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Abstract

DNA methylation changes in peripheral blood have been identified in relation to lung cancer risk.
However, the causal nature of these associations remains to be fully elucidated. Meta-analysis of four
epigenome-wide association studies (918 cases, 918 controls) revealed differential methylation at 16
CpG sites (FDR < 0.05) in relation to lung cancer risk. A two-sample Mendelian randomization analysis,
using genetic instruments for methylation at 14 of the 16 CpG sites, and 29,863 cases and 55,586
controls from the TRICL-ILCCO lung cancer consortium, was performed to appraise the causal role of
methylation at these sites on lung cancer. This approach provided little evidence that DNA methylation
in peripheral blood at the 14 CpG sites play a causal role in lung cancer development, including for
cg05575921 AHRR, where methylation is strongly associated with lung cancer risk. Further studies are
needed to investigate the causal role played by DNA methylation in lung tissue.
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Background

Lung cancer is the most common cause of cancer-related death worldwide, estimated to be
responsible for nearly one in five cancer-related deaths (1). Epigenetic changes have been implicated
during the early stages of carcinogenesis and clonal expansion (2, 3) and several DNA methylation
changes have been recently identified in relation to lung cancer risk (4-6). Interestingly, many of these
identified methylation changes have also been associated with smoking, the most well-established risk
factor for lung cancer. Therefore, DNA methylation may serve as a mediator of the influence of
smoking on lung cancer, as previously reported (4); as an independent risk factor; or alternatively as a
non-causal biomarker. Given the plasticity of epigenetic markers in response to modifiable exposures,
any DNA methylation changes that are causally linked to lung cancer are potentially appealing targets
for intervention (7, 8). However, these epigenetic markers are sensitive to reverse causation, being
affected by cancer processes (8), and are also prone to confounding, for example by socio-economic
and lifestyle factors (9, 10).

Epigenome-wide association studies (EWAS) for lung cancer have recently been conducted, with
genome-wide DNA methylation measured using the Illlumina Infinium® Human Methylation 450
BeadChip on DNA extracted from pre-diagnostic, peripheral blood samples (4, 5). The prospective
design of these studies minimizes the potential impact of reverse causation, although it is possible that
latent cancer undiagnosed at the time of blood draw impacted peripheral methylation changes in
these individuals. One site that has been identified is cg05575921, within the aryl hydrocarbon
receptor (AHRR) gene, which has been consistently replicated in relation to both smoking (11) and lung
cancer (4, 5, 12). Functional evidence suggests that this region could be causally involved in lung
cancer (13). However, the observed association between methylation and lung cancer might simply
reflect separate effects of smoking on lung cancer and DNA methylation, i.e. the association may be a
result of confounding (14), including residual confounding after adjustment for self-reported smoking
behaviour (15, 16).

One alternative approach to assess whether an association between exposure and disease reflects
causation is the use of Mendelian randomization (MR) (17, 18). MR uses genetic variants robustly
associated with modifiable factors as instruments to infer causality between the modifiable factor and
disease outcome, overcoming most of unmeasured or residual confounding and reverse causation. MR
may be adapted to the setting of DNA methylation (19-21) with the use of methylation quantitative
trait loci (mQTLs), which are genetic variants that strongly correlate with the methylation state of
nearby CpG sites (22). The degree of association of these mQTLs with lung cancer may be used to shed
light upon the potential causal role of DNA methylation on lung cancer incidence.

In this study, we performed a meta-analysis of four lung cancer EWAS nested within prospective
cohorts to identify CpG sites at which differential methylation is associated with lung cancer risk and
applied Mendelian randomization to investigate whether the observed DNA methylation changes are
causally linked to lung cancer.
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Results

EWAS meta-analysis

To identify CpG sites at which methylation associated with lung cancer risk we conducted a meta-
analysis of four EWAS (N = 1,836 (918 cases, 918 controls)). The basic meta-analysis adjusted for
study-specific covariates identified 16 CpG sites associated with lung cancer at a false discovery rate
(FDR) < 0.05 (Model 1) (Figure 1). Adjusting for 10 surrogate variables (Model 2) and derived cell
counts (Model 3) gave similar results, but with slightly reduced effect sizes and larger P values at each
of the 16 sites (Table 1). We also investigated heterogeneity in effect estimates between the four
studies and found with the direction of effect did not vary between studies and the I statistic ranged
from 0 and 68.7, with a median of 38.6 for the top 16 sites in Model 1 (Supplementary Table 1,
Supplementary Figures 1-3). We next stratified individuals by smoking status: never (N = 304), former
(N =648) and current smokers (N = 857); individuals without smoking status information (N = 27) were
removed from the analysis. There was some evidence for heterogeneity in effect estimates at some of
the CpG sites by smoking status (1> 0.0-80.8%) (Supplementary Table 2, Supplementary Figure 4). At
cg01901332 ARRB1, cg01940273 ALPPL2, and cg23771366 PRSS23 the direction of effect differed in
never smokers compared to former and current smokers, but it was consistent amongst the three
strata for each of the other sites. The Tukey outlier identification method removed ¢g05951221 from
NOWAC former smokers, while all other sites were retained.

mQTL analysis

From the 16 CpG sites identified in the EWAS meta-analysis, 14 had one or more corresponding mQTLs
in the Accessible Resource for Integrated Epigenomics Studies (ARIES) (P < 1x10”) (Supplementary
Table 3). Of the 1,097 mQTLs identified across the 14 CpG sites, 928 were present in an independent
sample from NSHDS; 526 replicated at FDR < 0.05 and 98 replicated at a Bonferroni corrected
threshold (P < 0.05/928 = 5.39x107°) (Supplementary Table 4). The 526 replicated SNPs were
associated with 9 of the 14 CpG sites.

