Australia, ten 163	
European countries, and the USA (C).  164	
 165	
Figure 2 – rare variants explain a substantial portion of multiple sclerosis heritability. We 166	
estimated the MS risk heritability explained by common variants (MAF > 5%) and low-frequency 167	
nonsynonymous coding variation (MAF < 5%) in each of thirteen cohorts genotyped on the exome chip, 168	
using GCTA (top panel). By meta-analyzing these estimates across cohorts, we found that low-frequency 169	
variants explain 11.34% of heritability on the observed scale, which corresponds to 4.1% on the liability 170	
scale (right top). After dividing the low-frequency variants into intermediate (5% > MAF > 1 %) and rare 171	
(MAF <1%; bottom panel), we found that the latter alone explain 9.0% heritability on the observed scale 172	
(3.2% on the liability scale; bottom right). Meta-analysis confidence intervals are small and visually 173	
occluded by the mean estimate plot characters. Cohorts (abbreviations as in Table S1) are ordered by 174	
sample size, with the percentage of the overall sample size shown in each subplot title. We could not 175	
obtain estimates for either model for our Finnish cohort (see Methods; not shown), or for the three-176	
component model for our Belgian cohort (bottom panel, top row, fourth from left). Both cohorts are small, 177	
which may explain the failure to converge. 178	
  179	
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Table 1 – coding variants associated to multiple sclerosis risk. 180	

  181	
  182	

Chrom Position
Minor 
allele Frequency

Studies 
observed P-value

Odds 
ratio Gene AA change

14 88452945 A 3.9% 14 1.6E-14 0.95 GALC* Synonymous D84D

19 10463118 G 4.1% 13 4.4E-13 0.95 TYK2* Missense P1104A

10 72360387 A 5.0% 14 3.9E-11 1.05 PRF1 Missense A91V

2 179315031 T 5.6% 12 1.1E-09 0.95 PRKRA Missense D33G

2 179315726 A 5.6% 12 1.2E-09 0.95 PRKRA Missense P11L

19 56487619 C 0.2% 9 1.2E-07 0.77 NLRP8 Missense I942M

12 48191247 T 1.4% 14 1.9E-07 0.94 HDAC7 Missense R166H
* GWAS locus
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Figure 1 – rare coding variants are associated to multiple sclerosis risk in a multi-cohort study. 183	
 184	
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Figure 2 – rare variants explain a substantial portion of multiple sclerosis heritability  187	
 188	
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Methods 
Genotyping, quality control and stratum assignment 
We assembled a total of 76,140 samples (36,219 cases, 38,629 controls and 1,292 samples with missing 
phenotype information) from across the International MS Genetics Consortium (IMSGC; Table S1). We 
genotyped these either on the Illumina HumanExome Beadchip (exome chip) or on a previously described 
custom array (Patsopoulos et al., 2017) including the exome chip content, both manufactured by Illumina Inc. 
We called genotypes both with Illumina’s default algorithm, gencall, and zCall, specifically developed to call low-
frequency variants where all three groups of genotypes may not be observed (Goldstein et al., 2012).  
An overview of our quality control process is shown in Figure S1; we used plink (Purcell et al., 2007) for all 
analyses unless otherwise noted. Briefly, we first excluded samples with low genotyping rate, extreme 
heterozygosity rate, inconsistent genotypic and recorded sex; we also removed closely related samples, keeping 
the relative with least missing data. Next, we removed population outliers by calculating genotype principal 
components using 16,066 common variants in linkage disequilibrium (r2 < 0.1) across the exome. We used 
EIGENSOFT 6 (Price et al., 2006) and FlashPCA (Abraham and Inouye, 2014) for cohorts with more than 10.000 
individuals. We next removed variants with >3% gencall missing data rate for variants with minor allele frequency 
MAF >5%, or >1% zCall missing data rate for variants with MAF < 5%. We also removed variants out of Hardy-
Weinberg equilibrium (p < 10-5). Next, we removed samples with high similarity in missing genotypes (“identity 
by missingness”) indicative of production artefact, and samples with missing phenotype information. Finally, we 
again removed any remaining population outliers using projection principal component analysis. We calculated 
30 principal components for 1,092 individuals in 1,000 Genomes reference populations, again using the 16,066 
common variants in linkage disequilibrium (r2 < 0.1) across the exome. We then projected the IMSGC samples 
into this space and excluded individuals more than six standard deviations from loading means as previously 
described (Price et al., 2006). We performed the projection and outlier detection and removal steps a total ten 
times to gradually remove more subtle population outliers. 
We compiled cases and controls into strata for analysis as shown in Table S2. In total, we removed 
17,951/76,140 (24%) samples either due to low data quality or as population outliers, leaving a final dataset of 
27,891 cases and 30,298 controls in 13 strata (Figure S1 and Tables S1 and S2). Separately, we included 
summary statistics from 4,476 MS cases and 5,714 controls from Germany, genotyped on the exome chip as 
previously described (Dankowski et al., 2015), giving us a total of 32,367 MS cases and 36,012 controls for 
analysis. 
 
