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Abstract	

Background:	Quantitative	molecular	data	from	urine	are	rare	in	epidemiology	and	genetics.	

NMR	spectroscopy	could	provide	these	data	in	high-throughput,	and	it	has	already	been	

applied	in	epidemiological	settings	to	analyse	urine	samples.	However,	quantitative	

protocols	for	large-scale	applications	are	not	available.	

Methods:	We	describe	in	detail	how	to	prepare	urine	samples	and	perform	NMR	

experiments	to	obtain	quantitative	metabolic	information.	Semi-automated	quantitative	

lineshape	fitting	analyses	were	set	up	for	43	metabolites	and	applied	to	data	from	various	

analytical	test	samples	and	from	1,004	individuals	from	a	population-based	epidemiological	

cohort.	Novel	analyses	on	how	urine	metabolites	associate	with	quantitative	serum	NMR	

metabolomics	data	(61	metabolic	measures;	n=995)	were	performed.	In	addition,	

confirmatory	genome-wide	analyses	of	urine	metabolites	were	conducted	(n=578).	The	fully	

automated	quantitative	regression-based	spectral	analysis	is	demonstrated	for	creatinine	

and	glucose	(n=	4,548).	

Results:	Intra-assay	metabolite	variations	were	mostly	<5%	indicating	high	robustness	and	

accuracy	of	the	urine	NMR	spectroscopy	methodology	per	se.	Intra-individual	metabolite	

variations	were	large,	ranging	from	6%	to	194%.	However,	population-based	inter-individual	

metabolite	variations	were	even	larger	(from	14%	to	1655%),	providing	a	sound	base	for	

epidemiological	applications.	Metabolic	associations	between	urine	and	serum	were	found	

clearly	weaker	than	those	within	serum	and	within	urine,	indicating	that	urinary	

metabolomics	data	provide	independent	metabolic	information.	Two	previous	genome-wide	

hits	for	formate	and	2-hydroxyisobutyrate	were	replicated	at	genome-wide	significance.	

Conclusions:	Quantitative	urine	metabolomics	data	suggest	broad	novelty	for	systems	

epidemiology.	A	roadmap	for	an	open	access	methodology	is	provided.		

	

Key	words:	metabolomics,	urine,	serum,	genome-wide	analyses,	open	access,	multi-centre	
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Introduction	

Metabolomics	provides	a	snapshot	of	an	individual’s	physiological	state,	influenced	by	

genetic	and	lifestyle	factors.	Urine	is	produced	from	blood	by	the	kidneys	and	contains	both	

endogenous	and	exogenous	compounds.1	Among	the	biofluids	commonly	used	in	

epidemiology,	urine	has	several	advantages:	it	is	abundant,	sterile,	and	easy	to	collect.2	

Urine	reflects	the	function	of	kidneys,	including	multiple	metabolites	from	several	key	

biochemical	pathways	in	relation	to	(patho)physiology	and	cardiometabolic	conditions,	gut	

microbial	metabolic	activities	and	short-term	food	consumption.1,3-5	Urine	samples	therefore	

contain	abundant	and	underutilized	information	for	epidemiology	and	for	potential	

translational	applications.6		

	

NMR	spectroscopy	provides	a	comprehensive	quantitative	approach	for	urine	analysis1,2,5	

and	has	the	potential	to	offer	fully	automated	high-throughput	experimentation	in	a	cost-

effective	manner,	which	would	be	essential	for	large-scale	systems	epidemiology.7-9		NMR	

spectroscopy	is	highly	reproducible	and	requires	only	minimal	sample	preparation.	Bouatra	

et	al.1	have	concluded	that	NMR	may	currently	be	the	most	comprehensive	and	certainly	the	

most	quantitative	approach	for	urine	characterisation.	However,	the	signal	assignments	and	

quantifications	from	urine	spectra	are	complicated	by	signal	overlap,	as	well	as	considerable	

variations	in	signal	positions	between	spectra	due	to	differences	in	the	chemical	properties	

of	the	samples,	such	as	pH,	ionic	strength	and	concentration	of	multivalent	cations.2	Some	

software	applications	exist	which	have	been	used	in	the	analyses	of	urine	NMR	data,	but	

currently	none	of	them	provide	comprehensive	automated	quantification	of	the	metabolic	

information.10-13	

	

We	introduce	here	a	detailed	experimental	set-up,	including	all	the	key	attributes	of	sample	

preparation	and	NMR	experimentation,	for	quantitative	high-throughput	urinary	analyses.	

We	also	initially	demonstrate	how	fully	automated	quantitative	analyses	perform	in	the	case	

of	urine	NMR	spectra	and	propose	an	open	access	quantitative	pipeline	of	urine	NMR	

metabolomics	to	facilitate	large-scale	studies.	We	present	extensive	analytical	data	on	intra-

assay,	intra-individual	and	inter-individual	variation	in	urinary	metabolites.	In	addition,	we	

detail	the	characteristics	of	quantitative	urine	metabolite	data	in	epidemiology	and	present	

novel	analyses	regarding	how	the	urine	metabolites	associate	with	circulating	metabolites	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 26, 2018. ; https://doi.org/10.1101/288993doi: bioRxiv preprint 

https://doi.org/10.1101/288993


	 -	5	(31)	-	

and	lipids.	Confirmative	genome-wide	analyses	are	also	presented.	All	data	domains	

substantiate	the	potential	usefulness	of	quantitative	molecular	data	on	urine	samples	in	

systems	epidemiology.	

	

	

Materials	and	methods	

Urine	sample	preparation	

Urine	is	waste	material	and	thus,	in	contrast	to	blood	that	is	strictly	buffered,	does	not	entail	

similar	biological	regulation.	Therefore,	there	is	considerable	variation	in	pH,	ionic	strength,	

concentrations	of	multivalent	cations	and	metabolite	composition	between	samples	and	

individuals.	The	variations	in	pH	and	ionic	strength	are	minimised	by	the	addition	of	

phosphate	buffer	to	the	samples.	TSP	(2,2,3,3-tetradeutero-3-(trimethylsilyl)-propionic	acid)	

is	used	as	a	chemical	shift	as	well	as	an	internal	concentration	reference.	The	required	

sample	volume	is	800	µl.	The	sample	preparation	protocol	is	performed	with	an	automated	

liquid	handler	(PerkinElmer	JANUS	8-tip	Automated	Workstation)	enabling	preparation	of	

approximately	100	urine	samples	per	hour.	Detailed	instructions	for	sample	preparation	are	

given	in	Supplementary	Table	S1.	From	the	methodological	perspective,	any	urine	sample	is	

appropriate	for	analysis,	i.e.,	spot	urine,	overnight	or	a	24-h	collection.	The	urine	samples	in	

this	study	were	stored	at	-80°C	prior	to	use.	