We next identified independent mQTLs (pruned for linkage disequilibrium [r? < 0.01]) for use as
genetic instruments for DNA methylation in Mendelian randomization analyses (Supplementary Table
5). Replicated mQTLs were included where possible to reduce the effect of winner’s curse, but for
those CpGs without a replicated SNP-methylation association, we ran the analysis using the SNP-
methylation associations identified in ARIES and have highlighted them in the tables and figures.
Independent mQTLs were found to explain between 4 and 11% of the variance in methylation at the
14 CpG sites, and we had 100% power to detect each of the effect sizes from the EWAS
(Supplementary Table 6).

Mendelian randomization

Two sample MR analysis was first conducted using mQTL-exposure effect estimates from ARIES
(discovery) (Supplementary Table 5) and mQTL-outcome effect estimates from the Transdisciplinary
Research in Cancer of the Lung and The International Lung Cancer Consortium (TRICL-ILCCO), which
has conducted genome-wide association study (GWAS) on lung cancer overall (29,863 cases, 55,586
controls) for individuals genotyped using the lllumina Infinium OncoArray-500K BeadChip (lllumina Inc.
San Diego, CA) (23) and from prior studies, joined by meta-analysis.

There was little evidence for a causal effect of methylation at these 14 sites on lung cancer. For 9 out
of 14 CpG sites the point estimates from the MR analysis were in the same direction as in the EWAS,
but of a much smaller magnitude (Figure 2); a Z-test gave evidence for a difference between the odds
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ratios from the EWAS and MR analyses at each site (P < 0.001, Supplementary Table 7). Using SNP
effect estimates from NSHDS for the 9 CpG sites that replicated (FDR < 0.05) (Supplementary Tables 4
and 5), findings were consistent with limited evidence for causal effect of peripheral blood-derived
DNA methylation on lung cancer.

Further secondary MR analyses were performed for lung cancer among never and ever smokers
separately (Supplementary Figure 5), as well as in 3 lung cancer subtypes: adenocarcinoma, squamous
cell carcinoma and small cell carcinoma (Supplementary Figure 6). There was little evidence of
differences between ever and never smokers at individual CpG sites (Z-test, P > 0.5). There was some
evidence for a possible causal effect of methylation at cg21566642 ALPPL2 and cg23771366 PRSS23 on
squamous cell lung cancer (OR = 0.85, [95% Cl, 0.75; 0.97] and 0.91 [95% ClI, 0.84; 1.0] per SD [14.4%
and 5.8%] increase in methylation respectively) as well as methylation at cg23387569 AGAP2,
cg16823042 AGAP2, and cg01901332 ARRB1 on lung adenocarcinoma (OR = 0.86 [95% Cl, 0.77 - 0.96],
0.84 [95% Cl, 0.74; 0.95], and 0.89 [95% ClI, 0.80; 1.00] per SD [9.47%, 8.35%, and 8.91%] increase in
methylation respectively). However, none of the results withstood multiple testing correction (FDR <
0.05). Full results for this MR analysis can be found in Supplementary Table 8. For those CpGs where
multiple mQTLs were used as instruments (cg05575921 AHRR and cg01901332 ARRB1), there was
limited evidence for heterogeneity in causal effect estimates (Q-test, P = 1) (Supplementary Table 9).

Using data from the Tobacco and Genetics (TAG) consortium, we investigated whether our mQTLs
were associated with four separate smoking behaviours: age of initiation, cigarettes smoked per day,
smoking initiation (ever vs. never smoked) and smoking cessation (former vs. current smoker). This
could violate the assumptions of MR that the genetic instruments are independent of confounding
factors and are not subject to horizontal pleiotropy (Supplementary Figure 7). For most mQTLs, there
was no clear evidence of association with the different smoking behaviours. However, single mQTLs
for cg05575921 AHRR, cg27241845 ALPPL2, and cg26963277 KCNQ1 showed some evidence for an
association with smoking cessation (former vs. current smokers) (log(OR) = 0.059 [95% ClI, 0.011;
0.106], -0.076 [95% ClI, -0.131; -0.020], and -0.0363 [95% ClI, -0.071; -0.002]) respectively, although
these associations did not withstand multiple testing correction (FDR < 0.05).

Potential causal effect of AHRR methylation on lung cancer risk

Similar to previous studies analysing a number of the cohorts included here (4, 5), our meta-analysis
found cg05575921 AHRR was most strongly associated with lung cancer risk (OR = 0.474 [95% ClI,
0.397; 0.566] per SD increase in methylation). In contrast, there was little evidence for a strong causal
effect of methylation at cg05575921 on lung cancer in the main MR analysis (OR = 0.921 [95% ClI,
0.971; 0.998] per SD increase in methylation). However, this result was based on two mQTLs identified
in ARIES that showed little evidence for replication in NSHDS (replication P = 0.629 and 0.243).

We chose to further investigate the possible causal effect of methylation at this site on lung cancer
risk, using both one-sample and two-sample MR (24), using individual-level data from the Copenhagen
City Heart Study (CCHS) and summary statistics from CCHS and TRICL-ILCCO, respectively.

