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Abstract 

Background: Hepatocellular Carcinoma (HCC) is the leading cause of cancer deaths worldwide as well as 
in Egypt. We aimed to use Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) gene 
editing technique to induce forced down-regulation of the circRNA which consequently modified miRNA 
expression in HepG2 cell line to prove the regulatory relationship between the RNA parts of an in silico-
detected competing endogenous RNA network in HCC 

Method: We first retrieved hsa_circ_0000064-miR-1285-TRIM2 mRNA from public microarray databases 
followed by  in silico modelling  to mimic the regulation kinetics of cirRNA associated ceRNA network 
.Secondly, we performed polymerase chain reaction (PCR)-based amplification of synthetic fragments, 
Gibson assembly of both CRISPR and non CRISPR based circuits, E-coli transformation, 
plasmid  purification, HePG2 cell line transfection. Finally Expression levels of the chosen RNAs in 
hepatocellular carcinoma (HCC) cell line, HepG2, were examined by quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) and the cytotoxic effect was validated by viability assay.TRIM2 
protein expression was proved by immunohistochemistry  and flowcytometry . 

Results: Induction of hsa_circ_0000064 into HepG2 cell line via CRISPR- and non-CRISPR mediated 
synthetic circuit resulted in statistically significant decrease in cell number and, then, cellular viability with 
marked increase in hsa_circ_0000064 and TRIM2 mRNA levels and concomitant decrease in miR-1285 
expression in HepG2 cell line compared with control (p<0.0).Moreover exogenous expression of 
hsa_circ_0000064 in HepG2 cell line showed increased expression of the tumor suppressor protein, 
TRIM2. 

Conclusions: Our integrative approach, including in silico data analysis and experimental validation proved 
that CRISPR-mediated synthetic circuit-based overexpression of hsa_circ_0000064 was more efficient 
than conventional transient transfection, representing a promising therapeutic strategy for HCC. 

Keywords: Circular RNA, Therapy, Hepatocellular Carcinoma, miRNA, Bioinformatics, CRISPR. 

 

Data Availability 

Our Data was made available online on the IGEM wiki of team AFCM-EGYPT:  
http://2017.igem.org/Team:AFCM-Egypt. Synthetic parts have been submitted to IGEM Parts Registry. 
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Introduction 

Liver cancer is one of the leading causes of cancer deaths worldwide, accounting for more than 600,000 
deaths each year. In the united states alone, it's estimated that there are about 39,230 of newly diagnosed 
cases and about 27,170 reported deaths of primary liver cancer and intrahepatic bile duct cancers in 2016 
[1]. In Egypt, liver cancer is a serious if not the most serious cancer problem. It is ranked the first 
among  cancers in males (33.6%) and equally with breast cancer among females based upon results of  the 
National Cancer Registry Program (NCRP 2008-2011) [2]. The rising rates of HCC in Egypt are due to the 
high prevalence of hepatitis B virus (HBV) and hepatitis C virus infection (HCV) among Egyptian 
population [3]. According to literature, El-Zayadi et al. reported almost 2 folds increase in HCC among 
chronic liver disease patients over a decade [4]. Also, according to Ibrahim et al, HCC is the first most 
common cancer in males and second most common cancer in females [2]. Therefore, we need effective 
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strategies for early detection and better management of HCC which will be of great value in developing 
countries with limited resources and high incidence rates of HCC. 

It is well known that the human genome is actively transcribed. However, there are only about 20,000 
protein-coding genes, accounting for about 2% of the genome and the rest of the transcripts are non-coding 
RNAs including microRNAs and long non-coding RNAs (lncRNAs). Non-coding RNAs play an important 
role in the regulation of gene expression, including chromatin modification, transcription and post-
transcriptional processing. It has been confirmed that dysregulation of non-coding RNAs is accompanied 
by a number of human pathological diseases, mainly tumors [5]. The interplay between diverse RNA 
species, whereby one transcript can reciprocally modulate the expression of another transcript by 
sequestering shared miRNAs, has been referred to as ceRNA crosstalk. CeRNA activity has been attributed 
to both protein-coding and non-coding RNA transcripts. Although ceRNA research is rapidly growing, 
accumulating evidence suggests that this additional dimension of post-transcriptional gene regulation, in 
which RNA transcripts titrate miRNA availability, represents a biologically relevant, well-conserved and 
widespread mechanism of regulation [6]. CircRNAs are a large class of RNAs that have shown huge 
capability as gene regulators in humans. Beyond being a potentially major approach of gene regulation, 
circRNAs may represent new roles in cancer diagnosis and targeted therapy. CircRNAs have been 
previously shown to play a role in the development and progression of HCC. Thereby, modulation of cirRNA 
and miRNA by gene editing tools may significantly decrease cell viability, inhibit motility and invasiveness 
and sensitize cells to multi-stimuli-induced apoptosis [7-9]. 

