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Abstract 
 

Epistemic curiosity (EC) is a cornerstone of human cognition that contributes to the actualization of               

our cognitive potential by stimulating a myriad of information-seeking behaviours. Yet, its            

fundamental relationship with uncertainty remains poorly understood, which limits our ability to            

predict within- and between-individual variability in the willingness to acquire knowledge. Here, a             

two-step stochastic trivia quiz designed to induce curiosity and manipulate answer uncertainty            

provided behavioural and neural evidence for an integrative model of EC inspired from predictive              

coding. More precisely, our behavioural data indicated an inverse relationship between average            

surprise and EC levels, which depended upon hemodynamic activity in the rostrolateral prefrontal             

cortex from one trial to another and from one individual to another. Complementary, the elicitation of                

epistemic surprise and the relief of acute curiosity states were respectively related to ventromedial              

prefrontal cortex and ventral striatum activity. Taken together, our results account for the temporal              

evolution of EC over time, as well as for the interplay of EC, prior knowledge and surprise in                  

controlling memory gain. 
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Introduction 

Epistemic curiosity (EC) predicts educational success (Von Stumm et al., 2011), orients our             

attention (Gottlieb et al., 2013; Kidd and Hayden, 2015) and underlies many decisions of our               

everyday life, such as opening books, browsing the internet, watching movies or engaging in trivia               

quizzes. Following Aristotle’s thesis that “all men by nature desire to know”, it has long been                

suggested that knowledge might act as an intrinsic reward and curiosity as an innate drive in humans.                 

Largely embraced by previous neuroimaging studies of EC (Gruber et al., 2014; Kang et al., 2009),                

this view may explain why EC seems to outreach the information required to optimize survival and                

reproduction, as it extends to cultural domains with unclear or indirect biological value such as               

philosophy, science and art. However, by turning knowledge itself into a primary biological goal, one               

leaves aside most of the developmental and situational determinants of curiosity responsible for the              

large inter- and intra-individual variability associated with information-seeking behaviors. Is it           

possible to explain the extent and the regulation of human curiosity without relying exclusively on the                

hypothesis that curiosity depends an innate “thirst of knowledge” susceptible to satiation? Recent             

theoretical developments have indeed opened the path to a more complete, yet complex, picture which               

still awaits empirical validation.  

EC is typically triggered by the awareness of specific gaps in one’s own knowledge — hence                

directing exploration towards the information expected to fill these gaps (Berlyne, 1966; Gottlieb et              

al., 2013; Loewenstein, 1994). Yet, psychology research has shown this process varies greatly across              

individuals and contexts. For example, some individuals may actively avoid an information            

(Gigerenzer and Garcia-Retamero, 2017; Sweeny et al., 2010) while others may seek it despite              

enduring risks (Hsee and Ruan, 2016; Pierce et al., 2005; van Dijk and Zeelenberg, 2007). Tolerance                

to uncertainty has recently emerged as a key factor underlying this variability (Kashdan et al., 2009;                

Litman, 2010), as the outcome of exploration does not always fill the knowledge gaps under scrutiny                

but can also expose individuals to unexpected information. In turn, exposure to unexpected             

information may challenge the sense of coherence or completeness in adjacent knowledge domains,             

eventually producing a net increase in perceived ignorance or uncertainty. For example, if a              

neuroscientist attempting to confirm the involvement of brain region A in a given cognitive process               

eventually observes that brain region B co-activates with A, the unexpected information carried by the               

activation of B may dampen his or her confidence regarding the experiment as a whole. Following a                 

typology early proposed by Berlyne (Berlyne, 1966, 1954), this distinction between the willingness to              

acquire the specific information missing to solve existing problems (often termed “specific” or             

“deprivation” EC) and the willingness to process new information in general (often termed             

“nonspecific” or “diversive” EC) is at the heart of the current study. Indeed, while these two facets of                  

EC are known to differ at the personality level, both in the general population (Litman, 2010; Litman                 
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and Spielberger, 2003) and in academia (where it predicts deeper versus broader contributions to              

scientific progress (Bateman and Hess, 2015), their cognitive and neural underpinnings remain largely             

obscure. 

Predictive coding constitutes a promising framework to understand how the specific and            

nonspecific components of EC are triggered and regulated by context or reinforced over time. The               

core principle of predictive coding theories is that the reduction of uncertainty and surprise constitutes               

the primary function of our cognitive systems (Clark, 2013; Friston et al., 2012). In this framework, it                 

is thus natural for acute uncertainty and ignorance states to be associated with negative affects               

requiring relief (Hirsh et al., 2012; Litman et al., 2005; Loewenstein, 1994). However, this powerful               

principle must be reconciled with the manifold curiosity-related behaviours which can transiently            

increase uncertainty (e.g pressing the “random button” of Wikipedia) and even lead to sustained              

doubtful states (e.g reading Descartes). Indeed, avoiding further stimulation and refraining from acting             

often appears an efficient way to escape new sources of uncertainty, once existing ones have been                

addressed (Clark, 2013; Friston et al., 2012). This objection known as the “dark room” problem               

argues against the existence of nonspecific EC, which orients us towards new sources of uncertainty.               

Proponents of predictive coding have thus proposed that individuals might be born with (or develop)               

second-order expectations regarding the optimal amount of uncertainty which should be experienced            

when interacting with their environment (Clark, 2013; Friston et al., 2015; Schwartenbeck et al.,              

2013). Inspired by early optimal arousal theories (Berlyne, 1966; Hebb, 1955), this second principle              

implies that humans may be “surprised of not being surprised” and that they may actively try to fulfill                  

their surprise expectations by engaging exploration, whenever their uncertainty levels are lower than             

expected (and vice-versa). Therefore, transient surprise signals may not only modulate confidence in             

one’s own knowledge or increase memory gain, they may also update an estimate of the average                

surprise experienced by the organism so that nonspecific EC levels can be adjusted upwards or               

downwards in order to match this estimate with expectations, through a mechanism sometimes called              

“active inference” (Friston et al., 2015). Importantly, such conceptualization suggests that distinct            

psychological processes and neural circuits may underlie each EC dimension.  