For the one-sample MR analysis, 4 mQTLs were combined into an allele score (r* < 0.2). A per (average
methylation-increasing) allele change in the allele score was associated with a 0.73% (95% Cl 0.56,
0.90) increase in methylation (P < 1 x 10™°) and explained 0.8% of the variance in cg05575921
methylation in the CCHS (F statistic = 74.2) (Supplementary Table 10). Confounding factors were not
strongly associated with the genotypes in this cohort (P values > 0.11) (Supplementary Table 11).

In 8,758 participants in the CCHS (357 incident lung cancer cases), results provided some evidence for
an effect of DNA methylation of cg05575921 AHRR on total lung cancer risk (HR = 0.30 [95% CI 0.10,
1.00] per SD (9.2%) increase in methylation) (Supplementary Table 12). Furthermore, this effect
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estimate did not change substantively when individuals were stratified by smoking status (current,
former, never) (Supplementary Table 12).

Given contrasting findings with the main MR analysis, we performed further two-sample MR based on
the four independent SNPs associated with methylation at cg05575921 using data from the TRICL-
ILCCO consortium. Results of the two-sample MR approach showed no strong evidence for a causal
effect of DNA methylation on total lung cancer risk (OR = 1.00 (0.83, 1.10) per SD increase in
methylation in random effects meta-analysis) (Supplementary Figure 8), indicating that DNA
methylation at AHRR does not appear to be mediating the effect of smoking on all lung cancers. There
was also limited evidence for a causal effect of AHRR methylation (Supplementary Figure 8) when
stratified by cancer subtype and smoking status (Supplementary Figure 8). There was no strong
evidence for heterogeneity of the SNP effects in the MR analysis (Supplementary Table 13) and
conclusions were consistent when MR-Egger was used in sensitivity analyses (Supplementary Figure 8)
and when a weighted generalized regression method was used to account for correlation structure
between the SNPs (Supplementary Table 14).

Tumour and adjacent normal lung tissue methylation patterns

To investigate how methylation changes observed in peripheral blood in relation to lung cancer
corresponded to changes in lung tissue, we analysed methylation differences at all 16 CpG sites of
interest in lung cancer tissue and adjacent healthy lung tissue from the same patient using data from
The Cancer Genome Atlas (TCGA) (n=40 lung squamous cell carcinoma and n=29 lung
adenocarcinoma). For cg05575921 AHRR, there was no strong evidence for differential methylation
between lung adenocarcinoma tissue and adjacent healthy tissue (P = 0.963), and weak evidence for
hypermethylation in squamous cell lung cancer tissue compared to normal tissue (P = 0.035). All
results can be found in Figure 3 and a comparison between the MR analysis and these results can be
found in Supplementary Table 15.

Gene expression associated with mQTLs in blood and lung tissue

Data from the Gene-Tissue Expression (GTEx) consortium was next used to evaluate the influence of
the identified mQTLs on gene expression in blood and lung tissue. Of the 10 genes annotated to the 14
CpG sites, 8 genes were expressed sufficiently to be detected in lung (AVPR1B and CASC21 were not)
and 7 in blood (AVPR1B, CASC21 and ALPPL2 were not). Of these, gene expression of ARRB1 could not
be investigated as the mQTLs in that region were not present in the GTEx data. rs3748971 and
rs878481, which are mQTLs for cg21566642 and cg05951221 respectively, were associated with
increased expression of ALPPL2 (P = 0.002 and P = 0.0001 respectively). No other mQTLs were
associated with expression of the annotated gene at a Bonferroni corrected P value threshold (P <
0.05/19 = 0.0026) (Supplementary Tables 16-17).
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Discussion

Main findings

In this study, we verified findings from previous analyses which have identified DNA methylation
changes in relation to incident lung cancer, predominantly at CpG sites previously implicated in
relation to smoke exposure (4, 5). This meta-analysis of lung cancer EWAS nested within four
prospective cohorts identified 16 CpG sites associated with risk of lung cancer, 14 of which have been
previously identified in relation to smoke exposure (11) and 6 were highlighted in a previous study as
being associated with lung cancer (5). This previous study used the same data from the four cohorts
investigated here, but in a discovery and replication, rather than meta-analysis framework, which
limited the number of CpG sites identified.

We further evaluated evidence for a causal effect of DNA methylation on lung cancer risk using
Mendelian randomization. The data presented provide no supporting evidence that DNA methylation
in peripheral blood at CpG sites identified in the lung cancer EWAS play a causal role in lung cancer
development. These findings are in contrast to previous analyses which suggested that methylation at
two CpG sites investigated (AHRR and F2RL3) mediated a large proportion of the effect of smoking on
lung cancer risk (4). This previous study used methods which are sensitive to residual confounding and
measurement error that may have biased effect estimates (14, 25). Furthermore, despite the
longitudinal design, presence of subclinical disease could have also made the results liable to reverse
causation. These limitations are largely overcome with the use of instrumental variables in the
Mendelian randomization approach used here (14).

AHRR methylation

AHRR methylation is associated with smoke exposure in a range of tissue types (26-28), has been
found to be associated with gene expression in lymphoblasts, pulmonary macrophages and lung tissue
(26, 28, 29), and persists many years after smoking cessation (29-32). These features indicate that
methylation at this site may be biologically relevant and functional work has implicated AHRR
expression (and methylation status) in mediating the detoxification of polycyclic aromatic
hydrocarbons, which are principle carcinogenic agents in tobacco smoke (29).