Circular RNAs have been reported to act in a sponge manner regulating miRNAs in competing 
endogenous RNA networks (ceRNA) which presents a promising role regarding their therapeutic and 
diagnostic potential. Circular RNA has_circ_0004277 have been reported to possess potential diagnostic 
implications for acute myeloid leukemia [10]. Circular RNAs has_circ_0013958 and has_circ_0000190 
have been also reported to have of promising diagnostic value for lung cancer and gastric cancer 
respectively [11]. Other circular RNAs were reported to be of therapeutic importance including 
has_circ_0016347 which regulates invasion and proliferation of osteosarcoma [12]. These circular RNAs 
usually target mRNAs through regulating miRNAs, so for example circular RNA has_circ_0045714 have 
been proved to apoptotic pathways of chondrocytes through targeting miR-193b/IGF1R axis [13]. In a 
study conducted on colorectal cancer tissues, hsa_circ_001569 was selected as a potential regulator of 
cancer progression, with high expression level detected by RT-qPCR analysis. Whereas the interaction 
with miR-145, miR-145 was found to target the 3′ UTR of E2F5, BAG4 and FMNL2 transcripts in 
colorectal cells, reducing their mRNA expression levels, however the presence of circ_001569 increased 
the protein levels of these transcripts where it was also reported that disrubitng expression of circRNA 
resulted in deregulation of target gene expression through miRNA-mediated circRNA-associated ceRNA 
crosstalk interactions [14].  

Many attempts have been made to restore the function of dysfunctional genes by gene knock-down using 
small interfering RNAs (siRNAs) and microRNAs (miRNAs) [15]. There are several genetic tools available 
for this purpose, including zinc finger nuclease (ZFN) and transcription activation like element nuclease 
(TALEN) [16] Recently, a novel genetic engineering tool called clustered regularly interspaced short 

palindromic repeats (CRISPR)/CRISPR‐associated (Cas) system is more advanced because of easy 
generation and high efficiency of gene targeting. Importantly, it only requires changing the sequence of 
the guide RNA (gRNA). CRISPR/Cas9 has rapidly gained popularity due to its superior simplicity [17]. In 
this system, a single guide RNA (sgRNA) complexes with Cas9 nuclease, which can recognize a variable 
20-nucleotide target sequence adjacent to a 5′-NGG-3′ protospacer adjacent motif (PAM) and introduce a 
DSB in the target DNA [18]. The induced DSB (DNA double stranded break) then triggers DNA repair 
process mainly via two distinct mechanisms: namely, the non-homologous end joining (NHEJ) and the 
homology-directed repair (HDR) pathways. The CRISPR system is meant to provide adaptive immunity 
against phages and other mobile genetic elements in bacteria and archaea. While most of the early work 
has largely been dominated by examples of CRISPR-Cas systems directing the cleavage of phage or 
plasmid [19-21]. 
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In this IGEM project we aimed to analyze circRNA and disease bioinformatics databases to select 
significantly relevant circRNA for HCC. Furthermore, we aimed to analyze circRNA-miRNA interaction 
databases to retrieve competing endogenous RNA specific for HCC, with further characterization of the 
expression of the serum cirRNA-associated ceRNA genes in HepG2 cell line to evaluate their role in 
pathogenesis of HCC. Finally we wanted to compare between the efficacy of a CRISPR and non-CRISPR 
based synthetic circuit on modulating cirRNA-associated ceRNA related HCC expression using HepG2 cell 
line. 

 

Methods 

Dry Lab Methods: 

Bioinformatics Analysis for Biomarker filtration and Target Determination 

We started by filtering HCC-associated circular-RNAs from bioinformatics databases such as Circ2Trait 
[22] then, we used circInteractome database [23] to retrieve filter the highly associated miRNAs with our 
Circular RNA on Interest besides determining their binding sites on circular RNA transcript. 
TargetScan [24] Database bioinformatics tool was used to filter out the associated mRNAs to be regulated 
in previously Designed ceRNA network. 

 

Deterministic Modeling 

We have used sysBio [25] R package to simulate models using a differential equation solver. Modeling 
Protocol for each model started by using new Model function to create a new model. Then we created a 
model object list specifying information about model including; name, reactions, species, rates, parameters, 
rules, models, ODEs. Using the addMAreaction function, we added specified reactions into the model - to 
be interpreted using the law of mass action. We used addMAreactRate and addParameters functions to 
specify information about the reaction rates and parameters involved in the model. Finally, we defined 
species using the add Species function. Consequently, we used makeModel function to create a 
mathematical representation of the model. This function transforms reactions into corresponding ODEs, 
and creates stochastic matrix and propensity function to perform stochastic modeling. We used 
simulateModel function to run simulation (solve ODEs). This function calls the validateModel function that 
checks if all components of the models have been defined. Finally, we used plotResults function to visualize 
simulation results. The modeling environment has been designed and implemented in an open-source 
publicly available online tool [26]. 

Stochastic Modeling 

Stochasticity is a key player in regulation of gene expression especially when the number of molecular 
species involved is small. Thus, genetic circuits such as ceRNA networks are usually embedded in more 
complex networks such as miRNA-Target networks, so that induced interactions might be of regulatory 
value. A stochastic analysis of the ceRNA system is necessary as potential crosstalk between miRNA 
targets is quite indicative of the degree of interaction between regulatory networks [27].     