	

NMR	measurements	

NMR	data	for	4,549	urine	samples	in	the	Northern	Finland	Birth	Cohort	1966	(NFBC66;	the	

cohort	description	is	available	as	Supplementary	Data)	were	measured	using	a	600	MHz	

Bruker	NMR	spectrometer,	equipped	with	a	cryoprobe	(Bruker	Prodigy	TCI	600	S3	H&F-C/N-

D-05	Z)	and	an	automatic	cooled	SampleJet	sample	changer.	Use	of	a	600	MHz	spectrometer	

reduces	(but	does	not	eliminate)	the	signal	overlap	of	urine	metabolites.	Standard	water-

suppressed	measurements	are	applied.	With	this	hardware	set-up	NMR	data	for	over	200	

urine	samples	can	be	automatically	collected	in	24h.	The	detailed	NMR	measurement	

protocol	and	parameters	are	given	in	Supplementary	Table	S2.	Due	to	day-to-day	and	

person-to-person	variation	in	the	volume	of	urine,	that	affect	the	absolute	urine	metabolite	

concentrations,	it	is	important	to	apply	a	biologically	relevant	normalisation	method.	The	

standard	protocol	in	the	field	is	to	normalise	to	creatinine.	We	used	this	approach	here	but	it	
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would	be	relevant	to	test	this	assumption	with	forthcoming	data	in	extensive	

epidemiological	cohorts	by	evaluating	and	comparing	multiple	methods,	e.g.,	normalisation	

to	the	sum	of	all	or	selected	metabolites	in	the	sample,	and	potential	new	methods.14,15		

	

Serum	samples	(n=5,788)	from	NFBC66	were	analysed	using	a	high-throughput	quantitative	

NMR	metabolomics	platform	originating	from	our	team.7	This	platform	provides	

simultaneous	quantification	of	routine	lipids	and	lipid	concentrations	of	14	lipoprotein	

subclasses	and	major	subfractions,	and	further	quantifies	abundant	fatty	acids,	amino	acids,	

ketone	bodies	and	gluconeogenesis-related	metabolites	in	absolute	concentration	units.	This	

serum	NMR	metabolomics	platform	has	been	available	since	20097	and	it	has	been	used	to	

analyse	around	500,000	samples	in	extensive	epidemiological	and	genetic	studies.8,9	Details	

of	the	experimentation	have	been	described	elsewhere7,8,16	and	the	large-scale	

epidemiological	applications	have	recently	been	reviewed.9	Sixty-one	metabolic	measures	

giving	a	representative	overview	of	the	key	metabolic	pathways	were	used	here.8,17-19	

Quantitative	urine	and	serum	metabolomics	data	were	available	for	995	and	quantitative	

urine	metabolomics	and	genome-wide	data	for	578	individuals.	

	

Metabolite	quantification	in	urine	samples	and	analytical	issues	

We	have	identified	over	100	metabolites	(Supplementary	Table	S3)	and	set-up	semi-

automated	lineshape	fitting	analyses	to	quantify	43	of	these	(Table	1).	In	addition	to	data	

from	multiple	analytical	test	samples,	data	from	1,004	urine	samples	from	the	NFBC66	were	

quantified.	Table	1	summarises	all	these	data	and	gives	details	on	the	calculations	for	intra-

assay	coefficients	of	metabolite	variations	in	per	cent	(CV%s),	as	well	as	for	intra-individual	

and	inter-individual	metabolite	variation.	These	semi-automated	quantifications	rely	on	the	

sophisticated	lineshape	fitting	analysis	tools	developed	for	high-precision	quantitative	NMR	

spectroscopy.20,21	Figure	1	illustrates	the	characteristics	of	urine	NMR	data	and	the	

principles	of	the	lineshape	fitting	analysis.	These	analyses	are,	at	best,	semi-automated	and	

are	typically	performed	separately	for	multiple	spectral	regions,	i.e.,	analysing	only	one	or	a	

few	metabolites	at	a	time.	Thus,	these	analyses,	while	being	the	most	robust	available,	take	

a	considerable	amount	of	time	per	sample	and	require	manual	control	of	the	analysis	

parameters	as	well	as	assessment	of	fitting	results.	Thus,	when	aiming	for	large-scale	

epidemiology,	regression	analysis	types	of	approaches	need	to	be	used.22,23	However,	robust	
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lineshape	fitting	analyses	form	the	essential	base	for	eventually	automating	the	quantitative	

metabolite	analyses,22	i.e.,	the	extensive	and	detailed	data	from	the	lineshape	fitting	

analyses	for	the	1,004	NFBC66	urine	samples	will	serve	as	a	training	set	for	the	automated	

regression	models	to	be	developed.23	The	automated	quantification	protocols	to	be	

established	for	the	urine	analyses	will	be	similar	to	those	we	have	successfully	used	in	the	

case	of	serum	NMR	metabolomics.8,23	We	intend	to	provide	an	open-access	software	for	the	

urinary	metabolite	quantification	via	a	free	website.	Supplementary	Figure	S1	illustrates	the	

building	of	automated	regression	models	to	quantify	urinary	creatinine	and	glucose	from	the	

NMR	spectra.	These	models	are	based	on	the	semi-automated	lineshape	fitting	analyses	of	

999	urine	samples;	5	spectra	of	the	1,004	available	were	excluded	from	the	automated	

modelling	at	this	initial	stage	due	to	non-optimal	shimming	and/or	baseline	features.	Figure	

2	shows	the	final	automated	regression	models	for	creatinine	and	glucose	and	the	

distribution	for	urinary	glucose	concentration	in	4,548	people	in	NFBC66.	One	spectrum	was	

rejected	at	this	stage	by	the	automated	analysis	software	due	to	non-optimal	shimming.	

	

Statistical	analyses	

Partial	correlations	adjusted	for	sex	were	used	to	analyse	the	intra-fluid	(urine-urine	and	

serum-serum)	and	inter-fluid	(urine-serum)	associations	between	the	quantitative	metabolic	

measures	for	the	NFBC66	samples	(N=995).	Urine	and	serum	metabolic	measures	were	log-

transformed.	The	results	are	shown	in	colour-coded	heat	maps	in	Figure	3	for	the	intra-

serum	associations,	in	Figure	4	for	the	intra-urine	associations	and	in	Figure	5	for	the	inter-

fluid	urine-serum	metabolic	associations.	The	number	of	principal	components	(PCs)	needed	

to	explain	>99%	of	variation	in	the	metabolic	information	was	40	PCs	for	43	urine	

metabolites,	27	PCs	for	61	serum	measures	and	66	PCs	for	the	combined	metabolic	data	of	

104	metabolic	measures.	Therefore	we	used	multiple	comparison	corrected	p-value	

thresholds	of	0.001	(i.e.,	0.05/40	via	the	Bonferroni	method;	P	<	0.001	marked	with	*	in	the	

maps),	0.002	(0.05/27,	*P	<	0.002)	and	0.0008	(0.05/66,	*P<	0.0008),	respectively,	to	denote	

evidence	in	favour	of	an	association.		