On the one hand, the nonspecific motivation to obtain information and to confront new              

epistemic problems should depend on a neural representation of uncertainty dependent upon average             

surprise. Recently, the combination of computational modelling and neuroimaging techniques showed           

that neural activity in the rostrolateral cortex (rlPFC) mediates the control of exploration by              

uncertainty in foraging tasks (Badre et al., 2012; Boorman et al., 2009; Donoso et al., 2014) . As                  

exogenous electrical inhibition of the rlPFC causally reduces exploration in such contexts (Raja            

Beharelle et al., 2015) , rlPFC activity may underpin the putative relationship between nonspecific EC               

and average surprise, as expected from the predictive coding framework. Yet, another network is              
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likely required to compute surprise signals in the first place, as this process entails a complex                

comparison of incoming information with prior knowledge. Together with the hippocampus, the            

ventromedial prefrontal cortex (vmPFC) appears as a good candidate to perform such task, as recent               

studies highlighted its role for online memory retrieval(Lighthall et al., 2014; Rissman et al., 2016),               

for schema-based memory (Garrido et al., 2015; Ghosh et al., 2014; van Kesteren et al., 2013) and for                  

representing confidence in one’s own knowledge (Lebreton et al., 2015). On the other hand, the               

motivation to reduce specific sources of uncertainty may depend on a “reinforcement by relief” (of               

ignorance) recruiting the reward system, likewise pain relief (Navratilova and Porreca, 2014; Seymour             

et al., 2005). In line with this hypothesis, Jepma and colleagues recently demonstrated that relieving               

perceptual curiosity elicits higher BOLD responses in the ventral striatum (Jepma et al., 2012), a key                

subcortical region involved in numerous reinforcement-learning paradigm (Garrison et al., 2013). Yet,            

the involvement of these neurocognitive processes in epistemic curiosity per se remains to be              

demonstrated. 

In the current study, we used a two-step stochastic trivia quiz (Fig. 1a) designed to induce and                 

manipulate curiosity levels in 22 participants undergoing fMRI (see SI Materials and Methods for              

extensive details about the paradigm). Our quiz focused on cinema because of the widespread interest               

in this domain across sexes, cultures, and education levels. This choice also facilitated the              

standardization of answers (only movie titles) and the evaluation of prior knowledge related to              

answers (titles were categorized as watched or not by the participant). During the first part of the quiz                  

(run 1), participants rated their curiosity for 60 cinema-related questions. After each rating, the answer               

to the question was either revealed (50%) or replaced by hashtags (50%) to manipulate answer               

uncertainty and maximize variations in the nonspecific EC component. In the second part (run 2), the                

same 60 questions were presented again and participants were asked to indicate whether they could               

spontaneously remember the answers. At this point, questions that had not been answered in run 1                

could still elicit curiosity and their associated (not yet revealed) answers could still elicit surprise,               

whereas remembered items served as controls, matched with the former in terms of visual stimulation               

and linguistic content. After the main task, a localizer involving individualized sets of new movie               

titles was used to reveal the brain regions responding to prior knowledge in a task-independent fashion                

(run 3). Unannounced post-test questionnaires were finally administered outside the scanner,           

including a recall test as well as surprise and interest ratings for each item.  
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Results 

 

The interplay of prior knowledge, curiosity and surprise for memory encoding 

 

Behavioural analyses demonstrated that possessing some prior knowledge related to the           

answers (as assessed by whether or not the participant had seen the target movie before the                

experiment) increased both curiosity ratings (t(21)=2.46, p=0.023) and surprise ratings (t(21)=4.86,           

p<0.001) (Fig. 2a). Curiosity and surprise were positively correlated to each other (r=0.22, p<0.001,              

ratings z-scored for each participant individually; Fig. 2b) and a repeated-measures ANOVA            

confirmed that curiosity predicted surprise ratings (F(2,42)=27.4, p<0.001). Moreover, curiosity,          

surprise and prior knowledge were all positively associated with recall performances (whether the             

response was correct or not in the post-scan memory test) according to median-split analyses              

separating items as a function of high and low curiosity (z=3.88, p<0.001), surprise (z=3.32, p<0.001)               

and prior knowledge (z=3.81, p<0.001; Fig. 2c).  

In order to exclude the possibility that prior knowledge, curiosity and surprise would simply              

reflect a common latent variable (e.g. attention, affective value), we used a Generalized Estimating              

Equations approach (see SI Material and Methods). The three factors were individually significant             

(curiosity: beta=1.27, Wald χ2 = 15.9, p<0.001; surprise: beta=0.43, Wald χ2 = 10.2, p=0.001; prior               

knowledge: beta = 1.58, Wald χ2 = 74.4, p<0.001), hence confirming their complementary             

contribution to memory encoding. 

A logistic mediation analysis including prior knowledge and condition (whether the answer            

had been seen once or twice during the experiment) as covariates further showed that surprise partly                

mediated the beneficial effects of curiosity on recall performances (indirect path: z=3.47, p<0.001;             

direct path: z=3.64, p<0.001; Fig. 2d). Finally, as expected from a previous study(McGillivray et al.,               

2015), items rated as more interesting were associated with higher surprise ratings (t(21)=2.48,             

p=0.02) but, contrary to surprise, interest did not mediate curiosity-driven memory benefits (indirect             

path: z=1.31, p=0.21). Therefore, despite its tight relationship with curiosity and prior knowledge,             

epistemic surprise reflects a specific construct that mediates curiosity-driven memory encoding. 