Circular RNA (hsa_circ_0000064) Structural Modelling 

We have used Vienna RNA package [28] for generating structural models of circular RNA 
hsa_circ_0000064. RNA sequence was retrieved from circInteractome database [23] to be used as an input 
for Vienna package. Vienna RNA package depends on extension of linear folding algorithms. Circular RNA 
molecules are modelled through post-processing of computed linear arrays. Using Vienna RNA Package, 
we could compare structural modifications between linear and circular structures in a memory-effective 
manner [29]. The energy contribution of Exterior loop should be scored in circular structures, on the other 
hand, exterior loops have no energy contribution in linear structures. RNAfold structure prediction tool was 
used to calculate the minimum free energy (MFE) and back traces an optimal secondary structure, 
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mountain plot and dot plots were also generated. To compute centroid structure we used McCaskill's 
algorithm [30] through -p option.   

 

 

Micro-RNA mir-1825 Structural Modelling 

We have used SimRNA [31] Tool for simulating circular structure of miRNA mir-1825 as SimRNA generates 
a circular starting conformation with the 5’ and 3’ ends close to each other as a starting structure for 
simulation. After specifying Secondary structure restraints using multiline dots-and-brackets format, the 
dots-and-brackets input is parsed and internally converted into the dedicated list of restraints. W used a 
default of 500 steps and 1% of the lowest energy frames taken to clustering. 

RNA Interaction Modeling 

IntaRNA [32] is a program for fast and accurate prediction of interactions between two RNA molecules. It 
has been used to predict mRNA circRNA sites, to represent the interaction energy in the RNA Sponge. 

Cas9 Modeling 

Cas9 of S.pyogenes (BBa_K1218011) part was translated and modelled by SWISS Model server [33, 
34] Using SWISS-Model web server the modelling process was initiated by template recognition process 
where templates were selected according to the maximum sequence similarity 5FQ5 was of highest 
sequence identity (Sequence identity: 100.00), Finally, the geometry of the resulting model is regularized 
by using a force field. The global and per-residue model quality has been assessed using the QMEAN 
scoring function. For improved performance, weights of the individual QMEAN terms have been trained 
specifically for SWISS-MODEL. Models were selected based on their sequence identity as well as Swiss-
MODEL quality assessment parameters GMQE and QMEAN4. 

Nucleic acid Modelling 

The most stable 2D structure of gRNA was generated using vfold [35]. The Rosetta package FARFAR [36, 
37] was used to build the 3D structure of gRNA, 3D-DART [38] was used to generate a 3D structure of the 
target DNA representing the cleavage site and PAM of cas9, while PAM flexibility was studied using 
Naflex [39]. 

 

Docking protocol 

Following HADDOCK [40, 41] docking protocol, consisting of randomized orientations and rigid body energy 
minimization, we have calculated 1,000 complex structures. The 200 complexes with the lowest 
intermolecular energies have been selected for semi-flexible simulated annealing in torsion angle space. 
The resulting structures have been then refined in explicit water. Finally, the solutions have been clustered 
using a threshold value of 1.5 A˚ for the pairwise backbone RMSD at the interface, and the resulting clusters 
have been ranked according to their average interaction energy (defined as the sum of van der Waals, 
electrostatic and AIRs energy terms) as well as buried surface area. HADDOCK scoring is performed 
according to the weighted sum (HADDOCK score) of different energy terms which includes van der Waals 
energy, electrostatic energy, distance restraints energy, direct RDC restraint energy, intervector projection 
angle restraints energy, diffusion anisotropy energy, dihedral angle restraints energy, symmetry restraints 
energy, binding energy, desolvation energy and buried surface area. One lowest energy structure of the 
lowest intermolecular energy cluster was selected for analysis. This lowest energy structure displayed no 
AIR restraint violations within 0.3 A˚ threshold and was accepted as the final docked structure for the 
complex. 

Network Modeling 
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Regulatory interactions between circRNA-miRNA and miRNA-mRNA, were predicted computationally by 
Targetscan [24] and miRanda algorithm [42], then integrated to represent the regulatory network of ceRNA 
network of circRNA hsa-circ-0000064 which is HCC related. Both species have been subjected to 
adjacency matrix set up based on the weight of interaction between predicted targets, circRNA hsa-circ-
0000064 and its’ target miRNAs as well as miRNA mir-1825 and its target mRNAs were represented by 
weight matrix describing relation strength from selected databases. Finally, the final proposed ceRNA 
network was constructed using Cytoscape 3.5.1 [43]. Network analysis suggested the TRIM2 tumor 
suppressor which we used to experimentally assess the regulatory function of ceRNA network. 

Wet Lab Methods: 

We wish to build a single expression plasmid that can express hsa_circ_0000064, we created 2 methods 
for biobrick assembly to tackle this issue; CRISPR- and non-CRISPR-based synthetic constructs with both 
genetic constructs consisting of 5 fragments. We retrieved all the required parts from IGEM parts registry, 
our new parts were submitted to the parts registry and the genetic constructs were designed 
computationally using benchling framework. 

  

Competent E coli Transformation and plasmid DNA purification 

We have managed to transform our competent cell colonies with pcDNA™3.1(+) vector containing either 
CRISPR or direct genetic construct containing hsa_circ_0000064 and miRNA binding site. With these cell 
lines we will be able to make more copies of each part in preparation for the arrival of our synthesized 
sequences. Purification of plasmid DNA was done according to Monarch® Plasmid Miniprep Kit (NEB 
#T1010) Protocol. 

HepG2 transfection with CRISPR and non-CRISPR-based genetic construct or empty vector 

First genetic construct was introduced into cells using LipofectamineTM 2000 reagent (Invitrogen, Carlsbad, 
CA, USA) according to manufacturer's instructions. Second CRISPR-based genetic construct was 
introduced into cells simultaneously with pFETCh_vector expressing hsa_circ_0000064 and HDR using 
LipofectamineTM 2000 reagent. 