Exome chip coverage of ExAC variants 
To assess how thoroughly the exome chip assesses low-frequency coding variation genome-wide, we compared 
it to the list of variants reported by the Exome Aggregation Consortium, ExAC (Lek et al., 2016), in their data 
release version 1. We filtered their summary table of all ExAC variants (available at 
ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/manuscript_data/ExAC.r1.sites.vep.table.gz and last 
accessed 15 November 2017) for nonsynonymous coding variants passing their quality control, with at least one 
minor allele observed in non-Finnish European samples. We identified which of these variants are represented 
on the exome chip by comparing genomic coordinates (Figure S2).  
 
Univariate association analysis 
We used mixed linear models for association analysis, as implemented in GCTA (Yang et al., 2011). In each of 
our 13 genotype-level strata, we calculated genetic relatedness matrices from 16,066 common, noncoding 
variants (overall MAF > 0.05) in linkage equilibrium (all pairwise r2 < 0.1) present on the exome chip, and with 
these calculated univariate association statistics for each autosomal variant present on the exome chip. To 
further control for population stratification, we also calculated genotypic principal components with the 16,066 
common variants, and included these as covariates to the association analysis. We also included genotypic sex 
and chip type as covariates. We combined statistics across strata using inverse-variance-weighted meta-
analysis, also as implemented in GCTA (Yang et al., 2011). As the bulk of exome chip variants are not common 
and do not show appreciable linkage disequilibrium, we controlled for multiple tests with a Bonferroni correction 
for the number of low-frequency variants, to give a genome-wide significance threshold of p < 3.58 x 10e-7 
(0.05/139,764 variants with a combined MAF < 0.05 in controls and a heterogeneity index I2 < 50 in our meta-
analysis). 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286617doi: bioRxiv preprint 

https://doi.org/10.1101/286617
http://creativecommons.org/licenses/by/4.0/


Heritability estimation 
We used GCTA to calculate the heritability attributable to groups of variants in each of our 13 genotype-level 
strata (Yang et al., 2011). In each stratum, we ran two sets of models: a two-component model, estimating the 
heritability attributable to common and low-frequency (MAF £ 0.05) variants; and a three component model with 
rare (MAF £ 0.01), intermediate (0.01 < MAF £ 0.05), and common variants. In all strata, common variants are 
the set of 16,066 independent variants (overall MAF > 0.05) used for population stratification calculations in the 
univariate analysis above. We computed genetic relatedness matrices for each component of each model, then 
calculated narrow-sense heritability (h2) with 100 iterations of constrained restricted maximum likelihood (REML) 
fitting, assuming a disease prevalence of 0.001. We also included the principal components of population 
structure computed for the univariate analysis as covariates. As anticipated, several of the smaller cohorts 
presented fitting issues: no models converged for FIN; both three-component and two-component fits for UCSF2, 
and the three-component model for GRE would not converge under constraint and so were run without 
constraints; and the three-component model for BEL converged on two exactly equally likely solutions after 
10,000 iterations. For the latter, we chose the most conservative estimates of variance explained. We combined 
these estimates with inverse variance-weighted meta-analysis.  
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Figure S1 – quality control pipeline overview. We assembled 46 cohorts of data (either entire country-level 
collections or groups of samples processed as a batch; Table S1). We called common variant genotypes with 
the standard algorithm provided by Illumina (GenCall), and low-frequency variants with zCall, an algorithm 
specifically developed to call these variants on the exome chip (Goldstein et al., 2012). We performed initial 
quality control on each cohort separately to account for variation between batches and cohorts (upper gray 
region), then merged cohorts into 13 country-level strata. To ensure that these strata were uniform we then 
performed stringent quality control on each stratum (lower gray region) to produce our final dataset. 
  