In a previous work that used mediation analysis, it was estimated that 32% of the total effect of
smoking on lung cancer risk was mediated by differential methylation in the AHRR region implicated
(4). cg05575921 AHRR is located in a gene enhancer and methylation at this site has been found to be
inversely associated with gene expression in lymphoblasts (26). If this inverse relationship with
expression extrapolates to other tissue types, including lung tissue, then previous findings would have
implicated upregulation of AHRR in mediating the adverse effect of smoking on lung cancer risk (4).
However, this conflicts with a previous in vitro study that found AHRR to be a putative tumour
suppressor gene that was downregulated in lung cancer cell lines (13).

One possible explanation for the inconsistency between the observational and in vitro results is that
residual confounding from tobacco smoking could explain the inverse association between AHRR
methylation and lung cancer seen observationally and this possibility could not be fully excluded using
the statistical methods applied in the previous study (4, 14). Results of this MR analysis suggest that
differential methylation at AHRR does not have a strong causal effect on lung cancer, and the results
are in stark contrast with the observational analysis. MR analysis provided some evidence for an effect
of AHRR methylation on lung cancer within the Copenhagen City Heart Study in line with the
observational analysis. However, when we applied a two-sample MR analysis to improve power and
enable histological stratification of the analysis using summary GWAS data from the TRICL-ILCCO
consortium, effect estimates were null and there was evidence of a difference compared with
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observational findings. One possible explanation for a lack of causal effect is due to the limitation of
tissue specificity as we found that the mQTLs used to instrument cg05575921 were not strongly
related to expression of AHRR in lung tissue. However, findings from MR analysis were corroborated
by the lack of evidence for differential methylation at AHRR between lung adenocarcinoma tissue and
adjacent healthy tissue, and weak evidence for hypermethylation in squamous cell lung cancer tissue
compared to normal tissue. Furthermore, another study investigating tumorous lung tissue (n=511)
found only weak evidence for an association between smoking and cg05575921 AHRR methylation,
that did not survive multiple testing correction (P = 0.02) (33).

Null MR associations between cg05575921 AHRR methylation and lung cancer does not exclude the
pathway from being involved in the disease process. AHRR and AHR form a regulatory feedback loop,
with AHR acting to overexpress its repressor AHRR, which means that the actual effect of differential
methylation or differential expression of AHR/AHRR on pathway activity is complex (34).Thus, the AHR
pathway may still be causally implicated, with the CpGs mapping to AHRR merely reflecting a response
to smoking exposure.

Methylation at other CpG sites

While there was some evidence for a causal effect of methylation at some of the other CpG sites on
risk of subtypes of lung cancer, these effects were not robust to multiple testing correction and were
not validated in the analysis of tumour and adjacent normal lung tissue methylation nor in gene
expression analysis.

Strengths

Major strengths of this analysis include the use of MR approaches to integrate an extensive,
population-based epigenetic resource (ARIES) and summary data from a large lung cancer consortium
GWAS (TRICL-ILCCQ), in order to appraise the causal effect of methylation on lung cancer. The large
GWAS from a lung cancer consortium ensured the MR analyses were 100% powered to detect each of
the effect sizes observed in the EWAS.

In particular, we showed that the mQTLs used as instrumental variables were associated with
methylation in our discovery sample (ARIES) and in replication cohorts (NSHDS and CCHS). We also
found that for the most part, these genetic variants were not strongly associated with smoking
behaviour, which was hypothesized to be the most likely confounding factor in this context.

We were also able to appraise the functional relevance of our findings for methylation in peripheral
blood by investigating methylation patterns between tumour and adjacent normal lung tissue samples
from The Cancer Genome Atlas. Potentially causal DNA methylation alterations would mark cells that
become selected for and therefore enriched during tumorigenesis (27, 35). For the most part, this
pattern was not observed for the CpG sites investigated and therefore were largely consistent with
findings from the MR analysis, i.e. in accordance with no strong causal effect of methylation on lung
cancer at the top CpG sites from the EWAS study, with the exception of PRSS23 where methylation
levels did appear to differ between normal versus lung cancer samples in the same direction as the MR
and EWAS analyses.

Furthermore, we investigated expression of those genes annotated to the CpG sites identified in both
blood and lung tissue. For the most part, mQTLs did not strongly influence expression within either
tissue. This was with the exception of ALPPL2 where two of the mQTLs were strongly related to
expression in lung tissue, although methylation at this site appeared to have little impact on lung
cancer risk.
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Limitations

The MR analysis was limited by the lack of mQTLs for some of the identified CpG sites. Furthermore,
only one or two mQTLs were identified at the threshold of P < 1x107 after LD pruning. While these
mQTLs explained a reasonable proportion of variation in methylation, the lack of instruments did not
allow us to appraise potential pleiotropy for most of the analyses, using methods such as MR-Egger
(36). This was a concern given that we had included some trans-SNPs as genetic instruments, which
are typically thought to influence methylation at more CpG sites than cis-SNPs do, and could be
potentially pleiotropic. Where possible we omitted these SNPs, but for cg01901332 and cg08709672
only trans-SNPs were available, which has been highlighted in Supplementary Table 3/5. However,
analysis of AHRR methylation when we relaxed the criteria for mQTL selection and used more genetic
instruments as part of an allele score, allowed us to start to appraise pleiotropy in this context and
showed similar findings.