	

Adiposity	is	a	causal	risk	factor	for	many	cardiometabolic	conditions24	and	it	has	been	

previously	studied	in	relation	to	urinary	metabolites.4	Therefore,	we	wanted	a	preliminary	

understanding	and	comparison	of	our	quantitative	urine	metabolite	data	and	analysed	the	
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associations	of	BMI	with	the	43	quantified	urine	metabolites.	A	linear	regression	model	was	

fitted	for	each	outcome	measure	(concentrations	of	metabolites	in	urine	and	those	

corresponding	in	serum)	using	BMI	as	the	explanatory	variable.	All	metabolic	measures	were	

log-transformation	and	scaled	to	SD	units	(by	subtracting	the	mean	and	dividing	by	the	

standard	deviation).	Association	magnitudes	are	reported	in	SD	units	to	ease	the	comparison	

across	multiple	measures	(Figure	6).	

	

As	another	positive	control	for	the	urine	platform,	we	conducted	a	genome-wide	analysis	

study	(GWAS)	of	urine	metabolites	in	578	individuals	and	compared	our	results	with	

previous	GWA	studies.	Manhattan	plots	for	formate	and	2-hydroxyisobutyrate	are	shown	in	

Figure	7	and	details	of	the	genetic	data	and	analyses	are	given	in	the	corresponding	caption.	

	

	

Results	and	discussion	

Analytical	issues	in	urine	metabolomics	

Table	1	lists	the	currently	quantified	43	urine	metabolites	with	their	intra-assay,	intra-

individual	and	inter-individual	variation.	Most	of	the	intra-assay	metabolite	CV%s	are	less	

than	5%,	indicating	high	robustness	and	accuracy	of	the	urine	NMR	spectroscopy	and	the	

entire	quantification	process	per	se.	The	intra-individual	metabolite	variation	over	30	days	

was	large,	with	CV%s	over	20%	for	the	majority	of	metabolites	and	at	the	extreme	194%	for	

sucrose	and	225%	for	2-furoylglycine.	However,	the	population-based	inter-individual	

metabolite	variation	was	even	larger,	with	CV%s	over	40%	for	the	majority	of	metabolites	

and	at	the	extreme	585%	for	formate	and	1655%	for	glucose	(reflecting	a	positively	skewed	

distribution	of	urinary	glucose,	partly	due	to	several	individuals	with	prediabetes	and	

diabetes	in	NFBC66;	Figure	2).	These	results	indicate	a	sound	base	for	epidemiological	and	

genetic	studies.		

	

Metabolite	quantification	in	urine	samples	

Quantification	of	the	43	metabolites	in	the	urine	NMR	spectra	for	the	1,004	people	from	the	

NFBC66	was	done	via	semi-automated	lineshape	fitting	analyses.	This	work	is	in	progress	

and	it	will	eventually	be	possible	to	provide	quantifications	for	many	additional	metabolites;	

a	preliminary	list	of	over	100	assigned	metabolites	that	we	have	identified	is	provided	in	
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Supplementary	Table	S3.	However,	this	type	of	quantification	approach	is	not	feasible	for	

routine	applications	at	large-scale.	Instead,	an	automated	approach	similar	to	the	one	we	

developed	and	adapted	for	quantifying	serum	and	plasma	lipid,	lipoprotein	and	other	

metabolic	information8,16,18	needs	to	be	developed	for	the	urine	spectra.	Proof	of	concept	is	

shown	with	the	initial	results	for	fully	automated	quantitative	regression	analyses	for	

creatinine	and	glucose	(Supplementary	Figure	S1	and	Figure	2).	As	already	known	from	

serum	NMR	metabolomics,	this	type	of	approach	for	automated	metabolite	quantification	

works	well.8,9,23	

	

Therefore,	it	is	likely	that	it	will	be	possible	to	establish	an	optimised	automated	

quantification	model	for	most	of	the	abundant	urine	metabolites.	Regression-based	spectral	

quantification	methods	are	generally	known	to	work	well	for	heavily	overlapping	signal	

structures	as	typical	for	urine	NMR	spectra.16,23	With	the	regression	modelling,	

quantification	of	all	the	metabolites	in	the	urine	NMR	spectrum	can	be	fully	automated	to	

take	only	a	few	seconds.	Once	the	spectral	data	have	been	acquired	for	a	sample,	new	

identified	and	quantifiable	metabolites	can	be	retrospectively	analysed	(provided	that	

sample	preparations	and	experimental	NMR	settings	are	kept	consistent).	The	final	number	

of	urine	metabolites	that	may	eventually	be	included	is	uncertain	and	will	depend	on	

multiple	factors.	In	the	current	experimental	set-up,	we	estimate	it	will	be	possible	to	

automate	the	quantification	for	clearly	more	than	50	but	likely	not	for	all	the	metabolites	

listed	in	Supplementary	Table	S3.	

	

It	is	estimated	that	there	are	around	3,000	compounds	in	the	entire	urine	metabolome,	of	

which	there	are	currently	380	unique	urine	metabolites	or	metabolite	species	for	which	

quantitative	data	are	available.1	The	approach	described	here	to	identify	and	quantify	

around	hundred	urine	metabolites	may	therefore	seem	somewhat	restricted.	However,	the	

quantitative	serum	NMR	metabolomics	platform	is	also	limited	to	quantify	“only”	some	200	

metabolic	measures	of	the	approximate	4,000	known	serum	compounds	and	this	has	not	

prevented	novel	metabolic	measures	being	available	for	epidemiological	and	genetic	studies	

with	a	plethora	of	new	findings	over	the	last	few	years.9	We	anticipate	that	the	quantitative	

urine	metabolite	data	would	lead	to	commensurate	novelty	in	systems	epidemiology.	In	
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epidemiology	in	particular	it	may	be	preferable	to	have	a	reasonable	number	of	traits	for	as	

many	people	as	possible,	not	vice	versa.	

	

Preliminary	epidemiological	and	genetic	analyses	

The	lineshape	fitting	analyses	of	the	urine	NMR	metabolomics	data	for	the	1,004	individuals	

from	NFBC66	allowed	us	to	perform	the	first	quantitative	epidemiological	analyses	(Table	1).	

We	also	present	some	comparison	to	the	serum	NMR	metabolomics	data	available	for	the	

same	individuals	(n=995).	Some	fundamental	issues	and	corollaries	are	presented	below.	