Viability assay 

Cell viability assay was performed by means of a cell counting kit (CCK-8; Dojindo, Kumamoto, Japan). A 
96-well plate containing pre-cultured cells (3,000 cells/well) was subjected to media replacement by the 
WST- 8 reagent (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl) - 5–2, 4-disulphonyl)-2H-tetrazolium 
monosodium salt) (which when reduced turns to orange formazan) at the indicated time points. Both the 
developed color and the absorbance were measured at 450 nm, with the amount of formazan being directly 
proportional to the number of living cells, using a microplate reader (NEC, Tokyo, Japan). 

QRT-PCR for circular RNA –miRNA –mRNA genetic network in human sera samples 

RT2 miRNA First Strand Kit (Qiagen, Valencia, CA) using miScriptHiSpec buffer was used to prepare cDNA 
from 1 µg RNA. Real-time PCR was performed using a Step one Plus Applied Biosystem. All reactions 
were performed in triplicates. 

hsa-circ-0000064  and TRIM mRNA   expression in HCC cell lines were assessed using QuantiTect SYBR 
Green PCR Kit (Qiagen, Valencia, CA) and gene specific primers( Circular RNA specific  Quantict Primer 
and  Hs_TRIM2_1_SG Quantict Primer),  on Step One Plus™ System (Applied Biosystems Inc., Foster, 
CA).  Beta actin was used as a housekeeping gene. Divergent primers forhsa_0000064 primers were 
designed by Circinteractome datatabase ("http://circinteractome.nia.nih") and synthesized by (Qiagen, 
Germany). 

MiR-1825 expression in HCC cell line was assessed by mixing the total cDNAs with miRNA-specific forward 
primer (Hs_miR-1825_1 miScript Primer Assay miScript Primer Assay) and miScript SYBR Green PCR Kit 
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(Qiagen/SABiosciences Corporation, Frederick, MD) according to the manufacturer’s protocol.  RNU-6 was 
used as an internal control 

The PCR program for Syber green based QPCR was as follow: denaturation at 95°C for 15 min; followed 
by 40 cycles of denaturation for 10 sec at 94°C; then annealing for 30 sec at 55°C; finally, extension for 34 
sec at 70°C. Each reaction was done in duplicate. Relative quantification of gene expression was calculated 
using the 2-ΔΔCt method. The cycle threshold (Ct) value of each sample was calculated using Step One 
Plus™ software v2.2.2 (Applied Biosystems). Any Ct value above 36 was considered negative. 
Amplification plots and Tm values were performed to ensure the specificities of the amplicons.   

 

Flow Cytometery and Immunocytochemical staining (ICC) 

Single cell suspension was prepared from harvested cultured cells, fixed with100ul immunofixation buffer, 
then incubated at room temperature for 20-30 minutes protected from light after permeabilization by 
permibilization buffer, cells were washed with PBS and labelled with TRIM2 antibody (PA5-57431). Goat 
anti- Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody Alexa Fluor® 488 conjugate (A-11034) 
was used at a concentration of 4 μg/ml and analysed by FlowCytometryFor immunostaing, adherent HepG2 
cells were fised then stained as above. No nonspecific staining was observed with the secondary antibody 
alone, or with an isotype control. The images were captured at 60X magnification. ICC staining of HepG2 
cells after co-expression of hsa-circ-0000064 expressing vector shows the brightness of TRIM2 protein 
prominently in the HepG2 cells transfected with either CRISPR- or non-CRISPR-based genetic construct. 

Results 

Dry Lab Results: 

Biomarker Filtration Results 

Our modeled ceRNA network contained, the circular RNA (has-cric-0000064) competing for shared 
microRNA (mir-1825) and sequestrate it within the cell as they have MREs (microRNA sponge); lastly 
deregulating our target gene (TRIM2). 

Assembly of genetic constructs 

Our design aims to compare the function of both circuits at regulating non-coding RNAs 

The first CRISPR circuit submitted as BBa_K2217026 part and ceRNA circuit submitted as BBa_K2217025 
part. 

 
Figure-1 shows our two main circuits submitted as separate parts the first CRISPR circuit submitted as 
BBa_K2217026 part and ceRNA circuit submitted as BBa_K2217025 part. 

For constructing CRISPR-based circuit submitted as BBa_K2217026 part, Part BBa_K2217018 was 
composed of U6 (BBa_K2217002) as a promoter for gRNA (BBa_K2217003) (Designed using MIT CRISPR 
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web tool [44] The gRNA needs a scaffold to guide the Cas9 (BBa_K2217004) and finally it was terminated 
by SV40 poly(A) signal Termination (BBa_K2217005). Part BBa_K2217019 was composed of CMV 
Enhancer as well as CMV Promoter (BBa_K2217000 and  BBa_K2217006 respectively) as constitutive 
promoters to enhance the transcription process of the Cas9 (BBa_K1218011) part which was transcribed 
using  T7 Promoter (BBa_K2217007). The design aimed at generating Homology Directed Repair instead 
of Non-Homologous end joining repair of Cas9 by knocking in the circular RNA as a Competing endogenous 
RNA enhancing its transcription to regulate miRNA action, so we designed Homology repair template 
(BBa_K2217009) to be transfected on a separate donor vector then terminated with CYC1 terminator 
(BBa_K2217008). 