 

The neural correlates of epistemic curiosity 

 

Before testing more specific hypotheses regarding its dynamical regulation by surprise, we            

investigated the neural correlates of EC ratings, in line with previous studies (Gruber et al., 2014;                

Kang et al., 2009). When analyzing curiosity-dependent BOLD responses at the answer stage (for              

which our paradigm was optimized), we observed a clear-cut encoding of curiosity relief in the ventral                
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striatum during run 1 where curiosity was relieved in 50% of the trials (whole-brain analysis,               

voxel-wise threshold: p<0.005, cluster-wise threshold: pFWE<0.05; Fig. 3a). This conclusion held when            

the analysis was restricted to an anatomical mask (Ahsan et al., 2007) of the nucleus accumbens                

(NAcc ROI: t(21)=2.54, p=0.02), while no significant modulation was observed when hashtags were             

displayed (NAcc ROI: t=0.03, p=0.97). Yet, in run 2 (where curiosity was relieved in 100% of the                 

trials), no modulation by EC was observed when participants processed the answers which had not               

been delivered in run 1 (p>0.2; Fig. 3b).  

At the question stage, whole-brain analyses showed that more intense curiosity states induced             

more activity in the dmPFC in run 1 (Fig. S1a) but not in run 2 (Fig. S1b). No other cluster reached                     

the standard threshold for multiple comparisons in either run (pFWE<0.05). Although we did not              

observe any striatal encoding of EC as reported in(Gruber et al., 2014), it must be stressed that our                  

task was not optimized to investigate BOLD responses at the question stage (e.g variable question               

length, presence of motor responses). Clear-cut activations were observed in the striatum alongside             

other areas such as the hippocampus when participants processed questions for which they knew              

answers as compared to questions for which answers were unknown, in both runs (Fig. S1c-d; NAcc                

ROI, run 1: z(15)=3.25, p=0.001; excluding 6 participants who ignored all answers; NAcc ROI, run 2:                

t(21)=3.07, p=0.006). Interestingly, the ventral striatum was the only region activating more in front              

of questions previously answered in run 1 but forgotten in run 2, as compared to never answered                 

questions (t(21)=3.13, p=0.005; Fig. 3c). This pattern suggests that specific memory retrieval and             

motivational processes were somewhat active in the second run of our task. 

 

Surprise-dependent control of curiosity 

 

Our main hypothesis concerned the variation of nonspecific curiosity levels over time, as a              

function of the average amount of surprise recently experienced (Fig. 1b). In the computational              

approach used to tackle this issue (SI Materials and Methods), we assumed that the subjective levels                

of curiosity reported in participants’ ratings during run 1 resulted from two distinct additive              

influences: (i) the motivation to relieve an acute ignorance state induced by the specific question               

displayed on screen (specific EC); (ii) the motivation to be exposed to any new information               

(nonspecific EC) conceived as an item-independent variable fluctuating slowly throughout the quiz.            

Importantly, the delta-rule algorithm used to monitor the average amount of surprise was totally blind               

to the content of the questions and to the outcome of a trial t: consequently, it could only explain the                    

variance associated with this nonspecific component of EC based on previous items (t-1 , t-2 , etc). 

Supporting our hypothesis, a delta-rule that monitored average surprise in each trial (Q{sur})             

outperformed the model that monitored only the frequency of knowledge delivery (Q{0-1}) and             
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models that included time as a regressor, either alone or in combination with any of the two                 

delta-rules (Fig. 4A). Bayesian group comparisons treating model attribution as a random effect             

indicated that this conclusion held both when curiosity ratings were considered as a normally              

distributed variable and when they were binarized into high/low categories and predicted by means of               

logistic regression (see Methods and Supplementary Fig. S2a-e for extensive details). Crucially, the             

overall effect of expected surprise on curiosity ratings was negative in both the continuous              

(t(21)=-2.95, p=0.008) and the binomial cases (t(21)=-3, p=0.007), which confirmed that low average             

surprise exacerbated nonspecific EC whereas high average surprise suppressed it — as expected from              

the predictive coding logics. 

 

Monitoring of average surprise and regulation of curiosity by the rostrolateral PFC 

 

Next, we studied how the brain tracked changes in average surprise from one trial to another.                

To do so, we investigated the parametric encoding of surprise prediction errors (PE{sur}) at the               

answer stage of the run 1, during which variations in EC were assessed. Formally, this trial-wise                

variable corresponds to the surprise experienced in each trial minus the average surprise recently              

experienced. Restricted to a prefrontal mask spanning all voxels anterior to the head of the caudate                

(Y>22), our analyses revealed a significantly higher level of hemodynamic activity related to PE{sur}              

within the right rostrolateral prefrontal cortex (p<0.05FWE, MNI [18 62 -11], Fig. 4b). Importantly, the               

GLM excluded potential confounding effects of displaying answers versus hashtags (modeled as            

separate events), as well as those associated curiosity relief and prior knowledge related to answers               

(both included before PE{sur} in the serial orthogonalization procedure implemented by SPM, see             

Methods). Additionally, replacing PE{sur} by surprise ratings in the GLM confirmed that the rlPFC              

not only encoded surprise prediction errors but also surprise itself (t(21)=-2.85, p=0.009; Fig. 4c).              

Finally, since parameter estimates were negative, we used a Finite Impulse Response model             

distinguishing outcomes (answer and hashtag) as a function of PE{sur} to ascertain that stronger              

surprise prediction errors triggered proportional deactivations of the rlPFC (subject-wise median-split;           

Fig. 4d).  

Given that the cluster reported in Fig. 4b appeared more anterior and medial than expected               

based on the literature on uncertainty-driven exploration, we also assessed the effect of PE{sur} at 4                

previously reported rlPFC coordinates (Badre et al., 2012; Boorman et al., 2009; Daw et al., 2006;                

Donoso et al., 2014). No significant modulations were observed for PE{sur} (all p>0.2), but the               

encoding of PE{sur} predicted the influence of this uncertainty-related variable on curiosity ratings             

from one subject to another at 3 peaks out of 4 (Fig. 4e; peak from Daw et al: ρ=0.61, p=0.003;                    

Boorman et al: ρ=0.69, p<0.001; Donoso et al., ρ=0.53, p=0.014) while it was not the case at the                  
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peak reported in Badre et al. (ρ=0.24, p=0.29) or at the peak reported Fig. 4B (ρ=-0.09, p=0.68). In                  

other words, a more posterior and lateral portion of the rlPFC seemed to implement the control of                 

nonspecific EC levels based on computations performed in the more medial and anterior site              

highlighted by our initial analysis.  