	

Metabolic	associations	

The	correlations	between	the	metabolites	in	urine	(Figure	4)	are	generally	weaker	than	the	

associations	between	most	of	the	metabolic	measures	in	serum	(Figure	3).	On	average,	the	

median	of	the	absolute	correlations	between	metabolites	in	urine	was	0.10	(interquartile	

range,	0.04	–	0.19),	and	in	serum	0.21	(0.08	–	0.44).	These	association	characteristics	are	

likely	to	partly	reflect	the	larger	intra-individual	variation	in	the	urine	metabolites	than	those	

in	serum,	but	they	are	also	likely	a	sign	of	fundamental	metabolic	differences	regarding	

serum	and	urine.	The	metabolic	measures	quantified	via	serum	NMR	metabolomics	

represent	key	systemic	metabolic	pathways	(e.g.,	lipoprotein	lipid	metabolism)	that	are	

inherently	physiologically	correlated;	it	would	not	be	expect	to	see	drastic	differences	

between	individuals	in	these	highly	conserved	biochemically	essential	metabolic	pathways.	

However,	in	urine,	which	is	a	waste	product,	this	type	of	tight	inherent	metabolic	control	is	

not	necessary.	Importantly,	this	might	allow	more	specific	biomarker	findings	from	the	urine	

data	than	would	be	possible	from	serum.	Associations	illustrated	in	Figure	4	provide	a	proof	

of	concept	of	the	relevance	of	these	novel	quantitative	urinary	data.	For	metabolites	in	

urine,	positive	correlations	among	amino	acids,	glycolysis-	and	citrate	cycle-related	

metabolites,	3-hydroxyisobutyrate	and	3-hydroxyisovalerate	result	in	clear	association	

clusters.	The	concentrations	of	the	8	amino	acids	are	rather	strongly	correlated	in	urine	with	

median	correlation	of	0.53	(interquartile	0.41	–	0.59).	This	is	expected	for	these	mostly	

apparently	healthy	individuals	since,	in	healthy	kidneys,	the	glomeruli	filter	all	amino	acids	

out	of	the	blood	and	the	renal	tubules	then	reabsorb	them	back	into	the	blood.		
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Metabolic	correlations	between	urine	and	serum	(Figure	5),	with	median	absolute	

correlation	of	0.04	(interquartile	range,	0.02	–	0.07),	are	clearly	weaker	that	the	associations	

in	serum	(Figure	3)	and	in	urine	(Figure	4).	However,	several	clearly	detectable	metabolic	

associations	are	present	as	elaborated	in	the	caption	for	Figure	5.	There	is	a	clear	excess	of	

metabolic	information	by	the	combination	of	quantitative	urine	and	serum	metabolomics,	

illustrating	an	abundance	of	epidemiological	novelty	from	quantitative	urine	metabolomics.	

	

Adiposity	and	urine	metabolites	

Associations	between	the	43	quantified	urine	metabolites	(and	the	corresponding	ones	

available	in	serum	via	the	serum	NMR	metabolomics	platform)	and	body-mass	index	(BMI)	

are	illustrated	in	Figure	6.	Despite	rather	large	biological	variation	in	the	urine	metabolite	

data,	multiple	associations	are	notable	between	the	urine	metabolites	and	BMI.	While	we	

ought	to	be	cautious	in	interpreting	cross-sectional	associations,	in	comparison	to	recent	

work	by	Elliott	and	co-workers4	on	urinary	metabolic	signatures	of	adiposity	in	two	

independent	cohorts,	the	US	and	UK	INTERMAP	studies,	we	note	multiple	concordant	

associations	for	BMI,	for	example,	negative	with	urinary	p-Cresol	sulphate	and	hippurate,	

and	positive	with	2-hydroxyisobutyrate	and	branched-chain	amino	acids	isoleucine	and	

valine,	and	aromatic	amino	acids	tryptophan	and	tyrosine.	The	comparison	of	the	amino	acid	

results	(e.g.,	valine	and	isoleucine)	in	urine	and	serum	is	of	interest	due	to	recent	findings	

regarding	the	interplay	between	branched-chain	amino	acids,	obesity,	insulin	resistance	and	

the	development	of	type	2	diabetes.25-28	For	all	the	amino	acids	that	are	quantified	from	

both	urine	and	serum,	the	association	direction	with	BMI	is	the	same	in	serum	and	in	urine;	

the	association	strengths	however	tend	to	be	weaker	in	urine.	As	far	as	we	are	aware,	these	

are	the	first	results	available	combining	quantitative	metabolomics	data	from	serum	and	

urine	at	an	epidemiological	scale.	We	have	previously	illustrated,	via	Mendelian	

randomization	analyses,29	that	BMI	is	causally	modifying	circulating	metabolism,	including	

branched-chain	amino	acids.30	Potential	causal	effects	of	obesity	on	specific	urine	

metabolites	(e.g.,	via	influences	on	kidney	function)	are	largely	unknown	and	will	be	one	of	

our	future	aims	of	research	with	larger	numbers	of	individuals.	Even	though	urine	is	waste,	

urinary	metabolites	may	serve	as	useful	biomarkers	(independent	or	together	with	serum	

metabolic	measures)	reflecting	(patho)physiological	effects	of,	e.g.,	obesity	on	systemic	

metabolism	and	organ	function.	
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Genome-wide	analyses	of	urine	metabolites	

We	performed	a	GWAS	for	the	43	quantified	urine	metabolites	(Table	1).	Despite	having	

only	578	individuals	available	with	both	genome-wide	data	and	quantified	urine	metabolites,	

we	were	able	to	replicate,	at	GWAS	significance,	two	loci	previously	associated	with	the	

same	urine	metabolites.31,32	We	found	confirmatory	evidence	for	formate,	with	

chromosome	8	SNP	rs4921913,	associating	at	P=	4.59*10-11.	The	tagged	region	harbours	

arylamine	N-acetyltransferase	(NAT2)	that	is	the	candidate	gene	for	this	association.	In	

addition,	we	confirmed	an	association	of	SNP	rs1168674	in	chromosome	12	with	2-

hydroxyisobutyrate	(P=	1.51*10-22).	This	region	is	in	near	vicinity	to	4-

hydroxyphenylpyruvate	dioxygenase	(HPD)	that	is	likely	involved	in	the	metabolic	pathway	

of	2-hydroxyisobutyrate.31	Manhattan	plots	for	these	associations	are	presented	in	Figure	7.	

These	independently	replicated	genome-wide	associations,	with	a	very	small	number	of	

individuals,	are	reassuring	regarding	the	analytical	processes	of	the	presented	urine	NMR	

metabolomics	platform.		

