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Abstract 

Background: High rates of comorbidity, shared risk, and overlapping therapeutic mechanisms 

have led psychopathology research towards transdiagnostic dimensional investigations of 

clustered symptoms.  One influential framework accounts for these transdiagnostic phenomena 

through a single general factor, sometimes referred to as the ‘p’ factor, associated with risk for 

all common forms of mental illness.   

Methods: Here we build on past research identifying unique structural neural correlates of the p 

factor by conducting a data-driven analysis of connectome wide intrinsic functional connectivity 

(n = 605). 

Results: We demonstrate that higher p factor scores and associated risk for common mental 

illness maps onto hyper-connectivity between visual association cortex and both frontoparietal 

and default mode networks.  

Conclusions: These results provide initial evidence that the transdiagnostic risk for common 

forms of mental illness is associated with patterns of inefficient connectome wide intrinsic 

connectivity between visual association cortex and networks supporting executive control and 

self-referential processes, networks which are often impaired across categorical disorders. 
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Introduction 

Emerging research has identified a general factor of psychopathology that accounts for shared 

risk among internalizing, externalizing, and thought disorders across diverse samples(1–6).  In 

contrast to the traditional clinical science model which compares cases of individuals meeting 

criteria for a categorical disorder to those not meeting these criteria (i.e., “healthy” controls), this 

general psychopathology or ‘p’ factor reflects an individuals’ latent liability for mental illness(7).  

For individuals with clinical disorders, higher p factor scores portend greater chronicity and 

symptom severity(1, 7).  In “healthy” individuals, higher p factor scores reflect relative risk for 

developing future clinical disorder. Moreover, the p factor provides a framework for explaining 

the high rates of comorbidity as well as the shared genetic variance among categorical mental 

disorders(8, 9).  As such, the p factor represents a potentially useful avenue for better 

understanding the shared and unique etiology of common mental illness.  However, the 

biological mechanisms through which the p factor confers general risk for psychopathology 

remain unclear.  Identifying such mechanisms is necessary for effectively leveraging the p factor 

to derive novel targets for clinical intervention and prevention. 

 Clinical neuroscience has begun to adopt transdiagnostic methodologies to accelerate the 

search for common neurobiological abnormalities across disorders(10).  For example, a recent 

large meta-analysis of six categorical disorders reported a shared pattern of reduced gray matter 

volume in a distributed network supporting attention and cognitive control(11).  In addition, we 

have recently examined the structural neural correlates of the p factor specifically(12).  In our 

work, higher p factor scores and thus risk for common mental illness was associated with 

reduced gray matter volumes in the occipital lobes and neocerebellum.  Furthermore, higher p 

factor scores were associated with reduced fractional anisotropy in pontine pathways linking the 
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neocerebellum with the thalamus and prefrontal cortex. This network of brain regions is thought 

to be a forward monitor of incoming sensory information, generating and updating internal 

models for motor as well as cognitive tasks(13).  In addition, activation of the neocerebellum has 

been associated with cognitive control tasks,(14) reflecting its contribution to the extended 

cognitive control network including the dorsolateral and medial prefrontal cortex(15).  Thus, our 

observed p factor associations along with meta-analytic results suggest that transdiagnostic risk 

for common forms of mental illness may be associated with structural deficits in a network of 

brain regions supporting cognitive control.  However, the putative functional consequences of 

these observed structural associations have not yet been examined. 

 Resting-state functional connectivity is a powerful tool in clinical neuroscience because it 

can be readily administered across patient populations(16, 17), demonstrates trait-like 

stability(18) as well as moderate heritability(19, 20), and represents a powerful probe of the 

intrinsic architecture of neural networks that play a primary role in shaping task-based network 

activity and associated behaviors(21).  In addition, altered intrinsic functional connectivity 

within the default mode network (DMN), and frontoparietal network (FPN), both of which are 

linked to higher order cognition, have been broadly linked to psychopathology across categorical 

disorders(22–24).  Thus, resting-state measures of intrinsic network connectivity represent one 

avenue for extending the structural associations of the p factor to variability in functional neural 

dynamics representing mechanisms through which risk may emerge. 