In order to construct ceRNA-based circuit submitted as BBa_K2217025 part, we used the CAG promoter 
composed of CMV enhancer and Chicken B-actin Promoter (BBa_K2217013) while circular RNA (hsa-circ-
0000064) was submitted to the registry after biomarker filtration using bioinformatics databases as 
(BBa_K2217001). Finally it was terminated by SV40 poly (A) signal Termination (BBa_K2217005). Part 
BBa_K2217022 was composed of CMV Enhancer as well as CMV Promoter (BBa_K2217000 
and  BBa_K2217006 respectively) as constitutive promoters to enhance the transcription process of the 
laci that was submitted (Ba_K2217012). We also improved the fragment’s characterization by adding the 
miRNA binding site of the miRNA mir-1825 as determined computationally using circInteractome 
database [23] where we hypothesized its function as a trigger for miRNA binding and synthesis. Finally, it 
was terminated by SV40 poly (A) signal Termination (BBa_K2217005). Part BBa_K2217023 is composed 
of lac operator (BBa_K2217016) and the lac promoter (BBa_K2217017) as a weak constitutive promoter in 
a trial to improve characterization of ceRNA network using yfb (BBa_K2217014) detection using flow 
Cytometery. Finally, it was terminated by Poly_gh termination (BBa_K2217015). 

Modeling Results 

CeRNA network Deterministic Model results 

Our Model aims to describe the regulation of competing endogenous RNA (ceRNA) network using ordinary 
differential equations to get insights about the kinetics of molecular species inside the network. The Model 
was constructed in Synthetic biology markup language SBML. SBML models were converted to SBOL 
(synthetic biology open language) to describe biological parts and their interactions including: transcription, 
degradation, association and dissociation of both the ceRNA and miRNA. The Model describes an inhibitory 
relationship, where the miRNA binding to ceRNA inhibits the miRNA action on its target mRNA. We can 
estimate that effect from the change in free miRNAs in the simulation run. Parameters have been estimated 
from the work of Bosia et al. [27] and described as a system of ODEs. 

 
Figure-2 Graphical representation for ceRNA model 
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Figure-3 Set of Ordinary Differential Equations ODEs Representing ceRNA network deterministic model 
according to Bosia et al. 

 

Table-1 Parameter values of ceRNA network regulation 

Symbol Description Value 

Ksmi Rate of transcription of miRNA 0.2s−1 

Ksc Rate of transcription of ceRNA 0.155s−1 

Kgmi Rate of degradation of miRNA 0.0003s−1 

Kgc Rate of degradation of ceRNA 0.0004s−1 

Kas 
Rate of association of RNA Sponge 

Complex 
0.0005s−1 

Kds 
Rate of dissociation of RNA Sponge 

Complex 
0.0003s−1 

Kgs 
Rate of degradation of RNA Sponge 

Complex 
0.00031s−1 
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Figure-4 Simulation run for ceRNA network model ODEs 

The simulation in Figure-4 Shows inhibitory relationship along time axis to the quantity of free miRNA along 
the transcription of circular RNA as a competing endogenous RNA  which may describe the sponge action, 
regarding the elevation of free miRNA action on target mRNAs. 

 

CRISPR Deterministic Modeling Results 

Our Model aims to describe the regulation of CRISPR network. The Model was constructed in Synthetic 
biology markup language SBML, including: transcription, degradation, and association of gRNA and cas9. 
The model describes the binding interaction between the gRNA and cas9 that is supposed to be informative 
to the cas9 about the cleavage site near the PAM. Parameters have been estimated from the work of 
R.moore et al [46].and described as a system of ODEs. 

 
Figure-5 Set of Ordinary Differential Equations ODEs Representing CRISPR network deterministic model 
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Figure-6 Graphical representation for CRISPR network deterministic model (Moore et al.) 

Table-2 Parameter values of cas9 network regulation 

Symbol Description Value 

Kcas9 Rate of Cas9 Production 0.000374737 

KgRNA Rate of gRNA Production 0.0025284 

δcas9 
Rate of Cas9 

Degradation 
0.0000552 

δgRNA Rate of gRNA Degradation 0.000252 

Kf Cas9+gRNA binding rate 0.00006 
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Figure-7 Simulation run for CRISPR network model 

The simulation in Figure-7 describes interaction association between gRNA and cas9 along time axis to the 
quantity of formed complexes cas9. gRNA along the transcription of gRNA as a directing RNA molecule 
which may describe the complex action regarding focusing cas9 cleavage action on target DNA. 

Stochastic Modelling Results 

Simulations were plotted (Figure-8, Figure-9) to visualize species evolution overtime. These plots were 
used to assess the accuracy of stochastic modelling using ssa function by comparing stochastic models to 
deterministic modeling simulations. We have used the function solveStoch of sysBio R package which 
allowed us to simulate the model using Gillespie stochastic simulation algorithm through the "ssa" function 
of the GillespieSSA package. A vector was created for modeling parameters. Species, rates and 
parameters of each model were checked. The list of reactions for stochastic simulation was prepared as a 
propensity function list. Stochastic matrix was generated where each column represents a reaction while 
rows represents reaction species. A vector of propensity functions was created. Finally, models were solved 
stochastically. 
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Figure-8 Stochastic Simulation run for ceRNA network model using GillespieSSA [45] R package. This 
simulation was run using sysBio [25] R package describing stochastic effects on ceRNA network Sponge 
production and species levels in the network. 