	

Statistical	issues	in	epidemiology	and	genetics	

Hundreds	of	metabolites	have	been	identified	in	human	urine	samples	with	a	combination	

of	multiple	spectroscopic	technologies.1,2,33,34	However,	most	metabolomics	applications	

have	focused	on	dietary	and	various	(biologically	rather	inapplicable)	diagnostic	issues	

typically	with	small	numbers	of	individuals	and	profiling	based	analysis	approaches.35-37	

Comprehensive	quantitative	data	on	urine	metabolites	are	rare,2,38	and	if	available,	typically	

originate	from	other	methods	than	NMR.4,33,39	This	situation	suggests	that	though	the	

potential	of	urine	NMR	metabolomics	is	clearly	recognised,	the	methodologies	are	still	far	

from	real-world	large-scale	applications.	Nevertheless,	we	fully	agree	with	Emwas	and	co-

workers2	that	molecular	identification	and	absolute	quantification	are	crucial	both	in	

epidemiology	and	genetics	as	well	as	if	aiming	to	translate	the	biomarker	discoveries	to	

clinical	practice.8,38,40	Therefore,	a	key	characteristic	for	a	urine	NMR	metabolomics	pipeline	

will	be	that	all	metabolites	are	quantified	in	absolute	terms.	This	means	that	in	statistical	

analyses	any	platform	output	can	be	treated	as	any	other	clinical	chemistry	measure	(e.g.,	

glucose	or	cholesterol)	in	association	testing	and	prediction	models,	including	adjustments	

for	appropriate	confounding	factors.9	The	quantitative	nature	of	the	metabolite	data	makes	

this	straightforward	and	also	allows	replication	and	meta-analyses	across	multiple	studies.40-
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42	Here	the	joint	analyses	of	urine	and	serum	metabolomics	data	are	a	demonstration	of	

how	informative	inherently	simple	quantitative	molecular	data	can	be.	Notably,	use	of	only	

spectral	data	would	not	enable	the	abovementioned	molecular	association	analyses	to	be	

performed.		

	

A	general	concern	with	using	urine	samples	is	metabolites	that	are	not	present	in	every	

sample	or	individual.	This	can	actually	be	a	high	proportion	of	potentially	detectable	

metabolites;	from	the	automated	quantitative	analysis	point	of	view	this	is	a	challenge	

calling	for	specific	signal	detection	options.	However,	from	the	epidemiology	point	of	view,	it	

can	be	seen	as	a	great	opportunity.	For	example,	specific	drug-related	metabolites	may	offer	

valuable	epidemiological	information	as	well	as	a	base	for	potential	pharmaceutical	

applications.	Metabolites	that	would	associate	with	certain	foods	or	lifestyle	factors,	like	

smoking,	would	allow	advantageous	epidemiological	approaches	to	be	taken.	Such	

metabolites	may	also	indicate	particular	disease	processes	and	could	thereby	provide	

specific	clinically	relevant	biomarkers	for	risk	assessment	and	early	diagnoses.	Here,	only	4	

out	of	the	43	quantified	urine	metabolites	were	absent	for	more	than	10%	of	the	samples,	

namely	Sumiki’s	acid,	2-furoylglycine,	3-(3-hydroxyphenyl)-3-hydroxypropanoate,	and	

sucrose.	

	

In	addition	to	molecular	quantification,	systems	epidemiology	applications	call	for	large	

numbers	of	individuals,	at	a	minimum	this	is	thousands,	if	not	tens	of	thousands	of	

individuals.6,9	The	epidemiological	data	set	described	here	for	urine	(43	metabolites	

quantified	for	1,004	people)	is	already	one	of	the	largest	in	the	area	of	quantitative	urine	

metabolomics.	These	data,	together	with	the	various	analytical	tests,	illustrate	the	key	

methodological	and	statistical	characteristics	of	urine	metabolomics.	At	the	same	time,	

however,	this	underscores	that	this	field,	particularly	from	the	epidemiological	perspective,	

is	in	its	infancy.	Therefore,	the	results	presented	here	provide	a	good	incentive	to	an	open-

access	quantitative	urine	NMR	metabolomics	pipeline.		
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Conclusions	

Our	quantitative	analytical	experimentation	indicates	high	robustness	and	accuracy	of	the	

urine	NMR	spectroscopy	methodology	per	se.	The	extensive	epidemiological	data	illustrate	

clear	inherent	differences	in	the	intra-fluid	metabolic	associations	based	on	physiological	

and	metabolic	functions:	the	urine	metabolites	are	in	general	only	weakly	interrelated,	in	

contradistinction	to	highly	correlated	metabolic	pathways	represented	by	the	quantitative	

serum	data.	The	metabolic	associations	between	serum	and	urine	are	weak,	suggesting	

combining	serum	and	urine	metabolomics	would	increase	the	amount	of	independent	

metabolic	information.	While	the	intra-individual	variation	in	urine	metabolites	is	high,	the	

even	higher	population-based	inter-individual	variation	does	provide	a	sound	base	for	

epidemiological	and	genetic	applications.	However,	appropriate	large-scale	studies	and	

replication	data	are	crucial	to	enable	statistically	robust	findings	of	biological	relevance.	The	

known	genome-wide	associations	detected	here	with	a	very	small	number	of	individuals	are	

reassuring	for	both	the	analytical	process	of	the	presented	urine	NMR	metabolomics	set-up	

and	the	intriguing	potential	of	quantitative	urine	metabolite	data	in	systems	epidemiology.	

We	anticipate	this	quantitative	methodology	to	eventually	offer	a	multitude	of	unique	

opportunities	to	study	the	role	of	urine	metabolites,	for	example,	in	cardiometabolic	health	

and	diseases	and	as	potential	markers	of	kidney	function.	To	the	best	of	our	knowledge,	this	

project	is	novel	both	in	the	open	access	aspects	and	in	the	integrated	large-scale	systems	

epidemiology	perspective	that	are	likely	to	result	in	important	epidemiological	findings	with	

high	translational	potential.	
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Table	1.	Intra-assay	variation	as	well	as	intra-individual	and	inter-individual	variation	of	

quantified	urine	metabolites.		