 

Genesis of epistemic surprise in the ventromedial PFC 

 

Having established that the rlPFC monitors an average surprise variable and implement its             

influence on EC, we sought to characterize the neural origin of the epistemic surprise signal itself. To                 

do so, we reasoned that the area computing epistemic surprise should be sensitive: (i) to information                

delivery, (ii) to information novelty, (iii) to prior knowledge, and (iv) to surprise itself. This selectivity                

profile followed from the definition of epistemic surprise as the mismatch between new information              

and prior knowledge. Since our experiment did not provide the statistical power required for a 4-way                

conjunction analysis, we chose to investigate the selectivity profile of all areas which survived              

multiple comparisons (p<0.05FWE) for the contrast “answer > hashtag” (Fig. 5a) and for the parametric               

effects of EC at the question and answer stages, also obtained from the first run (for details see                  

Methods). Clusters in the dorsolateral prefrontal cortex (dlPFC), the hippocampus (HPC), the            

precuneus (PrC), the superior temporal sulcus (STS), the ventromedial PFC (vmPFC), the            

dorsomedial PFC (dmPFC) and the ventral striatum (vStr) revealed by these contrasts were thus              

transformed in bilateral regions of interest (ROIs) for the following analyses (Fig. 5b). 

Confirming their general sensitivity to knowledge delivery, the 5 areas which responded to             

the contrast “answer > hashtag” in run 1 also activated significantly more in response to new answers                 

as compared to old and remembered answers in run 2 (Fig. S1e). The precuneus (t(21)=3.94, p<0.001)                

and the vmPFC (t(21)=3.74, p=0.001) were the only regions discriminating new answers from old and               

forgotten answers, hence implying a genuine sensitivity to information novelty (Fig. 5c). Moreover,             

the vmPFC was the only region to encode prior knowledge about answers both in the main task                 

(t(21)=2.82, p=0.010; Fig. 5d) and during the localizer task (t(21)=3.14, p=0.005; Fig. 5e), although              

less pronounced contributions of the precuneus and the dlPFC were also observed. Crucially, when              

new answers were delivered (run 1 and 2), the vmPFC activated more in response to higher epistemic                 

surprise (t(21)=3.47, p=0.002) alongside the STS (t(21)=2.52, p=0.019; Fig. 5f). Excluding that this             

latter effect reflected a broader “valuation” process, vmPFC activity did not reflect surprise ratings              

when participants viewed old answers in run 2 (t(21)=-1.70, p=0.10, Fig. S1f; difference new versus               

old: t(21)=2.65, p=0.011, paired t-test) nor interest ratings (run 1 and 2: t(21)=1.18, p=0.25; Fig. S1g).                

Note also that the surprise regressor was orthogonalized on curiosity and prior knowledge, hence              

excluding that the observed effect would reflect its correlation with these variables.  
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Consistent with the interplay of prior knowledge, surprise and recall observed at the             

behavioural level, the vmPFC was the only region whose activation at the time of new answers                

predicted subsequent recall in the post-scan memory test (t(21)=2.21, p=0.03; Fig. S1h). Although this              

effect did not survive the false-discovery rate criterion used to correct for multiple comparisons across               

ROIs, it remains remarkable as the regressor indexing “subsequent recall” was orthogonalized on             

curiosity, prior knowledge and PE{sur}.  

 

 

Discussion 

Our study provides evidence for a key assumption of the predictive coding framework             

regarding the evolution of epistemic curiosity (EC) over time. Indeed, when the average surprise              

elicited by previous trivia answers was high, upcoming EC ratings were low, and vice-versa .              

Neuroimaging data revealed that this regulatory mechanism was implemented by the rostrolateral            

prefrontal cortex (rlPFC), whose activity encoded surprise prediction errors when processing trivia            

answers. Facilitating memory encoding, surprise itself was presumably computed within the           

ventromedial prefrontal cortex (vmPFC) in relationship with other brain areas sensitive to prior             

knowledge and information novelty. Moreover, we show that the relief of acute EC states triggered by                

trivia questions recruits the reward system when knowledge delivery is stochastic, a condition which              

was not met in earlier neuroimaging studies of EC. Taken together, these results shed light on the                 

neural circuitry underlying the specific and nonspecific components of EC and suggest that             

disentangling these two dimensions will be crucial to better understand the origins of within- and               

between-subject variability in this fundamental cognitive trait.  

Previous neuroimaging studies of epistemic curiosity showed that reading questions eliciting           

higher curiosity produced higher BOLD responses of the striatum, a key player of the so-called brain                

reward system (Gruber et al., 2014; Kang et al., 2009). Based on these findings, epistemic curiosity                

was recently reframed as a reward-seeking process where “reward is information” (Marvin and             

Shohamy, 2016). Although this view may be attractive for its simplicity and certainly captures some               

features of EC, the hypotheses tested in the current study were instead rooted in the “predictive                

coding” framework which is also able to account for the dependence of curiosity upon prior               

knowledge and surprise. In this framework, EC primarily depends on uncertainty-minimization rather            

than reward-maximization, which means that higher curiosity ratings do not primarily reflect the             

anticipation of more pleasurable outcomes but the experience of more intense states of uncertainty. In               

turn, the neural activities associated with knowledge delivery are not primarily interpreted as             

reward-related but as relief-related activities.  
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Because reward and relief are known to induce overlapping neural responses (Navratilova and             