zCall

GenCall

Sample filter

SNP filter

Per cohort
Genotype vs 
manifest sex 

check

Missingness vs 
heterozygosity

(2 sd)

Population 
stratification 

(6sd PCA)
Relatedness

(!" > $. &)

HWE P < 10-5 zCall call rate 
(0.01)

Gencall call 
rate (0.03)

Projection 
PCA

Identity-by-
missingness

IDAT files

Merge cohorts into strata (Table S1)

Per stratum Identity-by-
missingness

Relatedness 
(!" > $. &)

Population 
stratification

(10x 6sd PCA)

Differential 
missingness by 
phenotype (k=2)

Monomorphic 
variants Final PCA

Final dataset (13 strata)

Sample N
76,140

66,667 65,703 64,004

63,319

58,202

27,891 cases and 30,298 controls

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286617doi: bioRxiv preprint 

https://doi.org/10.1101/286617
http://creativecommons.org/licenses/by/4.0/


	 2	

 

 
Figure S2 – the exome chip captures a large fraction of ExAC (release version 1) low-frequency miss-
sense variants. The exome chip captures the majority of variants present in ExAC (Lek et al., 2016) down to a 
minor allele frequency ~ 0.0005, below which a large number of variants is observed (upper panel). Thus, the 
overall coverage at very rare alleles (5 x 10-4 > MAF > 1.5 x 10-5, corresponding to a single allele seen in 33,370 
non-Finnish European individuals in ExAC) is low (lower panel). 
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Figure S3 – effect size correlates with minor allele frequency. We conducted a meta-analysis of 144,209 
low-frequency coding variants across all autosomal exons, concentrating on non-synonymous variants which 
are more likely to have a phenotypic effect. We analyzed a total of 32,367 MS cases and 36,012 controls in 
thirteen strata. Here, we show that effect size (b or log odds ratio, y axis) correlates to allele frequency (number 
of minor alleles present in control samples, x axis). Because many low-frequency variants are not present in all 
cohorts, we stratify these data by number of cohorts in which a variant is polymorphic (subplots). Rarer variants 
have larger estimated effect sizes, and are present in fewer cohorts. 
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Figure S4 – forest plots for genome-wide significant low-frequency variants. Seven variants in six genes 
are significant in our analysis (p < 3.5 x 10-7, Bonferroni correction for the total number of variants genotyped). 
Two of these (TYK2 p.Pro1104Ala and GALC p.Asp84Asp), are in linkage disequilibrium with known GWAS hits. 
Studies are ordered by increasing sample size. 
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Table S1 – genotype-level samples included in our study. 58,189/76,140 (76.5%) of our samples passed 
quality control and could be assigned to one of thirteen strata. 9,473/17,951 (52.8%) of failed samples did not 
pass a heterogeneity versus missing data rate filter, suggesting either poor data quality or population stratification 
(detailed in Figure S1). We used two versions of Illumina’s HumanCore Exome array: the standard product 
(version 1.0; designated Exome_v1.x in the chip type column) and a customized version including ~100,000 
additional variants we specified (designated MS_chip), described elsewhere (Patsopoulos et al., 2017). Belgian 
control samples were genotyped at the Center for Inherited Disease Research (CIDR, Baltimore, MD, USA) on 
the Illumina 5M array (Illumina, San Diego, CA, USA) as part of the Stroke Genetics Network (SiGN). 
  