 Here, we investigate intrinsic functional connectivity correlates of the p factor in a 

volunteer sample of 614 university students from the Duke Neurogenetics Study.  While our 

previous research in this sample identified discrete structural correlates of the p factor in the 

occipital lobes, neocerebellum, and pons, we opted for a whole-brain exploratory analysis of 
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intrinsic connectivity to capture functional differences beyond these regions and impose minimal 

assumptions about the nature of p factor associations in the brain. While there are many 

exploratory methods for investigating resting state functional connectivity, we performed a 

Connectome-Wide Association Study (CWAS)(25) of the p factor using multidimensional matrix 

regression (MDMR)(26).  In contrast to traditional seed-based approaches, MDMR allows a 

search across the whole brain for multivariate connectivity patterns that vary with p factor 

scores, while at the same time making few assumptions about the data or expected effects.  

Unlike clustering(27) or independent components analysis,(28) MDMR does not require a priori 

estimates of the dimensionality of the data or choosing networks or connections of interest.  In 

addition, MDMR does not require arbitrary decisions about thresholding matrices (as in many 

graph analysis techniques(29)), while retaining the advantages of interpretability and 

visualization of traditional seed based approaches.  For these reasons, we conducted a CWAS to 

identify associations between p factor scores and intrinsic functional connectivity. 

 

Methods 

Participants.  Data for this study come from the Duke Neurogenetics study (DNS), which was 

designed to allow for examination of predictive links between genes, brain, behavior and risk for 

mental illness among 18 to 22-year-old university students.  DNS participants were recruited 

primarily from the Duke University student body via flyers and online postings.  After successful 

completion of the DNS protocol, participants received financial compensation as well as a free 

23andMe account.  While all 1333 DNS participants completed mental health assessments and 

structural neuroimaging, resting-state fMRI was only collected on a subset due to revisions of the 

MRI protocol to accommodate two new task-fMRI scans which led to removal the resting-state 
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scans from the protocol. Specifically, resting-state data was collected on 614 consecutive 

participants; therefore, this subsample is broadly representative of the entire DNS sample and 

does not suffer from further selection bias.  All participants provided informed consent in 

accordance with the Duke University Medical Center Institutional Review Board guidelines 

before participation.  All participants were in good general health and free of the following 

conditions, known to artifactually influence MRI data collection: (1) medical diagnoses of 

cancer, stroke, head injury with loss of consciousness, untreated migraine headaches, diabetes 

requiring insulin treatment, chronic kidney or liver disease; (2) use of psychotropic, 

glucocorticoid or hypolipidemic medication; and (3) conditions affecting cerebral blood flow and 

metabolism (e.g., hypertension). One goal of the DNS was to study mental health and illness; 

therefore, participants were not excluded if they met criteria for substance abuse or a mental 

illness. 

 

Clinical Diagnosis.  Current and lifetime DSM-IV Axis I disorder or select Axis II disorders was 

assessed with the electronic Mini International Neuropsychiatric Interview(30) and Structured 

Clinical Interview for the DSM-IV subtests(31) respectively.  Importantly, diagnosis wasn’t an 

exclusion criterion, as the DNS seeks to establish broad variability in multiple behavioral 

phenotypes related to psychopathology.  Allowing for a broad spectrum of symptoms is 

particularly critical for accurately deriving p factor scores.  Nevertheless, no participants were 

taking any psychoactive medication during or at least 14 days prior to their participation.  Of the 

605 participants with data included in our analyses, 133 individuals had at least one DSM-IV 

diagnosis, including 76 with alcohol use disorders, 24 with non-alcohol substance use disorders, 

33 with major depression disorder, 26 with bipolar disorder, 7 with panic disorder (no 
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agoraphobia), 9 with panic disorder including agoraphobia, 4 with social anxiety disorder, 8 with 

generalized anxiety disorder, 10 with obsessive compulsive disorder, and 7 with eating disorders. 

While this is a university-based convenience sample that is not representative of the broader 

population in intelligence or parental education (due to selective admissions criteria of Duke 

University), the sample is broadly representative of the general population in terms rates of 

mental illness(32).  

 

Derivation of p factor scores.  In previous work(12), our group replicated the p factor  in the 

DNS using confirmatory factor analysis of self-report and diagnostic interview measures of 

internalizing, externalizing, and thought disorder symptoms.  These p factor scores were 

extracted using the standard regression method from those analyses and standardized to a mean 

of 100 (SD = 15), with higher scores indicating a greater propensity to experience all forms of 

psychiatric symptoms.  Further details on the derivation of the p-factor scores can be found in the 

supplement. 