 
Figure-9 Stochastic Simulation run for CRISPR network model using GillespieSSA [45] R package. This 
simulation was run using sysBio [25] R package describing stochastic effects of gRNA.cas9 association to 
form their intermediate complex. 
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Structural Modeling Results 

 
Figure-10 RNAFOLD simulation of circular RNA structure 

Minimum free energy prediction using RNAFOLD generated an optimal secondary structure in dot-bracket 
notation from a centroid structure of 0.00 kcal/mol minimum free energy to 1.78 kcal/mol. Thermodynamic 
ensemble prediction using RNAFOLD computed a free energy of -51.72 kcal/mol, The frequency of the 
MFE structure in the ensemble is 0.07 % and the ensemble diversity is 65.27. 

 
Figure-11 (left) energy dot-plot of circRNA model, (Right) Mountain plot of the same model 

To the left is the energy dot 2D plot which indicates all of the base pairs involved in optimal and suboptimal 
secondary structures, both axes of the graph represent the same RNA sequence. Each point drawn 
indicates a base pair between the ribonucleotides whose positions in the sequence are the coordinates of 
that point on the graph. To the right is the mountain plot plotting the number of base pairs enclosing a 
sequence position versus number of base pairs enclosed at this position. The plot includes the MFE 
structure (Red), the thermodynamic ensemble of RNA structure (Green), and the centroid structure (Blue). 
Additionally we used it to estimate the positional entropy for each position. 
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Figure-12 Best Secondary Structure Cluster Predicted by SimRNA for miRNA mir-1825, the back bone 
colored orange while the riboneucleotides colored green and blue with red capping of the double stranded 
endings using PyMol visualization software. 

Table-3 IntaRNA interaction energy prediction of RNA sponge 

circRNA Position miRNA Position Energy 

hsa_circ_000006
4 

44-58    hsa-mir-1825    1-15 -15.21740 

 

Energy 
-15.21740 
kcal/mol 

Hybridization Energy            -22.2 

Unfolding Energy - circRNA        6.43246 

Unfolding Energy - miRNA        0.53411 

Position - circRNA RNA            44 -- 58 

Position - miRNA RNA            1 -- 15 

Position Seed - circRNA RNA              52 -- 58 

Position Seed - miRNA RNA        1 -- 7 

 
Figure-13 RNA sponge graphical representation of circRNA hsa_circ_000004 and miRNA hsa-mir-1825 

in vienna format 
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Position-wise minimal energy profile 

The following plots give us insights into the overall circRNA-miRNA interaction abundance. A minimal 
energy profile is provided for both sequences of both miRNA and circRNA, taking RNA-RNA interaction in 
consideration. 

 
Figure-14 Minimal energy profile is provided for miRNA sequence 

 
Figure-15 Minimal energy profile is provided for Circular RNA sequence representing sponge interaction. 
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Figure-16 Heatmap visualization of the minimal energy for each non-coding RNA in the sponge 

Cas9 Modelling results 

The geometry of the resulting model is regularized by using a force field. The global and per-residue model 
quality has been assessed using the QMEAN scoring function. For improved performance, weights of the 
individual QMEAN terms have been trained specifically for SWISS-MODEL. Models were selected based 
on their sequence identity as well as Swiss-MODEL quality assessment parameters GMQE and QMEAN4. 

 
Figure-17 Quality estimation plots based on SWISS-MODEL parameters for Cas9 
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Table-4 Docking scores of both complexes using HADDOCK 

Complex 
Cas9.gRNA 
Cluster 

Cas9.gRNA:Target DNA 
Cluster 

HADDOCK score -75.64 +/- 22.9 -340.7 +/- 23.9 

clusters 13 17 

Total Interaction energy(Kcal mol-1) 1.0 +/- 0.6 6.3 +/- 2.1 

Van der Waals energy(Kcal mol-1) -66.7 +/- 19.5 -97.3 +/- 14.1 

Electrostatic Energy(Kcal mol-1) -284.4 +/- 21.7 -342.0 +/- 73.6 

Desolvation energy(Kcal mol-1) 20.6 +/- 4.0 -201.2 +/- 14.6 

Restraints violation energy(Kcal mol-
1) 

273.9 +/- 32.63 262.1 +/- 60.51 

Buried Surface area 1912.6 +/- 303.2 2785.3 +/- 168.1 

z-score -2 -2 

 

For Cas9.gRNA docking, HADDOCK clustered 105 structures in 13 cluster(s), which represents 52.5 % of 
the water-refined models that were generated by HADDOCK. Note that currently the maximum number of 
models considered for clustering is 200. While for Cas9.gRNA: Target DNA docking, HADDOCK clustered 
107 structures in 12 cluster(s), which represents 53.5 % of the water-refined models were generated by 
HADDOCK. 