In two-sample MR, we primarily used SNP-methylation estimates from ARIES as this was our largest
mQTL dataset. However, “winner’s curse” may bias causal estimates in a two-sample MR analysis
towards the null if the discovery sample for identifying genetic instruments is used as the first sample
(37). To minimize the risk of this, we used SNP-methylation estimates from mQTLs that replicated in an
independent cohort (NSHDS) in secondary analysis. Despite some potential sample overlap between
NSHDS individuals and those in the TRICL-ILCCO dataset, which could bias results from two-sample MR
towards the confounded observational association, the two sample MR analysis using the NSHDs
mMQTLS were similar to the findings based on ARIES, indicating the potential impact of the bias from
either winner’s curse or sample overlap was minimal (Supplementary Figure 9).

To investigate potential residual confounding of the MR analysis, we investigated genetic associations
between the mQTLs and smoking status. While there was no strong evidence for SNP-smoking effects,
this was with the exception of mQTLs being used to instrument cg05575921 AHRR, cg27241845
ALPPL2 and cg26963277 KCNQ1 methylation, which were nominally associated with smoking
phenotypes. These associations may represent: true confounding of the methylation-lung cancer MR
analysis by smoking, the causal influence of methylation on smoking status, pleiotropy of SNPs
influencing both methylation and smoking, or chance associations. Nonetheless, these associations
were nominal and not strong enough to bias our MR findings substantially. We have not assessed the
potential confounding of the two-sample MR analysis by the other factors that were assessed in the
one-sample setting (sex, alcohol consumption, occupational exposure to dust and/or welding fumes,
and passive smoking). This is because GWAS summary statistics are not available for many of these
other traits, and we had hypothesized that smoking would be the strongest confounding factor in the
study.

Other possible limitations of MR include population stratification and canalization (17, 18, 38). Major
population stratification is unlikely since all studies investigated here consist only of individuals of
European ancestry. Canalization (or developmental compensation) could potentially bias the
Mendelian randomization effect estimates towards the null and thus may explain discrepancies
between MR and the observational results. However, the magnitude of bias would need to be very
large to fully explain the differences.

This study predominantly investigated effects of methylation levels in peripheral blood, which may not
be the most appropriate tissue in which to study causal associations with lung cancer and a more
pronounced effect may be observed in buccal cells (a source of squamous epithelial cells) (27) and lung
tissue (39). While a high degree of concordance in mQTLs has been observed across lung tissue, skin
and peripheral blood DNA (40), we were unable to directly evaluate this here. However, it was of
interest that the mQTLs we identified were not strongly related to gene expression in lung tissue,
which might have explained some of our null findings. Further studies should therefore consider direct
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links between methylation and expression in tissues of interest in prioritizing potentially causal CpG
sites.

This study only assessed the causal effect of 14 single CpG sites. While some of the identified CpG sites
reside in the same gene regions, our findings are typically not generalizable to methylation across the
whole gene and it remains possible that other CpG sites do have a causal effect on lung cancer risk. For
example, alternate sites (not cg05575921) within the AHRR region are correlated with AHRR
expression and knockdown of AHRR was correlated with greater lung tumor cell invasiveness (13).
Furthermore, if lung cancer risk is associated with a large number of DNA methylation changes across
the genome, with changes at each CpG site contributing little to the increase in risk of disease then our
power to detect differential methylation at individual sites is very low.

Some of the mQTLs used influence multiple CpGs in the same region, for example rs1048691 was used
to instrument differential methylation at both cg23387569 and cg16823042 AGAP2, suggesting
genomic control of methylation at a regional rather than single CpG level. Thus, methods to detect
differentially methylated regions (DMRs) and identify genetic variants which proxy for them may be
fruitful in probing the causal effect of methylation across gene regions rather than at single CpG sites.

Conclusion

While methylation at multiple CpG sites are observationally associated with lung cancer risk in EWAS
meta-analysis, Mendelian randomization suggests that methylation at these sites is not causally
implicated in lung cancer. Therefore, while methylation may be predictive of lung cancer risk
(especially as it is a strong biomarker of smoking (4, 12)), according to the present analysis it is unlikely
to play a causal role in lung carcinogenesis at the CpG sites investigated. Findings from this study issue
caution over the use of traditional mediation analyses to implicate intermediate biomarkers (such as
DNA methylation) in pathways linking an exposure with disease, given the potential for residual
confounding in this context (14). Rather, MR, which takes genetic variants randomized with respect to
confounding factors as proxies for an exposure of interest (i.e., DNA methylation), may be used to
identify causal effects, or reject spurious findings.

The findings of this study do not preclude the possibility that other DNA methylation changes are
causally related to lung cancer (or other smoking-associated cancers) (41). In addition, it is possible
that DNA methylation at these CpG sites in lung tissue has a causal effect on lung cancer, which we
were unable to directly evaluate here. Extending this robust causal modelling approach to other CpG
sites recently reported to have been linked to tobacco smoke (11) is advocated.
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Methods

EWAS Meta-analysis

This study involved a re-analysis of four lung cancer EWAS datasets previously investigated as part of a
discovery and replication (look up) design (5). To identify CpG sites at which differential methylation
associates with lung cancer risk with greater power (42), we conducted a meta-analysis of these four
EWAS that assessed DNA methylation using the lllumina Infinium HumanMethylation450 BeadChip,
which targets 485,512 CpG sites across the genome. All four studies are case-control studies nested
within prospective cohorts that measured DNA methylation in peripheral blood samples before
diagnosis: EPIC-Italy (185 case-control pairs), Melbourne Collaborative Cohort Study (MCCS) (367 case-
control pairs), Norwegian Women and Cancer (NOWAC) (132 case-control pairs) and the Northern
Sweden Health and Disease Study (NSHDS) (234 case-control pairs).