 

Image acquisition.  Each participant was scanned using one of two identical research-dedicated 

GE MR750 3 T scanners equipped with high-power high-duty-cycle 50-mT/m gradients at 200 

T/m/s slew rate, and an eight-channel head coil for parallel imaging at high bandwidth up to 

1MHz at the Duke-UNC Brain Imaging and Analysis Center.  A semi-automated high-order 

shimming program was used to ensure global field homogeneity.  A series of 34 interleaved axial 

functional slices aligned with the anterior commissure-posterior commissure plane were acquired 

for full-brain coverage using an inverse-spiral pulse sequence to reduce susceptibility artifacts 

(TR/TE/flip angle=2000 ms/30 ms/60; FOV=240mm; 3.75×3.75×4mm voxels; interslice 
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skip=0).  Four initial radiofrequency excitations were performed (and discarded) to achieve 

steady-state equilibrium.  For each participant, 2 back-to-back 4-minute 16-second resting state 

functional MRI scans were acquired.  Participants were instructed to remain awake, with their 

eyes open during each resting state scan.  To allow for spatial registration of each participant's 

data T1-weighted images were obtained using a 3D Ax FSPGR BRAVO with the following 

parameters: TR = 8.148 ms; TE = 3.22 ms; 162 axial slices; flip angle, 12°; FOV, 240 mm; 

matrix =256×256; slice thickness = 1 mm with no gap; and total scan time = 4 min and 13 s. 

 

Image Processing.  Anatomical images for each subject were skull-stripped, intensity-

normalized, and nonlinearly warped to a study-specific average template in the standard 

stereotactic space of the Montreal Neurological Institute template using the ANTs SyN 

registration algorithm(33, 34).  Time series images for each subject were despiked, slice-time-

corrected, realigned to the first volume in the time series to correct for head motion using AFNI 

tools(35), coregistered to the anatomical image using FSL’s Boundary Based Registration(36), 

spatially normalized into MNI space using the non-linear ANTs SyN warp from the anatomical 

image, resampled to 2mm isotropic voxels, and smoothed to minimize noise and residual 

difference in gyral anatomy with a Gaussian filter set at 6-mm full-width at half-maximum.  All 

transformations were concatenated so that a single interpolation was performed.  

Time-series images for each participant were furthered processed to limit the influence of 

motion and other artifacts.  Voxel-wise signal intensities were scaled to yield a time series mean 

of 100 for each voxel.  Motion regressors were created using each subject’s 6 motion correction 

parameters (3 rotation and 3 translation) and their first derivatives(37, 38) yielding 12 motion 

regressors.  White matter (WM) and cerebrospinal fluid (CSF) nuisance regressors were created 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2018. ; https://doi.org/10.1101/196220doi: bioRxiv preprint 

https://doi.org/10.1101/196220
http://creativecommons.org/licenses/by/4.0/


 9

using CompCorr(39).  Images were bandpass filtered to retain frequencies between .008 and .1 

Hz, and volumes exceeding 0.25mm frame-wise displacement or 1.55 standardized DVARS(40, 

41) were censored.  Nuisance regression, bandpass filtering and censoring for each time series 

was performed in a single processing step using AFNI’s 3dTproject. Participants were excluded 

if they had less than 185 TRs left after censoring (resulting in inadequate degrees of freedom to 

perform nuisance regressions), resulting in a final sample of 605 subjects.  

 

CWAS.  To make the analysis computationally tractable, time-series were extracted from a 

parcellated atlas instead of using voxelwise data.  We used the Lausanne atlas parcellated into 

1015 equally sized regions through the program easy_lausanne 

(github.com/mattcieslak/easy_lausanne).  Time-series data for each subject were then processed 

using CWAS.  Described extensively elsewhere(25), CWAS consists of 3 processing steps.  

First, beginning with a single ROI time-series, seed-based connectivity analysis is conducted to 

generate a whole-brain functional connectivity map for each participant.  Second, the average 

distance (1 minus the Pearson correlation) between each pair of participant’s functional 

connectivity maps is computed, resulting in a distance matrix encoding the multivariate 

similarity between each participant’s connectivity map.  Finally, multi-dimensional matrix 

regression (MDMR) is used to generate a pseudo-F statistic quantifying the strength of the 

association between the phenotype of interest, here p factor scores, and the distance matrix 

created in the second step.  The advantage of MDMR is allowing covariates to be entered into 

the regression and utilizing non-parametric permutation to generate p-values for each ROI.  