Porreca, 2014; Seymour et al., 2005), our observation that the ventral striatum is activated by trivia                

answers in a curiosity-dependent fashion cannot arbitrate between the predictive coding and reward             

frameworks. Nonetheless, it must be stressed that this ventral striatal responses to knowledge delivery              

were not reported in previous studies (Gruber et al., 2014; Kang et al., 2009) nor observed in the                  

second part of our trivia quizz. The most likely reason for this discrepancy is that striatal activations at                  

the answer stage reflect relief (or reward) prediction errors: indeed, according to the temporal              

difference rule known to govern these activities (Pessiglione et al., 2006; Schultz et al., 1997), fully                

predictable reward or relief should blunt prediction error signals (O’Doherty et al., 2003; Schultz,              

2013). Oppositely, when the occurrence of such outcomes is stochastic, as in the study by Jepma and                 

colleagues (Jepma et al., 2012) and in the first run of our task, prediction error signals should be and                   

are actually observed. Future experiments will have to manipulate answer uncertainty in a more              

systematic manner in order to exclude other factors that may explain the pattern of results reported                

here. For example, our data cannot exclude that ventral striatal responses became undetectable in the               

second run due to habituation, fatigue or to the involvement additional cognitive processes recruiting              

the ventral striatum. Besides, we observed in the second run that displaying questions which had               

already been answered in the first run yielded very salient activations of the striatum, possibly               

reflecting memory retrieval or motivational processes (Scimeca and Badre, 2012). 

Yet, the scope of our study was not restricted to the relief of acute curiosity but extended to                  

the regulation of nonspecific EC levels, which may be understood as the time-varying motivation to               

obtain information during the trivia quiz, independently from the specific questions displayed on             

screen. This lead us to formulate precise hypotheses inspired by the predictive coding framework              

which have no counterpart in the reward framework. In particular, the inverse relationship between              

EC levels and the average amount of surprise experienced during the quiz provides strong support for                

the idea that nonspecific EC is dynamically regulated in order to maintain uncertainty levels around an                

expected value. Previous research showed that curiosity, attentional allocation and associated           

exploratory behaviours are boosted by intermediate levels of uncertainty, and decrease whenever            

uncertainty becomes too high or too low (Berlyne, 1966; Gottlieb et al., 2013; Kidd and Hayden,                

2015; Loewenstein, 1994). However, to our knowledge, our data is the first to demonstrate that a                

similar mechanism binds curiosity and uncertainty (or average surprise) across time, in a             

stimulus-independent fashion. Moreover, surprise mediated curiosity-driven memory encoding, hence         

suggesting this regulatory mechanism partly determines the maximal amount of information that            

individuals are able or willing to process and encode per unit of time. Furthermore, assessing the                

amount of surprising information at which nonspecific EC reverses from positive (i.e information             
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attractiveness) to negative (i.e. information avoidance) may thus be useful to infer the optimal              

learning pace of learners.  

Neuroimaging data showed that the monitoring of averaged surprise occurred primarily in the             

right rostrolateral PFC, in a region close but distinct from the peak coordinates previously found to                

control uncertainty-driven exploration (Badre et al., 2012; Boorman et al., 2009; Daw et al., 2006;               

Donoso et al., 2014). In this medial and anterior portion of the rlPFC, the amount of recently                 

experienced surprise was encoded positively when participants processed new questions, whereas           

surprise prediction errors induced proportional deactivations of the same structure when participants            

were presented with new answers. Although the functional meaning of negative BOLD responses             

constitutes a debated topic in the neuroimaging community (Shmuel et al., 2006; Weitz et al., 2015),                

these deactivations are consistent with previous studies. They have been documented in the context of               

semantic judgments (Hayama and Rugg, 2009) and in reinforcement-learning tasks (Daw et al., 2006)              

where they denote exploitative rather than explorative decisions. Interestingly, at the peak coordinates             

previously found to control uncertainty-driven exploration (Badre et al., 2012; Boorman et al., 2009;              

Daw et al., 2006; Donoso et al., 2014), the encoding of surprise prediction errors was not significant at                  

the group level, but the analysis of interindividual differences revealed a positive correlation between              

the negative effect of surprise on curiosity and the neural encoding of surprise prediction errors in                

these more posterior and lateral portions of the rlPFC. Taken together, these results suggest a possible                

dissociation of the neural populations within the rlPFC, from the raw monitoring of average surprise               

to the actual influence of this variable on EC levels.  

As we have seen in the introduction, the notion of surprise is fundamental to apprehend               

curiosity-related behaviours and their associated neural substrates in a predictive coding perspective.            

This follows naturally from the fact that surprise and the information carried by any given event are                 

actually synonymous for information theory, in which predictive coding is deeply rooted (Friston,             

2010). Yet, very few EC studies systematically assessed surprise, despite its well-known empirical             

relationship with curiosity (Berlyne, 1962). One reason may be that surprise cannot be readily              

manipulated and framed as an information-theoretic or Bayesian quantity in the context of EC              

research as it can be done in other fields such as economic decision-making. Instead, surprise in the                 

context of trivia quizzes and related ecological tasks is usually captured using introspective ratings,              

because it depends on intractable high-level representations about an open-ended world, which are             

themselves shaped by language. In our data, higher surprise ratings were associated with stronger              

vmPFC activations, likewise answers associated with more prior knowledge and new answers            

compared to repeated answers. This unique selectivity profile of the vmPFC makes it a strong               

candidate for the computation of surprise, as this signal must be derived from the comparison of new                 

information with prior knowledge. Intriguingly, the hippocampus was not involved, despite its            
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putative role in detecting mismatch between current observations and prior knowledge (Duncan et al.,              

2012; Kumaran and Maguire, 2009). However, empirical evidence supporting this hippocampal role            

was obtained in the presence of clear-cut expectations (e.g based on the training phase of associative                

learning tasks), whereas the number of possible alternatives may be too wide to be represented a                

priori in a trivia quiz. In order to disentangle the neural circuits signaling surprise as a violation of a                   

priori expectations and surprise as an incongruence of new information with episodic or semantic              

representations retrieved a posteriori, it will be important to assess the presence and the accuracy of                

expectations when processing trivia questions in future experiment.  