Chip version Cohort Pre-QC samples Case/Con/Other* Male/Female/Missing
Exome_v1.0 Australia 1776 1776/0/0 406/1172/198 
Exome_v1.0 Australia 333 333/0/0 68/264/1 
MS_chip Australia 1060 619/430/11 269/791/0 
Exome_v1.0 Belgium 397 397/0/0 126/271/0 
Exome_v1.1 Belgium 499 0/499/0 233/266/0 
Exome_v1.0 Denmark 552 331/221/0 191/361/0 
MS_chip Denmark 2019 996/995/28 844/1168/7 
MS_chip Denmark 329 88/239/2 153/176/0 
Exome_v1.0 Finland 558 558/0/0 159/398/1 
Exome_v1.0 Finland 1699 0/1699/0 702/997/0 
Exome_v1.0 France 624 400/204/20* 207/416/1 
MS_chip Greece 195 96/99/0 65/130/0 
Exome_v1.0 Italy 964 958/6/0 369/591/4 
Exome_v1.1 Italy 939 0/939/0 640/299/0 
MS_chip Italy 1956 977/979/0 945/1011/0 
Exome_v1.0 Netherlands 504 504/0/0 140/354/10 
Exome_v1.1 Netherlands 2181 0/2181/0 983/1198/0 
Exome_v1.0 Norway 891 691/200/0 266/625/0 
Exome_v1.0 Norway 342 0/342/0 174/167/1 
MS_chip Norway-Netherlands 533 471/0/62 167/366/0 
Exome_v1.0 Sweden 1139 556/523/60* 299/840/0 
MS_chip Sweden 3030 1586/1263/181 827/2199/4 
MS_chip Sweden 2993 1608/1235/150 775/2213/5 
MS_chip Sweden 3151 1684/1311/156 831/2313/7 
MS_chip Sweden 3067 1683/1235/149 797/2269/1 
MS_chip Sweden 3061 1564/1323/174 836/2223/2
MS_chip Sweden 1235 463/755/17 348/883/4 
Exome_v1.0 UK 6400 0/6400/0 3743/2657/0 
Exome_v1.0 UK 1700 1700/0/0 501/1193/6 
Exome_v1.0 UK 126 126/0/0 42/84/0 
Exome_v1.0 UK 1038 0/1038/0 588/450/0 
MS_chip UK 2666 1320/1316/30 917/1704/45 
MS_chip UK 4400 2175/2179/46 837/3562/1 
MS_chip UK 1886 912/954/20 480/1399/7 
MS_chip UK 3036 1493/1511/32 1124/1911/1 
MS_chip US 4542 2264/2230/48 1395/3139/8 
MS_chip US 3510 1817/1656/37 1152/2357/1 
MS_chip US 3032 1627/1373/32 941/2081/10 
Exome_v1.0 US-BSTN 2442 1408/1034/0 670/1772/0 
Exome_v1.0 US-UCB 1971 1131/840/0 326/1640/5 
Exome_v1.0 US-UCSF 1169 778/391/0 356/813/0 
Exome_v1.0 US-Miami 2195 1129/1029/37* 908/1279/8 
Total N/A 76140 36219/38629/1292 25800/50002/338 
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Stratum Samples (N) Case/control Male/female Polymorphic 
variants 

Rare variants 
(MAF < 5%) 

Belgium 742 386/356/0 291/451 78,044 52,806 

Denmark 2,505 1,267/1,238 1,034/1,471 97,122 72,397 

Finland 1,784 535/1,249 693/1,091 74,570 48724 

France 539 371/168 184/355 80,502 53,909 

Germany 10,190 4,476/5,714 N/A N/A N/A 

Greece 169 91/78 58/111 56,384 29,567 

Italy 3,111 1,530/1,581 1,588/1,523 118,504 93,746 

Netherlands 2,381 576/1,805 990/1,391 127,220 102,830 

Norway 1,295 787/508 449/846 82,749 57,846 

Sweden 12,069 6,573/5,496 3,049/9,020 127,220 102,830 

USA-BSTN 10,359 5,584/4,775 3,043/7,316 150,886 126,830 

USA-UCSF1 3,145 1,815/1,330 759/2,386 128,704 102,898 

USA-UCSF2 167 92/75 40/127 53,363 27,257 

UK/Australia 19,923 8,284/11,639 7,111/12,812 141,707 119,407 

Total 68,379 32,367/36,012 N/A N/A N/A 

 
Table S2 – final stratum composition. We assigned 58,189 samples passing quality control to one of thirteen 
strata based on demography as described in the methods; data for 10,190 samples from Germany were received 
as post-QC summary statistics and are not included in Table S1. This gave us a total of 68,379 samples in our 
analysis. We had very few Australian control samples and so merged them with samples from the UK.  
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