Metabolite	

Intra-

assay	

CV	(%)a,b	

Intra-

individual	

CV	(%)a,c	

Inter-

individual	

CV	(%)a,d	

Amino	acids	 	 	 	

Alanine	 1.16	 28.69	 49.88	

Glycine	 2.21	 34.71	 73.98	

Histidine	 1.10	 30.25	 48.81	

Threonine	 4.57	 38.58	 75.44	

Branched-chain	amino	acids	 	 	 	

Isoleucine	 6.68	 23.27	 54.06	

Valine	 4.72	 20.28	 39.50	

Aromatic	amino	acids	 	 	 	

Tryptophan	 3.34	 33.76	 51.05	

Tyrosine	 3.35	 32.09	 45.76	

Glycolysis-related	metabolites	 	 	 	

Glucose	 2.91	 13.76	 1654.62	

Lactate	 4.28	 44.26	 476.52	

Citrate	cycle-related	metabolites	 	 	 	

Cis-aconitate	 0.85	 22.28	 39.68	

Citrate	 1.51	 27.92	 53.35	

Urea	cycle	 	 	 	

Urea	 1.46	 32.98	 39.44	

Phenylalanine	metabolism	 	 	 	

4-Hydroxyphenylacetate	 2.24	 28.73	 52.12	

Hippurate	 1.15	 58.45	 69.26	
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Histidine	metabolism	

3-Methylhistidine	 1.56	 95.44	 117.16	

Glycine,	serine	and	threonine	metabolism	 	 	 	

Creatine	 4.12	 126.19	 239.55	

Microbial	metabolism	 	 	 	

4-Hydroxyhippurate	 3.43	 34.85	 72.12	

Acetate	 14.17	 62.87	 394.31	

Dimethylamine	 0.74	 9.79	 30.48	

Formate	 8.71	 41.32	 584.66	

Methylamine	 3.17	 32.07	 51.20	

p-Cresol	sulphate		 1.53	 35.65	 71.22	

Trimethylamine	N-oxide	(TMAO)	 1.63	 80.89	 127.14	

Nicotinate	and	nicotinamide	metabolism	 	 	 	

N1-Methyl-2-pyridone-5-carboxamide	(2PY)	 2.14	 35.29	 60.72	

N1-Methylnicotinamide	 1.32	 28.24	 52.21	

Trigonelline	 0.79	 68.71	 74.64	

Purine	metabolism	 	 	 	

Hypoxanthine	 3.53	 38.80	 338.41	

Pyrimidine	metabolism	 	 	 	

Pseudouridine	 2.15	 6.32	 14.28	

Uracil	 4.29	 37.71	 148.13	

Pentose	and	glucuronate	interconversion	 	 	 	

Arabinose	 3.58	 35.50	 59.51	

Glucuronate	 4.07	 18.31	 50.07	

Xylose	 3.38	 99.60	 111.96	

Galactose	metabolism	 	 	 	

Sucrose	 4.45	 194.15	 459.31	
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Miscellaneous	

2-Furoylglycine	 5.46	 225.45e	 212.50	

2-Hydroxyisobutyrate	 1.15	 16.25	 35.39	

3-(3-Hydroxyphenyl)-3-hydroxypropanoate	
(HPHPA)	 4.30	 67.68	 73.64	

3-Hydroxyhippurate	 2.56	 51.81	 99.98	

3-Hydroxyisobutyrate	 2.67	 34.18	 61.60	

3-Hydroxyisovalerate	 4.84	 66.55e	 46.16	

Indoxyl	sulphate	 1.59	 32.24	 46.56	

Sumiki’s	acid	 2.36	 35.23	 133.73	

Trans-aconitate	 4.42	 50.71	 59.60	

aConcentrations	are	scaled	to	the	concentration	of	creatinine;	CV%	=	(standard	deviation	/	
average)	*	100%	

bOne	urine	sample	prepared	and	analysed	as	10	replicates;	 reflects	 the	entire	quantitative	
process,	 i.e.,	 including	 all	 the	 sample	 preparation	 steps,	 NMR	 experimentation	 and	
mathematical	quantification	protocols.	

cA	 30-day	 consecutive	 urine	 collection;	 CV%s	 first	 calculated	 for	 each	 individual	 and	 then	
averaged	over	3	different	people.	

dOne	thousand	and	four	different	individuals	from	the	Northern	Finland	Birth	Cohort	1966.	

eThe	intra-individual	CV%	is	slightly	higher	than	the	inter-individual	CV%.	Very	few	samples	
for	the	3	people	contributing	to	the	intra-individual	variation	contained	2-furoylglycine	(two	
people	had	it	in	seven	and	one	person	in	four	out	of	30	samples).	For	2	people	contributing	
to	 the	 intra-individual	 variation	 the	 average	 concentration	 of	 3-hydroxyisovalerate	 was	
lower	than	the	average	concentration	in	the	NFBC	samples.	
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Figure	1.	Characteristic	1H	NMR	spectra	of	human	urine	from	six	subjects	and	illustration	of	

the	sophisticated	lineshape	fitting	analyses.	Alignment	of	spectra	from	six	subjects	is	

shown.	Heavily	overlapping	signal	structures	in	multiple	areas	are	typical	for	these	spectra.	

The	insets	marked	from	A	to	F	illustrate	how	lineshape	fitting	analyses,	incorporating	prior	

knowledge	on	the	individual	molecular	attributes,	can	robustly	solve	the	overlap	and	lead	to	

reliable	quantification	of	the	metabolites.20,21	Black	lines	represent	the	observed	spectra	and	

the	coloured	lines	represent	the	fitted	signals.	Grey	lines	indicate	currently	unidentified	

signals.	The	green	line	at	the	bottom	illustrates	the	difference	between	the	observed	

spectrum	and	the	fitted	signals.	The	coupling	trees	above	the	spectra	demonstrate	the	

multiplet	structures	directly	linked	to	the	molecular	attributes	and	used	as	constraints	in	the	

lineshape	fitting	analyses.20,21	
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Figure	2.	The	automated	quantification	of	urinary	creatinine	and	glucose	from	the	NMR	

spectra.	On	the	left:	Building	and	assessment	of	the	final	automated	regression	models	for	

the	absolute	signal	areas	for	creatinine	and	glucose	in	the	NMR	spectra	(n=999).	Training	

and	independent	testing	results	are	shown	in	Supplementary	Figure	S1.	In	the	Bland-Altman	

plots	the	solid	line	in	the	middle	represents	the	mean	bias	(between	the	automated	

regression	and	the	lineshape	fitting	analyses	results	for	the	absolute	signal	area)	and	the	two	

others	the	mean	±	1.96	SD.	The	dashed	red	line	represents	the	regression	line	for	the	bias.	

The	equations	for	the	regression	lines	are	𝑦 = 0.9977𝑥	+	4.772×10!	for	creatinine	and	

𝑦 = 1.000𝑥 + 31.88	for	glucose.	Bias	as	a	function	of	creatinine:	𝑦 = 1.135×10!!𝑥 −

2.390×10!	with	R2	=	0.0006	and	bias	as	a	function	of	glucose:	𝑦 = 2.180×10!!𝑥 − 15.94	

with	R2	=	0.000001.	Both	automated	regression	models	show	excellent	quantitative	

performance	and	robustness	with	negligible	bias.	On	the	right:	The	distribution	of	absolute	

urinary	concentration	(in	µm/mM	creatinine)	in	4,548	urine	samples	in	NFBC66.	The	

absolute	signal	areas	for	the	urinary	creatinine	and	glucose	used	to	calculate	the	distribution	

are	based	on	fully	automated	NMR	spectral	analyses	using	the	final	models	illustrated	on	the	

left.	The	urinary	glucose	distribution	is	positively	skewed	(88	glucose	concentration	values	>	

80	µm/mM	creatinine	are	not	drawn	for	clarity).	This	is	expected	due	to	individuals	with	

prediabetes	and	diabetes	in	NFBC66.	