At this point, one may argue that our interpretation of vmPFC and rlPFC activities remains               

uncertain because surprise ratings correlated with curiosity, prior knowledge and interest ratings in             

our task. Yet, if surprise ratings indeed reflect the perceived informativeness of trivia answers, it is                

logical for them to covary with these variables. For example, the observed correlation between              

curiosity and surprise ratings — which replicates previous findings (Baranes et al., 2015) — may               

originate in the tight association of curiosity and selective attention (Daffner et al., 1992; Gottlieb et                

al., 2013) known to exacerbate surprise-related signals such as mismatch and prediction error             

responses (Auksztulewicz and Friston, 2015; Jiang et al., 2013). In other words, paying more attention               

to an answer may automatically increase the feeling of surprise it generates. The positive relationship               

between prior knowledge and surprise is even more straightforward, because the likelihood of             

ignoring an interesting fact about a movie is obviously higher when this movie has been watched                

rather than not. Accounting for these effects, the general linear model (GLM) used to unravel the                

neural correlates of surprise and surprise prediction errors included a serial orthogonalization            

procedure ensuring that any the variance associated with curiosity relief or prior knowledge related to               

answers was excluded from these regressors. This implies that the remaining variance primarily             

reflected unexpected information contents, as defined in the introduction. We also excluded the             

possibility that the surprise regressors merely reflected a valuation signal bound to each trivia item by                

substituting surprise for interest ratings in the GLM and by showing that the latter was not                

significantly associated with vmPFC activity. 

One potential drawback of the current study is the number of behavioural and neural variables               

simultaneously considered for analysis. Although future experiments may focus on a subset of these              

variables in order to investigate a reduced number of processes in greater depth, we believe that the                 

breadth of our work may help to outline a neurocognitive model of EC integrating insights from                

predictive coding with earlier psychological theories (Figure 6). In order to further refine and test this                

model, the suppressive effect of average surprise should be confirmed in other tasks probing the               

willingness-to-pay or the willingness-to-wait for answers (Kang et al., 2009; Marvin and Shohamy,             

2016). Surprise ratings themselves should be cross-validated using implicit measures such as pupil             
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dilation (Preuschoff et al., 2011) or eye movements (Baranes et al., 2015). Finally, it would be                

important to investigate the respective roles of different neuromodulatory systems in different facets             

of EC. For example, electrophysiological recordings in monkeys have shown that the encoding of              

advanced information about rewards is functionally distinct from the encoding of rewards within the              

vmPFC (Blanchard et al., 2015) while these processes largely overlap within the dopaminergic             

brainstem (Bromberg-Martin and Hikosaka, 2009; Düzel et al., 2010; Kumaran and Duzel, 2008). It              

would thus be tempting to propose that EC relief recruits dopaminergic neurons while surprise              

activates an additional neuromodulatory system. Noradrenaline would be ideally suited to mediate the             

interplay of prior knowledge, surprise and memory encoding highlighted by our behavioural analyses.             

It has indeed been involved in novelty processing (Schomaker and Meeter, 2015), long-term memory              

(Gibbs et al., 2010) and unexpected surprise or uncertainty signaling (Payzan-LeNestour et al., 2013;              

Yu and Dayan, 2005).  

To conclude, understanding the regulation of EC and its neural implementation in the human              

brain will require intense research efforts in domains as diverse as memory, attention, linguistics and               

decision-making. This endeavour must build on the complementary insights provided by the            

reinforcement-learning and predictive coding frameworks, as well as other information-seeking          

principles such as learning progress maximization (Gottlieb et al., 2013). Taking into account the              

dynamical relationship between surprise and curiosity may help integrate this diverse literature and             

open the path to new strategies of knowledge transfer in the classroom. 

 

 

Materials and Methods 
See SI Materials and Methods for complete details regarding participants, stimuli, tasks, preprocessing             
and data analysis.  
 
Participants. Twenty-two right-handed students (11 females, 11 males; mean age: 22.9; range: 19-28)             
were recruited through advertisements in an art cinema and via university mailing lists. This sample               
size matched the range of existing neuroimaging studies on epistemic curiosity (Gruber et al., 2014;               
Kang et al., 2009). No participant was excluded from data analyses. All were paid at the fixed rate of                   
60€ for their participation in the study. A few days before the experimental session, participants               
signed informed consent after exhaustive explanations were provided. The entire protocol was            
approved by the local ethics committee of Sud-Est II, France (authorization number: 2011-056-2).  
 

Stimuli. Sixty question-answer pairs were selected amongst the 120 pre-screened trivia items (Fig. S3              
and Table S1). For the prior knowledge localizer task, we used personalized sets of movie titles,                
different from those encountered in the main trivia task.  
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Time course of the experiment. At their arrival to the MRI lab, participants were reminded that they                  
would be exposed to cinema-related trivia questions and warned that those questions had been              
selected for being interesting but rarely known, even to cinema lovers. In the first functional run, each                 
trial started with a jittered fixation cross. Then, participants had to read one of the 60 pre-screened                 
trivia questions and to signal end of reading with a button press. After a fixed interval, a continuous                  
gauge appeared. Participants had then to rate their curiosity by keeping the left button pressed until the                 
gauge reach the desired point. Another jittered fixation cross preceded the delivery of either an answer                
(50% of the trials) or hashtags. The temporal order of items was randomized for each participant                
independently. In the second functional run, participants were verbally instructed that they would be              
presented again with all the questions, and that this time they would simply have to indicate whether                 
the correct answer came spontaneously to their mind or not. All questions were again preceded and                
followed by a fixation cross. In this second run, answers were delivered in all trials. The temporal                 
order of items was re-randomized for each participant independently. In the third functional run,              
participants were presented with 30 watched movie titles, 30 unwatched movie titles, and 30 hashtags               
“#”. When a target was appeared on the screen participants had simply to report whether they had                 
seen this movie title or not. Once outside the scanner, participants were first presented with an                
unexpected memory test in which they had to write down the answer of the 60 trivia questions                 
encountered in the task. They also reported which answers they were expecting (13.2±8.8%) or knew               
already for sure (4.4±5.1%) before the task. Then, all questions and answers were shown together, and                
participants were asked to rate their surprise levels (from 1 “not at all” to 5 “yes, a lot”) and to report                     
the thirty items they found the most interesting. To conclude, they filled an epistemic curiosity               
questionnaire (Litman and Spielberger, 2003) designed to capture specific (i.e deprivation) and            
diversive (i.e interest) EC.  
 