Docking Results analysis 

 
Figure-18 The clusters (indicated in color in the graphs) are calculated based on the interface-ligand 
RMSDs calculated by HADDOCK, with the interface defined automatically based on all observed contacts 
to the left is Cas9.gRNA Cluster and to the right is Cas9.gRNA:Target Cluster of lowest energy 
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Figure-19 PyMol visualization of Modelled Structures of cas9, gRNA and Target DNA+PAM 

 
Figure-20 PyMol visualization of Modelled Structures of cas9, gRNA and cas9.gRNA docked complex 
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Figure-21 PyMol visualization for cas9: gRNA docked to Target DNA to identify cas9 cleavage of target 

DNA 

Network Modelling Results 

The ceRNA network and its graphical representation helped us to interpret the interaction mechanisms and 
signalling of circRNAs, miRNAs, and regulated mRNAs that have significant association to circRNAs 
regulatory role in HCC. 

 
Figure-22 Regulatory network of circular RNA ceRNA network was constructed using Cytoscape 3.5.1 [43]. 
Network analysis mir-1825 targets network and circ-000064 associated miRNAs suggested the TRIM2 
tumor suppressor which we used to experimentally assess the regulatory function of ceRNA network. 
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Wet Lab Results 

Gel electrophoresis of amplified Fragments 

 
Figure-23 Agarose gel electrophoresis of amplified Fragments of first genetic construct (non-CRISPR-
based): Lane 1: MW marker 500bp-10.000bp), Lane 2: Fragment 1 (CMV promoter +CMV enhancer), Lane 
3: Fragment 2 (Laci+miRNA binding site+SVpoly A) , Lane 4: Fragment 3(Lac promoter +Lac o+YFP+ Poly 
A signal), Lane 5:  Fragment 4(cag promoter) at 1108bp, Lane 6: Fragment 5(hsa_circ_0000064+ 
terminator). 

 
Figure-24 Agarose gel electrophoresis of amplified Fragments of second genetic construct (CRISPR-
based): Lane 1: MW marker 500bp-10.000bp), Lane 2: Fragment 1 (U6 promoter + gRNA Target + gRNA 
scaffold + SV40 Terminator), Lane 3: Fragment 2(2[CMV enhancer CMV promoter + T7 promoter), Lane 4 
Fragment 3(cas9; BBa_K1218011), Lane 5 Fragment 4(CYC1 Terminator), Lane 6: MW marker 500bp-
10.000bp). 
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Competent E coli Transformation 

 
 

Figure-25 (Left to right) the first plate represents E-coli colony growth (+ve plasmid expressing 
hsa_circ_0000064, so E.coli can grow in LB with ampicillin due to AMPR gene. The second plate represents 
Marked E-coli colony growth (+ve plasmid expressing cas9 and vector carrying  hsa_circ_0000064 and 
homology directed arm, so E.coli can grow in LB with ampicillin due to AMPR gene. The third plate 
represents E-coli colony growth (-ve plasmid) so E.coli cannot grow in LB media which contain ampicillin. 

HepG2 transfection with CRISPR and non-CRISPR-based genetic construct or empty vector 

 
 

Figure-26 Assessment of transfection efficiencies. Cells were visualized 48 hours post-transfection under 
phase contrast microscope (A): Negative control (transfection with empty vector); (B): HepG2 transfected 
with genetic construct expressing hsa_circ_0000064: Shows decrease in cell count: Exogenous expression 
of hsa-circ-0000064 induces apoptosis in HepG2 cells.   Phase contrast of the HepG2 cells   two days after 
transient transfection with hsa-circ-0000064 expressing vector; (C):HepG2 transfected with genetic 
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construct expressing Cas9 and pFETCh_vector expressing hsa_circ_0000064 and HDR shows marked 
apoptosis. 

 
48 h after transfection, marked decreases in HepG2 cell counts and viability were observed by inverted 
microscopy. All the experimental conditions induced a cell-death phenotype that could be easily 
distinguished from control, indicating cell death after transfection with hsa-circ-0000064 via CRISPR and 
non-CRISPR-based genetic constructs with marked efficacy of CRISPR based genetic construct. 

Expression of hsa_circ_0000064-miR-1285-TRIM2 mRNA in HEPG2 cell line after transient 
expression of hsa_circ_00064 via CRISPR and non-CRISPR- based genetic constructs 

Our results showed that the up-regulation of hsa_circ_0000064, after transfection, was significantly 
associated with inhibition of miR-1285 expression (about 4 folds less) and up-regulation of TRIM2 
mRNA which in turn inversely correlated with the cellular viability and the number of living HepG2 cells. 
These results indicate that hsa_circ_00064 may mediate TRIM2 up-regulation and subsequently show toxic 
effect in HCC cells. The present study showed that the CRISPR-based genetic circuit showed a markedly 
significant increase in hsa_circ_0000064 expression than that induced by non-CRISPR-based method. 
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Figure-27 Box plot analysis representing the effect of HepG2 cell transfection with CRISPR- and non-
CRISPR- based genetic constructs or a control on the relative expression of the chosen genes by 
qPCR.  (A) Hsa_circ_0000064; (B) miR-1285-3p; (C) TRIM2mRNA. The results are expressed as the 
means±SD. *P<0.05 

Flow Cytometery 

It seems that has-circ-0000064 overexpression induces   apoptosis via acting as sponge to miR-1285, 
resulting in up regulation of TRIM2 protein. TRIM2 functions as an E3 ubiquitin ligase that directs 
proteasome-mediated degradation of target proteins. Thus, it controls the apoptotic response acting as 
tumor suppressor gene. 
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Figure-28 Flow cytometric analysis of HepG2 after transient transfection with hsa-circ-0000064 expressing 
vector or backbone. The cells overexpressing hsa-circ-0000064 showed accumulation of TRIM2 protein 
with mock. A: HepG2 transfected with CRISPR-based genetic construct; B:  HepG2 transfected with non- 
CRISPR based genetic construct; C: Negative control; D: Positive control.   