	 -	24	(31)	-	

Lipoprotein subclass

particle concentrations

Cholesterol

Triglycerides

Apolipoproteins

Fatty acids

Fatty acid ratios

Amino acids

Glycolysis and

gluconeogenesis

Ketone bodies

Miscellaneous

Inflammation

E
xt

re
m

el
y

la
rg

e 
V

LD
L

Ve
ry

la
rg

e 
V

LD
L

La
rg

e 
V

LD
L

M
ed

iu
m

 V
LD

L
S

m
al

l V
LD

L
Ve

ry
 s

m
al

l V
LD

L
ID

L
La

rg
e 

LD
L

M
ed

iu
m

 L
D

L
S

m
al

l L
D

L
Ve

ry
 la

rg
e 

H
D

L
La

rg
e 

H
D

L
M

ed
iu

m
 H

D
L

S
m

al
l H

D
L

To
ta

l C
R

em
na

nt
 C

V
LD

L 
C

LD
L 

C
H

D
L 

C
To

ta
l T

G
V

LD
L 

TG
ID

L 
TG

LD
L 

TG
H

D
L 

TG
A

po
lip

op
ro

te
in

 B
A

po
lip

op
ro

te
in

 A
�I

To
ta

l f
at

ty
 a

ci
ds

S
at

ur
at

ed
 fa

tty
 a

ci
ds

M
U

FA
P

U
FA

O
m

eg
a�

6 
fa

tty
 a

ci
ds

Li
no

le
ic

 a
ci

d
O

m
eg

a�
3 

fa
tty

 a
ci

ds
D

oc
os

ah
ex

ae
no

ic
 a

ci
d

S
at

ur
at

ed
 fa

tty
 a

ci
ds

 (%
)

M
U

FA
 (%

)
P

U
FA

 (%
)

O
m

eg
a�

6 
fa

tty
 a

ci
ds

 (%
)

Li
no

le
ic

 a
ci

d 
(%

)
O

m
eg

a�
3 

fa
tty

 a
ci

ds
 (%

)
D

oc
os

ah
ex

ae
no

ic
 a

ci
d 

(%
)

A
la

ni
ne

G
lu

ta
m

in
e

G
ly

ci
ne

Is
ol

eu
ci

ne
Le

uc
in

e
Va

lin
e

P
he

ny
la

la
ni

ne
Ty

ro
si

ne
H

is
tid

in
e

G
lu

co
se

La
ct

at
e

P
yr

uv
at

e
C

itr
at

e
G

ly
ce

ro
l

A
ce

to
ac

et
at

e
B

et
a�

hy
dr

ox
yb

ut
yr

at
e

C
re

at
in

in
e

A
lb

um
in

A
ce

ta
te

G
ly

cA

Extremely large VLDL
Very large VLDL

Large VLDL
Medium VLDL

Small VLDL
Very small VLDL

IDL
Large LDL

Medium LDL
Small LDL

Very large HDL
Large HDL

Medium HDL
Small HDL

Total C
Remnant C

VLDL C
LDL C
HDL C

Total TG
VLDL TG

IDL TG
LDL TG
HDL TG

Apolipoprotein B
Apolipoprotein A�I

Total fatty acids
Saturated fatty acids

MUFA
PUFA

Omega�6 fatty acids
Linoleic acid

Omega�3 fatty acids
Docosahexaenoic acid

Saturated fatty acids (%)
MUFA (%)
PUFA (%)

Omega�6 fatty acids (%)
Linoleic acid (%)

Omega�3 fatty acids (%)
Docosahexaenoic acid (%)

Alanine
Glutamine

Glycine
Isoleucine

Leucine
Valine

Phenylalanine
Tyrosine
Histidine
Glucose
Lactate

Pyruvate
Citrate

Glycerol
Acetoacetate

Beta�hydroxybutyrate
Creatinine

Albumin
Acetate

GlycA

Pearson's r

�1.0 �0.5 0.0 0.5 1.0

*: P < 0.002

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.	The	intra-fluid	metabolic	associations	in	serum.	The	intra-fluid	metabolic	

correlations	in	serum,	i.e.,	in	circulating	metabolism,	are	strong	due	to	multiple	key	

metabolic	pathways	under	heavy	systemic	control.	For	example,	the	metabolism	of	apoB-

containing	lipoprotein	particles	is	a	continuum	and	reflected	by	strong	correlations	between	

adjacent	lipoprotein	subclass	particle	concentrations.	Strong	links	exist	also,	e.g.,	between	

triglyceride-rich	VLDL	particles	and	large	cholesterol-rich	HDL	particles	as	well	as	between	

multiple	amino	acids.44	The	colour-coding	refers	to	partial	correlations	adjusted	for	sex;	

n=995	individuals	from	NFBC66.	The	heat	map	is	organised	manually	on	the	basis	of	the	key	

metabolic	groups	and	pathways	represented	by	the	measures.17,18	Twenty-seven	principal	

components	were	needed	to	explain	>99%	of	variation	in	the	metabolic	information	of	these	

61	serum	measures	(leading	to	Bonferroni	corrected	significance	p-value	of	0.002	i.e.,	
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0.05/27;	marked	with	*	in	the	map).	Abbreviations:	VLDL,	very-low-density	lipoprotein;	LDL,	

low-density	lipoprotein;	IDL,	intermediate-density	lipoprotein;	HDL,	high-density	lipoprotein;	

XXL	refers	to	the	largest	and	XS	to	the	smallest	lipoprotein	particles	in	each	lipoprotein	

fraction;8	P,	particle	(concentration);	C,	cholesterol;	TG,	triglyceride;	PUFA,	polyunsaturated	

fatty	acids;	MUFA,	monounsaturated	fatty	acids;	GlycA,	glycoprotein	acetyls.	
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Figure	4.	The	intra-fluid	metabolic	associations	in	urine.	The	intra-fluid	metabolic	

correlations	in	urine	are	generally	rather	weak	and	only	a	few	stronger	metabolic	correlation	

blocks	are	noticeable,	namely,	positive	correlations	among	amino	acids,	glycolysis-	and	

citrate	cycle-related	metabolites,	3-hydroxyisobutyrate	and	3-hydroxyisovalerate	result	in	

clear	association	clusters.	These	association	characteristics	are	likely	to	partly	reflect	the	

large	intra-individual	variation	in	urinary	metabolites,	but	they	are	also	likely	a	fundamental	

sign	of	metabolic	waste	with	under	only	limited	systemic	control.	However,	the	

concentrations	of	the	amino	acids	are	rather	strongly	correlated	as	would	be	expected	for	

these	apparently	healthy	individuals	with	healthy	kidneys.	The	amino	acid	concentrations	

also	correlate	with	3-hydroxyisobutyrate	and	3-hydroxyisovalerate,	both	degradation	

products	of	branched-chain	amino	acids	as	well	as	with	glucose	and	lactate,	related	energy	

metabolites	in	gluconeogenesis.	Several	metabolites	related	to	microbial	metabolism	are	

quantified	and	an	interesting	correlation	cluster	is	seen	between	methylamine,	p-Cresol	

sulphate	and	TMAO.	The	colour-coding	refers	to	partial	correlations	adjusted	for	sex;	n=995	

individuals	from	NFBC66.	The	heat	map	is	organised	manually	on	the	basis	of	the	key	
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metabolic	groups	and	pathways	represented	by	the	measures	(Table	1).	Forty	principal	

components	were	needed	to	explain	>99%	of	variation	in	the	metabolic	information	of	these	