Behavioural analyses. The modelling of nonspecific EC levels as a function of epistemic surprise              
used a delta-rule of the form , where Q is initialized at 0 and updated on each      Q  α(R )Qt+1 =  t +  − Qt            
trial by the prediction error term R-Q, times a learning rate α. In the best-fitted model termed                 
Q{sur},the delivery of an answer was coded as R=S while the absence of answer was coded as R=0,                  
with S corresponding to the surprise rating given by the participant for that particular item. In order to                  
ascertain that this approach was useful to explain variance in curiosity ratings, we compared a range                
of alternative models using a Bayesian group comparison approach (Fig. 4A, Fig. S1A-D). All details               
regarding model fit, model comparison and mediation analyses can be found in SI Materials and               
Methods. When testing correlation or difference between two variables, parametric statistical tests (i.e             
Pearson correlation coefficient and Student t-test) were used when the two variables were normally              
distributed. Their non-parametric equivalent was used otherwise (i.e Spearman rank correlation and            
Wilcoxon u-test). 
 
fMRI analyses. Statistical analyses of fMRI signals were performed using a conventional two-levels             
random-effects approach with SPM8. All general linear models (GLM) included 6 unconvolved            
motion parameters obtained from the realignment step, in order to covary out potential             
movement-related artifacts in the BOLD signal. All regressors of interest were convolved with the              
canonical hemodynamic response function (HRF). All GLM models included a high-pass filter to             
remove low-frequency artifacts from the data as well as a run-specific intercept. All motor responses               
recorded were modeled using a zero-duration Dirac function. Voxel-wise thresholds used to generate             
SPM maps were either p<0.005UNC (parametric contrasts) or p<0.001UNC (categorical contrasts), unless            

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2018. ; https://doi.org/10.1101/157644doi: bioRxiv preprint 

https://paperpile.com/c/ihZWKy/9m6uc
https://doi.org/10.1101/157644
http://creativecommons.org/licenses/by-nd/4.0/


 

notified otherwise. All statistical inferences based on whole-brain analyses met the standard multiple             
comparison threshold (p<0.05FWE) at the cluster level.  
In the first run (GLM1), the question, rating and outcome stages were modeled separately using               
boxcar functions set to the duration of each individual event. Questions for which the participant did                
not know the answer were parametrically modulated by four regressors, orthogonalized in the             
following order: Qsur (average surprise), Prior knowledge, Curiosity, Subsequent recall. At the            
outcome stage, answers and hashtags were also parametrically modulated using four regressors,            
orthogonalized in the following order: Curiosity, Prior knowledge, Surprise prediction error (or            
Surprise), Subsequent recall. Questions and answers for which participants knew the answer before             
starting the experiment were modeled separately and not included in any contrast. In the second run,                
we splitted questions and answers regressors as a function of their status in the first run (i.e. items                  
answered or not in run 1) and participants’ ability to recall spontaneously the answer or not. This                 
resulted in two “HIT” regressors (items previously answered and remembered, at the question and              
answer stages) and two “correct rejection” (CR) regressors (unanswered and correctly classified as             
such, also at both stages). Questions (HIT and CR) and answers were parametrically modulated using               
4 regressors, orthogonalized in the following order: Curiosity, Prior Knowledge, Surprise,           
Subsequent recall. In the third run, we modelled the onset of hashtags, watched movies and               
unwatched movies separately using zero-duration Dirac functions. Note that Table S2 describe all the              
variables used a regressors in both behavioural and fMRI analyses. 
Concerning ROI analyses, the mask used to extract effects from the peaks previously reported in the                
literature study the contribution of the rlPFC to uncertainty-driven exploration were 3mm-radius            
spheres centered around the MNI coordinates reported in the original papers (explicitly displayed on              
Fig. 4b). For the multiple ROIs analyses reported Fig. 5 and Fig. S1b-h, we used the following                 
approach: (i) clusters surviving a voxel-wise threshold of p<0.05FWE were extracted from the [new              
answer>hashtag] contrast (run 1; dlPFC, vmPFC, HPC, STS, Precuneus, IPL), (ii) clusters surviving a              
cluster-wise threshold of p<0.05FWE (voxel-wise threshold: p<0.005unc) were extracted from the           
parametric curiosity contrasts at the question (dmPFC, IPL) and answer (ventral striatum) stages of              
run 1. For each of the 8 regions, the mirror (x-flipped) ROI was added to the mask itself, so that every                     
ROIs were strictly symmetric and identical across the two hemispheres. The peak MNI coordinates              
corresponding to previous studies investigating the uncertainty-dependent exploration were: [27 57 6]            
for Daw et al. (Daw et al., 2006), [36, 54, 0] for Boorman et al. (Boorman et al., 2009), [32 56 12] for                       
Donoso et al. (Donoso et al., 2014), 4: [35 56 -8] for Badre et al. (Badre et al., 2012). Peristimulus                    
time-course histograms (PSTH, sampled at 1Hz) were computed using the toolbox rfxplot for Matlab              
(Gläscher, 2009). These time-decomposed effects were thus re-estimated using the first eigenvariate            
extracted from the regions of interest, after adjustment for run intercept and movement-related             
variance.  
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Figures 

 