These three steps are repeated for each of the 1015 ROIs, resulting in a whole-brain map that 

represents the association between p factor scores and whole-brain connectivity at each ROI.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2018. ; https://doi.org/10.1101/196220doi: bioRxiv preprint 

https://doi.org/10.1101/196220
http://creativecommons.org/licenses/by/4.0/


 10

CWAS was performed to identify seed regions with whole-brain patterns of connectivity are 

related to p factor scores.  Participant sex was included as a covariate, and 500,000 permutations 

were performed to generate p-values.  To minimize false positives across the 1,015 ROIs, a false 

discovery rate(42) (FDR) correction was applied. The threshold for statistical significance was 

set at q = .05. 

 

Seed-based analyses.  MDMR identifies a set of ROIs with patterns of whole-brain connectivity 

associated with p factor scores.  However, it is still unclear how the connectivity of these ROIs 

relates to the scores.  Previous research using CWAS(25, 43, 44) has demonstrated the utility of 

using traditional seed-based connectivity follow-up analyses to better understand the networks 

and brain regions that drive the associations discovered through MDMR.  Similar analyses were 

performed here for each ROI identified via MDMR.  Seed-based connectivity maps were created 

and correlations were converted to Z statistics via the Fischer R to Z transform.  Whole-brain 

correlations between these connectivity values and p factor scores were calculated, including sex 

as a covariate.  Importantly, these follow-up analyses do not represent independent statistical 

tests as they were performed post-hoc to the family wise error controlled MDMR findings.  

Accordingly, these follow up analyses maps are not thresholded to visualize all information that 

was relevant to the MDMR step.  

 

Results 

Demographics.  From the 614 participants who completed two resting-state scans, 605 had data 

that survived quality control procedures.  Of these, 336 were women, and the mean age was 
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20.23±1.19 years old.  Scores for the p factor ranged from 76.71to 191.96 with a mean of 99.80, 

sd of 15.39. 

 

Multi-dimensional matrix regression. Whole brain maps from 1,015 ROIs were compared to 

estimate the multivariate distance (dissimilarity) between each subject map at every ROI.  

MDMR was then used to statistically test the association between these distances and individual 

p factor scores.  MDMR revealed that four ROIs had whole-brain connectivity patterns that were 

significantly associated with p factor scores. This included the left lingual gyrus(x = 28, y =  85, 

z = -18; corrected p = .9680), right middle occipital gyrus (x = -31, y =  94, z = -0; corrected p = 

.9743), and two adjacent parcels of the left middle occipital gyrus (x = 32, y =  93, z = -5; 

corrected p = .9949) and (x = 30, y =  96, z = 0; corrected p = .9949) (Figure 1). 

 

Follow-up intrinsic connectivity analyses.  The follow-up connectivity analyses of each seed 

identified through MDMR revealed the primary network associations for each seed as well as 

their pattern of whole-brain connectivity associated with p factor scores.  These analyses showed 

striking convergence across MDMR-selected ROIs wherein the mean whole-brain pattern of 

connectivity for each seed showed subtle variation, but largely outlined the canonical resting-

state visual processing network(45).  The connectivity of each ROI with visual and 

somatosensory regions decreased with increasing p factor scores, while the connectivity between 

each ROI and transmodal association regions(46) increased with increasing p scores (Figure 2). 

 Further analyses were conducted to better characterize the above consistent patterns of p 

factor associations with the intrinsic connectivity of all seeds by averaging the independent 

whole-brain connectivity maps.  The resulting average z-scores were summarized for each of the 
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7 Yeo networks(47) to quantify their respective contribution to the associations with p factor 

scores (Figure 3).  These analyses revealed the DMN and FPN as the major networks for which 

intrinsic functional connectivity was positively correlated with p factor scores.  In contrast, a 

more modest but notable negative correlation was observed between p factor scores and the 

intrinsic functional connectivity between the visual association cortex and somatomotor network. 

 

Discussion 

Here, we provide a novel extension of prior structural neural correlates of the p factor to the 

intrinsic architecture of the whole-brain functional connectome.  Our unconstrained connectome-

wide MDMR analysis revealed a circumscribed relationship between p factor scores and the 

whole-brain intrinsic connectivity of 4 nodes in visual association cortex.  These findings are 

generally consistent with our earlier work finding a negative correlation between p factor scores 

and gray matter volume in the occipital cortex(12).  Further investigation of the patterns of 

intrinsic connectivity driving this relationship primarily implicated hyper-connectivity between 

visual association cortex and heteromodal frontoparietal (FPN) and default mode networks 

(DMN).  While differences in the intrinsic functional connectivity of visual areas is not 

commonly thought of as a core feature of psychopathology, our findings are not unique in 

pointing to dysfunction in visual association cortex and are consistent with a growing body of 

literature implicating sensory processing in transdiagnostic research. 