43	urine	metabolites	(leading	to	Bonferroni	corrected	significance	p-value	of	0.001	i.e.,	

0.05/40;	marked	with	*	in	the	map).	Thus,	the	urine	metabolites	are	generally	highly	

uncorrelated	and	provide	independent	metabolic	information.	Abbreviations:	2PY,	N1-

Methyl-2-pyridone-5-carboxamide;	TMAO,	Trimethylamine	N-oxide;	HPHPA,	3-(3-

Hydroxyphenyl)-3-hydroxypropanoate.	
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Figure	5.	The	inter-fluid	metabolic	associations	between	urine	and	serum.	The	inter-fluid	

metabolic	correlations	between	urine	and	serum	are	rather	weak.	However,	several	clearly	

detectable	associations	are	present.	The	amino	acid	concentrations	in	serum	and	in	urine	

are	strongly	positively	associated,	except	for	histidine	for	which	the	correlation	appears	very	

weak.	There	is	an	intriguing	positive	association	between	urinary	TMAO	and	serum	

polyunsaturated	omega-3	fatty	acids.	Notably,	circulating	TMAO	has	been	linked	to	the	
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pathogenesis	of	cardiovascular	disease.45	However,	we	do	not	yet	have	data	to	associate	

urinary	TMAO	concentrations	with	cardiometabolic	outcomes	and	its	concentration	in	serum	

is	too	low	to	be	quantified	by	serum	NMR	metabolomics.	In	addition,	serum	polyunsaturated	

omega-6	fatty	acids	associate	negatively	with	multiple	urinary	metabolites	in	relation	to	

amino	acid,	energy	and	microbial	metabolism,	for	example,	2-hydroxyisobutyrate,	cis-

aconitate,	and	pseudouridine.	Multiple	urinary	metabolites,	e.g.,	3-hydroxyisobutyrate,	

lactate,	pseudouridine,	and	cis-aconitate	associate	with	circulating	amino	acids,	glucose	and	

creatinine.	For	example,	for	cis-aconitate,	a	key	component	in	the	citric	acid	cycle,	these	

associations	are	not	unexpected.	Cis-aconitate	also	associates	with	serum	triglycerides.	On	

the	other	hand,	urinary	uracil	(a	naturally	occurring	pyrimidine	found	in	RNA	and,	e.g.,	

related	to	carbohydrate	metabolism	and	sugar	transport)	is	positively	associated	with	serum	

high-density	lipoprotein	(HDL)	cholesterol.	The	rationale	for	this	association	is	not	evident;	

though	it	could	be	due	to	uracil’s	involvement	in	energy	metabolism	and	the	inverse	

association	between	serum	triglycerides	and	HDL	cholesterol.	The	colour-coding	refers	to	

partial	correlations	adjusted	for	sex;	n=995	individuals	from	NFBC66.	The	heat	map	is	

organised	via	2-dimensional	hierarchical	clustering.	Sixty-six	principal	components	were	

needed	to	explain	>99%	of	variation	in	the	metabolic	information	of	these	104	metabolic	

measures	combining	the	quantitative	information	from	urine	and	serum	(leading	to	

Bonferroni	corrected	significance	p-value	of	0.0008	i.e.,	0.05/66;	marked	with	*	in	the	map).	

Combining	quantitative	urine	metabolite	data	with	serum	metabolomics	would	thus	

evidently	increase	the	independent	metabolic	information	content	of	the	data	set.	

Abbreviations	are	as	detailed	in	the	captions	for	Figure	3	and	Figure	4.	

	

	 	



	 -	30	(31)	-	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	6.	Associations	of	metabolites	quantified	in	both	urine	and	serum	with	body	mass	

index.	Multiple	associations	are	notable	between	urinary	metabolites	and	BMI.	For	example,	

BMI	associates	negatively	with	urinary	p-Cresol	sulphate	and	hippurate,	and	positively	with	

2-hydroxyisobutyrate	and	branched-chain	amino	acids	isoleucine	and	valine,	and	aromatic	

amino	acids	tryptophan	and	tyrosine.	For	all	the	amino	acids	that	are	quantified	from	both	

urine	and	serum,	the	association	direction	with	BMI	is	the	same	in	serum	and	in	urine;	the	

association	strengths	however	tend	to	be	weaker	in	urine.	Abbreviations	are	as	detailed	in	

the	caption	for	Figure	4.	
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Figure	7.	Manhattan	plots	of	the	GWAS	of	formate	and	2-Hydroxyisobutyrate.The	SNP	

associations	across	the	whole	genome	are	presented.	For	plotting	purposes,	the	associations	

with	P-value	larger	than	1*10-3	are	not	shown.	Each	dot	is	a	–log10	of	P-value	of	the	

association	between	the	genetic	variant	and	the	metabolite	using	an	additive	model.	The	

dots	are	ordered	using	the	chromosome	number	and	base	pair	position	of	the	variant	in	the	

chromosome.	Red	line	indicates	the	standard	level	of	genome-wide	significance	(5*10-8).		

The	top	signals	in	these	two	plots	were	significant	after	correcting	the	genome-wide	

significance	threshold	for	40	independent	tests	(P<1.25*10-9).	All	metabolite	concentrations	

were	first	adjusted	for	sex,	and	ten	first	principal	components	from	genomic	data	and	the	

resulting	residuals	were	transformed	to	normal	distribution	by	inverse	rank-based	normal	

transformation.	NFBC66	was	genotyped	using	Illumina	HumanHap	370k	array.	The	

genotypes	were	imputed	using	the	Haplotype	Reference	Consortium	pipeline.46	The	results	

were	filtered	using	minor	allele	frequency	cut-off	of	5%	or	greater	and	imputation	info	0.8	or	

greater.	The	analysis	software	was	SNPTEST	2.5.1	using	additive	model	for	association	

testing.47	
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