Figure 1. Design of the fMRI study task and main hypothesis. (a) In run 1, participants were                 

presented with 60 prescreened trivia items (see also Table S1). After reporting curiosity on a               

non-numerical continuous gauge, they were presented with either the answer (for half of the trivias),               

or hashtags (for the other half). In run 2, participants were presented again with the 60 questions and                  

reported whether the answer came spontaneously to their mind or not. Each answer was then revealed,                

so that half of the answers relieved curiosity whereas the other half merely echoed a previously                

encountered information. In run 3, participants were presented with an independent set of movie titles               

they had watched or not (prior knowledge localizer). Once outside the MRI scanner, they were finally                

asked to report all the answers they could remember and to rate their surprise and interest levels for                  

each trivia answer. (b) Schematic representation of the opponency expected from the predictive             

coding framework between nonspecific EC (in grey) and the average amount of surprise experienced              

(in blue) during a series of questions (Q) and answers (A) eliciting different amounts of epistemic                

surprise (in yellow). 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2018. ; https://doi.org/10.1101/157644doi: bioRxiv preprint 

https://doi.org/10.1101/157644
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

Figure 2. Behavioural results. (a) The presence of prior knowledge about target answers (whether or               

not the participant had seen the movie before the experiment) was associated with increased curiosity               

ratings (rose) and surprise ratings (yellow) in post-scan questionnaires (ratings rescaled between 0 and              

1). (b) Higher curiosity levels were also associated with increased surprise ratings. (c) Recall              

performances were affected by surprise, curiosity and prior knowledge, as revealed by median-split             

analyses. (d) Participant-wise mediation analyses demonstrated that curiosity induced direct and           

surprise-mediated benefits for the ability to recall answers in the post-test task (logistic mediation with               

unsuccessful recall coded as 0 and successful recall coded as 1, with prior knowledge and repetition                

included as covariates). Error bars represent s.e.m. p<0.05*, p<0.01**, p<0.001**.  
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Figure 3. Neural activities related to epistemic curiosity in the ventral striatum. (a) Curiosity levels               

modulated ventral striatal responses to knowledge delivery during the stochastic trivia quiz            

(voxel-wise threshold: p=0.005UNC; cluster-wise threshold: p<0.05FWE; MNI peak: [-6 5 1]). (b) In the              

first run, the effect reported in a was also significant in the nucleus accumbens (NAcc) but it                 

disappeared during the second part of the trivia quiz. c, Among the 8 ROIs described in Fig. 5b (same                   

color code), the ventral striatum was the only region to activate significantly more in response to old                 

but forgotten questions in run 2, as compared to never answered questions. 

Error bars represent s.e.m. p<0.05* (two-tailed).  
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Figure 4. Surprise-dependent control of curiosity and the rlPFC (see also Supp. Fig. S2). (a) The                

model that updated on each trial the average amount of surprise recently experienced outperformed              

the four alternative models tested to account for the evolution of curiosity ratings over time, for both                 

the Akaike (dark grey) and Bayesian (light grey) Information Criteria. (b) Neural correlates of              

surprise prediction errors at the answer stage (run 1) in the right rostrolateral prefrontal cortex. This                

functional cluster was close but did not overlap the activation peaks reported in the literature on                

uncertainty-driven exploration. (c) The rlPFC also correlated with surprise ratings themselves when            

answers but not hashtag were delivered (3mm sphere around peak reported in 4b). (d) Finite Impulse                

Response modelling confirmed the presence of genuine rlPFC deactivations in responses to stronger             

surprise prediction errors, occuring only when answers were actually delivered (yellow).The encoding            

of PE{sur} at peaks 1-3 was correlated with the the suppression of nonspecific curiosity by Q{sur}, as                 

observed at the behavioural level. p<0.05*, p<0.01**, p<0.001*** (two-tailed). Error bars represent            

s.e.m. Plotted signals were extracted from 3mm-radius spheres centered around the peaks of interest. 
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Figure 5. Epistemic surprise signals deriving from the comparison of new information with prior              

knowledge in the vmPFC (see also Fig. S1). (a) Among other areas, the vmPFC was more activated                 

when processing new answers than hashtags (run 1, p<0.05FWE, MNI peak: [-3, 35, -17]) or old                

answers (run 2, see Table S4). (b) Eight bilateral ROIs were systematically investigated to highlight               

the central role of the vmPFC in the genesis of epistemic surprise (see also Fig. S2a and Fig. 6a). (c)                    

Sensitivity to information novelty was revealed by comparing new answers to old but forgotten              

answers in the second run. (d) Encoding of prior knowledge pooled over the two runs of the trivia quiz                   

when processing new answers (watched versus unwatched movie titles). (e) Encoding of prior             

knowledge in the localizer task which presented participants with a separate set of watched or               

unwatched movie titles, independently of any trivia question (run 3). (f) Encoding of surprise ratings               

associated with new answers, pooled over the two runs of the trivia quiz.  

In graphs c-f, areas surviving the p(FDR)<0.05 are plotted with plain colors, areas significant only at                

an uncorrected threshold (p<0.05) are plotted with half-transparent colors and non-significant effects            

are reported using only error bars. Effect are ordered from left to right as a function of their                  

significance. Error bars represent s.e.m. 
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Figure 6. The cognitive dynamics of epistemic curiosity (EC). In this model inspired by predictive               

coding and earlier psychological theories (Berlyne, 1966; Loewenstein, 1994), all information-seeking           

behaviours start with the awareness of a “knowledge gap” encountered while solving adaptive             

challenges or seeking new epistemic problems. Here, specific EC corresponds to internal (i.e             

recollecting one’s own knowledge) or external (i.e exploring the environment) information-seeking           

behaviours engaged to gather new information and reduce the uncertainty bound to knowledge gaps.              

The comparison of new information with prior knowledge may then elicit epistemic surprise, thereby              

facilitating memory encoding. The key hypothesis of this model is that the human cognitive system               

represents the average amount of surprise experienced in a given context and that this variable exerts a                 

suppressive effect on the nonspecific component of EC which underlies problem-seeking behaviours.            

Problem-seeking behaviours — a hallmark of most intellectual, artistic and scientific professions —             

may thus derive from a disruption of this process. Conversely, the lack of curiosity may derive from                 

its exacerbation. 
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