The study populations, laboratory methods, data pre-processing and quality control methods for each
of the four lung cancer studies have been described in detail elsewhere (5), but are briefly outlined in
the Supplementary Methods. At the various laboratory sites, samples were distributed into 96-well
plates and processed in chips of 12 arrays (8 chips per plate) with case-control pairs arranged
randomly on the same chip. Methylation data were pre-processed and normalized in each study, and
probe filtering was performed as previously described (5), leaving 465,886 CpGs suitable for the
analysis in EPIC-Italy, 485,330 CpGs in MCCS, 450,890 CpGs in NOWAC and 482,867 CpGs in NSHDS.
The total number of CpGs that were common across all 4 studies was 447,606.

To quantify the association between the methylation level at each CpG and the risk of lung cancer we
fitted conditional logistic regression models for beta values of methylation (which ranges from 0 (no
cytosines methylated) to 1 (all cytosines methylated)) on lung cancer status for the four studies. Study-
specific covariates had been adjusted for in each individual EWAS based on matching characteristics
(Supplementary Methods), which included matching cases and controls on smoking status in two
studies (MCCS and NSHDS). For EPIC-Italy and NOWAC, smoking status was included as a covariate in
the EWAS model Surrogate variables were computed in all of the four studies using the SVA R package
(43) and the proportion of CD8+ and CD4+ T cells, B cells, monocytes, natural killer cells, and
granulocytes within whole blood were estimated using a method proposed by Houseman et al (44).

We performed an inverse-variance weighted fixed effects meta-analysis of the EWAS analysis in the
four studies using the METAL software (http://csg.sph.umich.edu/abecasis/metal/), which computes
pooled effect estimates, standard errors and P values for each CpG site. Direction of effect, effect
estimates and the I” statistic were used to assess heterogeneity across the four studies. In total, the
analysis consisted of 918 case-control pairs from the 4 prospective studies. When stratifying by
smoking status

Before conducting the meta-analysis, all sites with missing values (due to non-convergence of models)
in any of the cohorts were removed which included, in EPIC-Italy, 13 sites among never smokers, 300
among former smokers and 1326 from the current smokers, and in NOWAC, 2666 sites from never
smokers, 793 from the former smokers, and 0 from the current smokers. A heterogeneity test was
conducted to determine if there were differences between the effect estimates within each of the
smoking groups.

Sites were taken forward from the unadjusted model (Model 1) with a false discovery rate (FDR) <
0.05, calculated using the Benjamini-Hochberg method (45), and examined in the other models. The
Tukey outlier identification method (outlier = outside of lower/upper quartile -/+ 3 x interquartile
range) was also applied to assess whether any of the top hits were outliers.


https://doi.org/10.1101/287888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/287888; this version posted March 26, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

mQTL identification

Accessible Resource for Integrated Epigenomics Studies (ARIES)

We identified mQTLs for each CpG site of interest from an mQTL database (http://www.mqgtldb.org),
based on a genome-wide association study (GWAS) of DNA methylation in 1,018 mother-offspring
pairs taken at multiple time points in ARIES (22, 46). Cord blood and peripheral blood samples (white
blood, buffy coats or blood spots) in ARIES were collected according to standard procedures. Further
details on the methylation pre-processing and quality control (QC) pipeline are outlined in the
Supplementary Methods. The ARIES participants were previously genotyped as part of the larger
Avon Longitudinal Study of Parents and Children (ALSPAC) study (http://www.bristol.ac.uk/alspac),
with quality control, cleaning and imputation performed at the cohort level before extraction of the
subset comprising ARIES. Further details on the genotyping and QC pipeline and the analysis are
outlined in the Supplementary Methods. All associations at P < 1x10” are stored in the mQTL
database. We used this resource to identify genetic variants that can be used as proxy for the top CpG
sites from the EWAS meta-analysis.

Northern Sweden Health and Disease Study (NSHDS)

We attempted to replicate the mQTLs identified in ARIES in an independent cohort, the Northern
Sweden Health and Disease Study (NSHDS). If there was evidence for a SNP-CpG site association in the
ARIES cohort (Supplementary Methods) in at least one time-point, we re-analysed this association
using linear regression of methylation on each genotyped SNP available in the NSHDS, using rvtests
(47). This prospective study, included in our EWAS meta-analysis, has genetic data as well as DNA
methylation data available for 463 of its participants.

The NSHDS samples were genotyped using the Illumina Infinium OncoArray-500k BeadChip (lllumina
Inc. San Diego, CA) and quality control parameters were applied under the recently published TRICL-
ILCCO GWAS study on lung cancer (23). Genetic imputation was performed on these samples using the
Haplotype Reference Consortium (HRC) Panel (release 1) (48) through the Michigan Imputation Server
(49).

Mendelian randomization

To establish the potential causal effects of differential methylation on lung cancer risk we utilized a
two-sample MR approach (50, 51). In this approach, information on the SNP-exposure (here DNA
methylation) and SNP-outcome (here lung cancer) effects are derived from separate studies. As
described above, ARIES and the NSHDS were used to estimate the SNP-methylation effects (i.e. the
aforementioned mQTLs). We used summary data from a GWAS meta-analysis of lung cancer risk
conducted by the Transdisciplinary Research in Cancer of the Lung and The International Lung Cancer
Consortium (TRICL-ILCCO) Consortium, to estimate the effect of each mQTL on risk of lung cancer.
Summary data were also available for lung cancer subtypes, including squamous cell lung cancer, small
cell lung cancer and lung adenocarcinoma, as well as for never and ever smokers separately. Power
analyses indicated greater than 95% power to detect odds ratios (ORs) for lung cancer of the same
magnitude as those detected in the EWAS meta-analysis of DNA-methylation and lung cancer.
Furthermore, we calculated the maximum and minimum ORs we could detect for lung cancer with
80% power, using mQTL effect estimates from both ARIES and NSHDS cohorts (Supplementary Table
6).