Immunohistochemical staining 

Representative result of IHC staining of TRIM2 protein after transient transfection of has-circ-0000064 
expressing vector mock in HepG2 cells. D. IHC staining of HepG2 cells after co-expression of hsa-circ-
0000064 expressing vector shows the brightness of TRIM2 protein prominently in the HepG2 cells 
transfected with either CRISPR- or non-CRISPR-based genetic construct.  
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Figure-29 Immunohistochemical staining of HepG2 after transient transfection with hsa-circ-0000064 
expressing vector or backbone. The cells overexpressing hsa-circ-0000064 showed accumulation of TRIM2 
protein with mock. A: HepG2 transfected with CRISPR-based genetic construct; B:  HepG2 transfected with 
non-CRISPR-based genetic construct; C: Positive control; D: Auto fluorescence.    

Discussion 

Given the intricate interplay among the diverse RNA species, our team this year modified last year's 
proposal with the application of CRISPR to knock-in our CircRNA gene into the genome of the HCC cell 
lines. RNA transcripts, like the long non-coding RNA and circular RNA, act as competing endogenous RNAs 
(ceRNAs) or natural microRNA sponges as they communicate with and co-regulate each other by 
competing for binding to shared microRNAs; a family of small non-coding RNAs that are important post-
transcriptional regulators of gene expression. This regulation is scientifically effective way in manipulating 
critical roles in both normal physiology and tumorigenesis. miRNAs were revealed to repress their target 
genes via binding imperfectly to miRNA response  elements (MREs) on the 3 ′ untranslated regions (3 ′ -
UTRs) of target RNA transcripts and reducing expression of their target proteins either by mRNA breakdown 
or translational repression. Because each miRNA could target hundreds of genes and vice versa, each 
gene can be targeted by many miRNAs; such molecules are critically mentioned in the fine-tuned regulation 
of gene expression. RNAs functioning as in this course are named ceRNA. CeRNAs having common MREs 
can compete for binding of miRNA. It was suggested that these ceRNAs can talk to each other via their 
ability to compete for binding of miRNA. This cross-talk produces comprehensive cis and Trans organizing 
communication across all the transcriptome. Moreover, ceRNA networks further depend on the subcellular 
dispersion and tissue particularity of RNAs and miRNAs found in a specific cell type at a specific. The 
concentration of miRNAs is an important factor for ceRNA activity. If there are a less number of miRNAs 
than their targets, the ceRNA activity is reduced as the targets will remain largely unrepressed. Also, if there 
are more miRNAs as compared to their targets, there would have been no cross- regulation due to almost 
a universal repression of the targets regulating gene expression. Most circRNAs have been demonstrated 
as being tissue specific [10]. An example of the effect of circRNA-miRNA interaction is a study that 
evaluated the expression profile of human circRNAs in HCC tissues and identified circMTO1 (mitochondrial 
translation optimization homologue; hsa_circRNA_0007874/hsa_circRNA_104135) as being significantly 
down-regulated in HCC tissues. Bad prognosis and survival rate was detected in patients with low 
circMTO1. Via a biotin-labeled circMTO1 probe to preform RNA in vivo precipitation in HCC cells. Dan Han 
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et al. identified miR‐9 as the circMTO1‐associated miRNA. It was also proven that circMTO1 suppresses 
progression of HCC by sponging miR-9 and thereby promoting p21 expression [47]. Acting in a ceRNA 
manner, circular RNA has_circ_0001564 has been proved to regulate mir-29c-3p in a sponge manner, 
which have significant role for regulating tumorigenicity in osteosarcoma [48]. Has_circ_0010729 have 

been shown to act through a ceRNA that includes mir-186/HIF-1α axis regulating apoptosis and proliferation 

of endothelial cells [49]. 

The association between circRNAs and cancer has been indicated in several recent studies mainly because 
of the major role that miRNAs play in gene regulation and cancer development. Therefore, there is a wide 
field of research open to new discoveries and validation of circRNA–miRNA–mRNA pathways, mainly 
related to cancer diagnosis and therapeutic treatments. This project provides a comprehensive comparison 
of genetic regulation effectiveness between competing endogenous RNA networks ceRNA versus CRISPR 
based genetic repair circuits. 

 

Conclusion 

In this study, we adopted an integrative approach combining in silico data analysis with experimental 
validation. For the first time, we examined a set of HCC-related genes, cirRNA-miR-mRNA, linked to 
apoptosis. Based on the aforementioned findings, a reasonable interpretation of our hypothesis is 
that hsa_circ_0000064 competes with miR-1285 modulate the expression of TRIM2 mRNA that is closely 
linked to apoptosis pathway in liver. Interestingly, introducing this hsa_circ_0000064 into HCC cell line by 
CRISPR-based method  seems to be more efficient than simply introducing plasmid transiently 
expressing hsa_circ_0000064  that may be promising therapeutic strategy for HCC. 
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