Selection and suppression of incoming sensory information is an important component of 

goal directed behavior. Functional connectivity between visual and heteromodal association 

cortices (including FPN and DMN) has been shown to be critical for selecting task-relevant 

information(48, 49). Here we find that individual differences in the functional connectivity of 
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visual association cortex with the FPN and DMN are associated with the p factor. Although 

speculative, our findings may indicate more effortful or less efficient integration of bottom-up 

sensory information with attentional demands and executive control processes in those at higher 

risk for mental illness.  The specificity of this pattern to visual and not other sensory association 

cortices may reflect the dominance of the visual modality in guiding human perception of the 

external world and, possibly equally, the construction of internal models necessary for higher 

cognitive processes including executive control(50, 51). 

Supporting evidence can be found in studies of schizophrenia and bipolar disorder, where 

visual network connectivity has been implicated in deficits involving the binding of visual 

objects(52) and in processing of visual stimuli(53).  Functional connectivity between frontal 

association and visual cortex has also been associated with disrupted working memory in 

depression(54, 55) and in neurocognitive deficits in schizophrenia(56).  While the visual cortices 

are not often thought of as primary to dysfunction in psychopathology, these studies suggest that 

visual cortical dysfunction may play a role in neurocognitive deficits present in many forms of 

psychopathology(57–59).  Additionally, when assumptions are relaxed and whole-brain, resting-

state connectivity analyses are performed, connections between the visual cortex and frontal 

association cortex have been shown to be predictive of psychopathology in depression(60) and 

schizophrenia(61).  It is possible that the relative sparsity of links between visual cortex 

dysfunction and psychopathology partially reflects a bias in resting-state analyses towards strong 

assumptions about where in the brain findings are expected, which could result in missing 

associations with visual networks.  Now that many large imaging datasets that include 

psychiatric data have been publicly released, our findings encourage further unbiased, data-

driven whole-brain analyses in search of transdiagnostic neural correlates of psychopathology. 
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While our findings implicate visual association cortex in the general liability for mental 

illness, they do so primarily through its connectivity with the FPN and DMN.  These networks 

consist of heteromodal association cortex that processes information from multiple sensory 

domains, and consist of brain regions most implicated in higher order thought and executive 

control of other networks(46).  The unique role of the FPN and DMN in complex cognition(62–

66) place them centrally in many etiologic theories of psychopathology(22, 23, 67–69), making 

their primary role in driving the association between visual cortex connectivity and p factor 

scores particularly relevant.  

The frontoparietal network in particular has been linked to the core cognitive faculty of 

executive control,(21, 63, 68) which contributes to mental health and general well-being by 

shaping successful goal directed behavior(70). Fittingly, disrupted FPN activity has been linked 

to psychopathology across categorical disorders including schizophrenia(71), depression,(72) 

and bipolar disorder(73). Building off of this body of research, an emerging theory suggests that 

the relative integrity of the FPN and associated executive control mechanisms are fundamental 

for the capacity to self-regulate, manage symptoms, and succeed in treatment(22).  Our current 

findings are consistent with this framework by demonstrating that higher p factor scores 

regardless of diagnosis are associated with relative hyper-connectivity of the FPN with the visual 

association cortex, suggesting one way through which FPN dysfunction may be manifest as 

psychopathology. 

 In addition to the frontoparietal network, our analyses implicate hyper-connectivity 

between the visual association cortex and default mode network as a function of higher p factor 

scores.  The DMN has been generally linked to introspection, autobiographical memory, and 

future-oriented thought(69).  Interestingly, DMN activity is suppressed in attention demanding 
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tasks(69, 74) and altered DMN activity has been broadly observed across categorical psychiatric 

disorders(23, 67). Connectivity between the DMN and visual association cortex is important in 

the suppression of internally generated distracting information(49).  Taken together, 

transdiagnostic risk for mental illness as indexed by p factor scores may lead to more effortful or 

less efficient processing when internally generated thought and externally generated sensory 

information compete for attention. 