Transdisciplinary Research in Cancer of the Lung and The International Lung Cancer Consortium (TRICL-
ILCCO)
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Summary-level SNP effect estimates for lung cancer were obtained from the TRICL-ILCCO consortium,
which has conducted GWAS on lung cancer overall (29,863 cases, 55,586 controls) for individuals
genotyped using the Illumina Infinium OncoArray-500K BeadChip (lllumina Inc. San Diego, CA) and
independent samples for which prior genotyping was performed.(23)

For the CpG sites identified in the EWAS meta-analysis which were associated with lung cancer at FDR
< 0.05, we performed a look-up of the identified mQTLs in the lung cancer GWAS summary data from
the TRICL-ILCCO consortium. We extracted the following summary data for each SNP: the log odds
ratio for lung cancer per copy of the effect allele and its standard error, the effect allele and the
reference allele and effect allele frequency. We combined information on the SNP-outcome
associations from TRICL-ILLCO with information on the SNP-exposure associations from ARIES in
instrumental variable analysis, described below.

The mQTLs were pruned for linkage disequilibrium (r? < 0.01) to prevent underestimation of standard
errors. For each SNP, we calculated the log odds ratio per unit increase in methylation by the formula
Bsp/Bap (also known as a Wald ratio), where Bgp is the log odds ratio for disease per copy of the effect
allele and Bgp is the standard deviation increase in methylation per copy of the effect allele.
Supplementary Table 18 illustrates the % methylation equivalent of a SD increase in methylation at
each of the identified CpG sites. Standard errors of the Wald ratios were approximated by the delta
method (52). Where multiple independent mQTLs were available for the same CpG site, these were
combined in a fixed effects meta-analysis after weighting each ratio estimate by the inverse variance
of their associations with the outcome. Heterogeneity in Wald ratios across SNPs was estimated using
Cochran’s Q test. The same two-sample MR analysis was conducted using SNP-exposure effect
estimates from ARIES (discovery) and SNP-exposure effect estimates from NSHDS (replication).

Sensitivity analysis: Testing MR assumptions

The assumptions of the MR approach are: 1) the genetic instrument is associated with the exposure; 2)
the genetic instrument is not related to confounding factors for the exposure-outcome association;
and 3) the genetic instrument is related to the outcome only through its effect on the exposure (18). If
these assumptions are true, then any association observed between the genetic instrument and
outcome is best explained by a true causal effect of the exposure on the outcome. Here genetic
instrument, exposure and outcome refer to mQTL, methylation and lung cancer, respectively.

To assess the 1°' MR assumption and appraise instrument strength for each of the CpGs being
investigated, we obtained an r’ statistic for the proportion of variation in methylation explained by
each mQTL identified in ARIES using NSHDS as an independent dataset.

A previous study found that mQTLs at smoking-related CpG sites have null associations with active
smoking and therefore have the potential to be used as valid genetic instruments in MR analysis (53).
Here we investigated the extent to which the mQTLs at cancer-related CpGs were associated with
smoking behaviour, which could implicate confounding of the mQTL effect by smoking or horizontal
pleiotropy, whereby the mQTLs have a causal effect on smoking (and thus lung cancer) independent of
its effect on methylation, using summary genetic data on a large number of individuals as part of the
Tobacco and Genetics (TAG) consortium.

The TAG consortium conducted a GWAS meta-analysis of four smoking traits: number of cigarettes per
day, smoking cessation rate, smoking initiation and age of smoking initiation, using data from 16
cohorts and 74,053 individuals. Full details of the GWAS methods are described elsewhere (54). mQTL
associations with the four smoking behaviours were obtained from the TAG consortium GWAS
summary statistics, and two-sample MR analysis performed.
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While various other sensitivity analyses exist for investigating possible pleiotropy in MR analysis (36),
this approach relies upon the existence of multiple genetic instruments for each exposure and
therefore the application of these approaches is restricted in the setting of evaluating methylation
changes, where few independent mQTLs exist for individual CpG sites. Nonetheless, where there were
multiple mQTLs available to instrument a CpG site, we assessed heterogeneity of the causal estimates
which can be used to indicate pleiotropy, as well as violation of the other MR assumptions (36).

Supplementary analyses

Subgroup analyses

In addition to lung cancer (overall), the association between genetically increased methylation and
lung cancer subtypes: lung adenocarcinoma (11,245 cases, 54,619 controls), small cell lung cancer
(2,791 cases, 20,580 controls), and squamous cell lung cancer (7,704 cases, 54,763 controls) was
assessed. We also assessed this association of lung cancer in never smokers (2,303 cases, 6,995
controls) and ever smokers (23,848 cases, 16,605 controls). GWAS summary statistics for these traits
was obtained from the TRICL-ILCCO consortium (23).

Assessing the potential causal effect of AHRR methylation

We first used a one-sample MR approach to establish whether methylation at AHRR has a causal effect
on lung cancer incidence in 8,758 participants in the Copenhagen City Heart Study (CCHS) (357
incident lung cancer cases, 8,401 remaining free of lung cancer and methylation data available at the
cg05575921 AHRR). This prospective study (55), representing the Danish general population, examined
individuals during 1991-1994. Details of the phenotypic, methylation and genetic data, as well as the
linked lung cancer data, are outlined in the Supplementary Methods.

As just two mQTLs were identified in relation to cg05575921 methylation in ARIES at P < 1x10” in the
main analysis, we assessed whether the null result was due to lack of power. We sought to identify
further genetic instruments located within 1 Mb of the index AHRR CpG site in ARIES and associated
with cg05575921 methylation with a less stringent p-value based on the total number of SNPs in this
region (P < 0.05/4414 = 1.1x10) (Supplementary Table 19). 132 mQTLs surpassed this threshold and
were taken forward for re-analysis in linear regression of methylation on each genotyped SNP
available (13 of 132) in the CCHS. For those genetic variants which replicated within the CCHS (p-value
below Bonferroni threshold for replication [P < 0.05/13 = 0.004]) (Supplementary Table 20), we
performed an LD pruning step using the 1000 Genomes reference set (limited to those of European
ancestry) and a less stringent r* threshold of 0.2.

Taking those SNPs, an unweighted allele score was created to act as an instrumental variable for AHRR
methylation in Mendelian randomization analysis. This was calculated by coding and then summing
the alleles to reflect the average number of methylation-increasing alleles carried by an individual. For
investigating associations between the allele score and methylation, continuous effects were
estimated using linear regression. We examined associations between a number of confounding
factors (sex, alcohol consumption, smoking status, current and cumulative consumption of tobacco,
occupational exposure to dust and/or welding fumes, passive smoking) previously considered in the
association between methylation and lung cancer risk to check the core instrumental variable
assumption that the instrument (genotype) is independent of factors that potentially confound the
observational association.

Next, we performed a two-stage regression analysis: the first stage was a linear regression of the allele
score as a continuous instrument on methylation levels and the second stage was a Cox regression of
the predicted values of methylation on lung cancer incidence. This model was adjusted for sex and age
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of the participants. Individuals (n=8758) free of lung cancer at time of blood sampling (1991-94) were
followed until Dec. 31% 2012, death or event of lung cancer, whichever came first. Data on smoking
status of the CCHS participants was also available and so we also performed MR analysis stratified by
never, former and current smoking status at the time of blood draw.

Given that we only had data for 357 lung cancer events in the CCHS, we also used a two-sample MR
approach to harness the power of larger sample sizes and obtain more precise causal estimates for the
effect of AHRR CpG sites on risk of lung cancer. In this approach, the SNP-methylation associations for
the replicated mQTLs, corresponding to the AHRR region, were established in 8,780 individuals from
the CCHS and the SNP-lung cancer associations were taken from TRICL-ILCCO. Given the larger number
of mQTLs in this analysis, we also investigated possible pleiotropy using the MR Egger regression
method and appraised causal estimates using a weighted generalized regression method to account
for the correlation structure between the SNPs (given the less stringent LD pruning threshold).

Tumour and adjacent normal methylation patterns

To further assess the effect of methylation on lung cancer, we obtained DNA methylation data from
lung cancer tissue and matched normal adjacent tissue (n=40 lung squamous cell carcinoma and n=29
lung adenocarcinoma), profiled as part of The Cancer Genome Atlas and assessed methylation in the
normal vs lung cancer samples, as outlined previously (27). This study design was used in addition to
Mendelian randomization in order to triangulate findings regarding the potential causal effect of
methylation.

mQTL association with gene expression

For the genes annotated to CpG sites identified in the lung cancer EWAS, we examined gene
expression in both whole blood and lung tissue using data from the gene-tissue expression (GTEXx)
consortium (56).

All analyses were conducted in Stata (version 14) and R (version 3.2.2). For the two-sample Mendelian
randomization analysis we used the MR-Base R package TwoSampleMR (57). All P values were two-
sided. To maximize true positive ascertainment a false discovery rate (FDR) < 0.05 calculated using the
Benjamini-Hochberg method was used for the analyses. This has been indicated in the text.
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per standard deviation increase in DNA methylation, SV = surrogate variable.

Table 1. Meta-analysis of EWAS of lung cancer using 4 separate cohorts: 16 CpG sites associated with lung cancer at FDR < 0.05. OR = odds ratio
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Figure 1. Observational associations of DNA methylation and lung cancer: A fixed effects meta-analysis
of lung cancer EWAS weighted on the inverse variance was performed to establish the observational
association between differential DNA methylation and lung cancer. All points above the red line are at
P < 1x10” and all points above the blue line (and those in green) are at FDR < 0.05. In total 16 CpG sites
are associated with lung cancer (FDR < 0.05).
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Figure 2. Mendelian randomisation (MR) vs. observational analysis. Two-sample MR was carried out
with methylation at 14/16 CpG sites identified in the EWAS meta-analysis as the exposure and lung
cancer as the outcome. cg01901332 and cg05575921 had 2 instruments are so the estimate was
calculated using the inverse variance weighted method, for the rest the MR estimate was calculated
using a Wald ratio. Only 14 of 16 sites could be instrumented using mQTLs from mqtldb.org. * =
instrumental variable not replicated in independent dataset (NSHDS). OR = odds ratio per SD increase
in DNA methylation.
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Figure 3. Differential DNA methylation in lung cancer tissue: A comparison of methylation at each of
the 16 CpG sites identified in our meta-analysis was made between lung cancer tissue and adjacent

healthy lung tissue for patients with a) lung adenocarcinoma and b) squamous cell lung cancer. Data
from The Cancer Genome Atlas was used for this analysis.
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