 While providing initial evidence that broad risk for all forms of common mental illness is 

manifest as alterations in the intrinsic connectivity of functional neural networks, our analyses 

were exploratory by design and replication in independent samples is needed.  Given prior 

research implicating the FPN and DMN across categorical disorders, we focused our above 

discussion on the potential relevance of intrinsic connectivity between visual association cortex 

and these networks in the emergence of transdiagnositic risk for mental illness.  While the 

intrinsic connectivity of these networks also exhibited an outsized influence on the association 

with p factor scores, variation between visual association cortex and other resting-state networks 

contributed as well, albeit more modestly (Figure 3).  MDMR uses information from all whole-

brain connections in selecting seeds, and the inferential significance comes from the aggregate of 

connections rather than any one in particular.  Thus, formally testing the relative contributions of 

different networks is not typically conducted.  While we think future studies of the p factor will 

benefit from using our observations of intrinsic connectivity between visual association cortex 

and both DMN and FPN as a priori starting points, the potential relevance of other networks 

should not be ignored until the patterns reported herein are replicated. 

 Additional limitations, which can be addressed in future research, include the relatively 

limited range of psychopathology, especially severe forms including psychosis, represented in 
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our volunteer sample of young adults.  Future research should extend our analyses to more 

diverse populations including individuals with severe mental illness. While the DNS is broadly 

representative of population base rates of common forms of mental illness(32), it is not 

representative of the general population in terms of socioeconomics or intelligence.  Thus, 

extension of these findings to population representative samples is needed. In addition, our 

results need to be replicated in well-powered independent samples to establish the reliability of 

these associations and provide unbiased estimates of the true effect sizes(75).  In fact, we 

adopted a rigorous data-driven, unbiased approach in the current discovery analyses to minimize 

false positives and effect size inflation (i.e., “Winners Curse”) and bolster future attempts at 

replication. Our current analyses were also limited to the intrinsic connectivity of nodes within 

the cerebrum as our resting-state fMRI acquisition protocol did not afford full coverage of the 

cerebellum, including the neocerebellar subregion identified in our earlier structural analyses.  

Thus, we are unable to determine the relationship between p factor scores and the intrinsic 

functional connectivity of the cerebellum.  We anticipate that current state-of-the-art multiband 

image acquisition protocols will routinely allow for full coverage of the cerebellum and, 

subsequently, direct analyses of how its intrinsic connectivity may scale as a function of p factor 

scores.  The observational nature of our study represents another limitation as we cannot 

establish causal links between p factor scores and intrinsic connectivity.  Longitudinal designs 

may better address causality and temporal order of these phenomena.  Future research employing 

transcranial magnetic stimulation, closed-loop fMRI, and intervention designs can further map 

causal relationships. 

These limitations notwithstanding, our current work provides initial evidence for unique 

connectome wide functional signatures of the p factor.  Consistent with emerging transdiagnostic 
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and dimensional research into the neural basis of psychopathology(11, 12, 44), our analyses 

reveal that increased broad risk for all common forms of mental illness is associated with higher 

intrinsic connectivity between visual association cortex and both frontoparietal and default mode 

networks.  Such hyper-connectivity suggests that increased risk for psychopathology may be 

manifest as greater effortful or less efficient executive control as well as poor regulation of self-

referential information processing.  These patterns place alterations of the functional connectome 

squarely in the middle of converging theories of network dysfunction in psychopathology, 

further suggesting the p factor as a promising tool in clinical neuroscience. 
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Figure 1.  Data driven multi-dimensional matrix regression (MDMR) analysis revealed four
regions with whole-brain connectivity patterns significantly associated with p factor scores: two
adjacent parcels of the left middle occipital gyrus (left panel), left lingual gyrus (middle panel),
and right middle occipital gyrus (right panel).  These four clusters are projected onto a surface
volume for visualization. 

 

Figure 2.  Follow-up connectivity analyses of the four seeds identified through MDMR revealed
a highly-conserved pattern of altered connectivity between visual association cortex and both
frontoparietal and default mode networks as a function of p factor scores. All results were
projected from the volume onto a surface to aid visualization. Left panel: MDMR-derived seed
regions.  Middle panel: average intrinsic connectivity for each seed.  Right panel: connectome
wide intrinsic connectivity patterns for each seed as a function of p factor scores.
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Figure 3.  Mean pattern of intrinsic connectivity as a function of p factor scores across the
networks associated with each of the four MDMR-derived seeds in visual association cortex (left
panel).  The relative contributions of seven canonical intrinsic cerebral networks(47) to this mean
pattern of connectivity (right panel). 
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